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Abstract

Genetic studies report the existence of a mutant allele ∆32 of CCR5 chemokine re-
ceptor gene at high allele frequencies (∼10 %) in Caucasian populations. The presence of
this allele is believed to provide partial or full resistance to HIV. In this study, we look
at the impact of education, temporarily effective vaccines and therapies on the dynam-
ics of HIV in homosexually active populations. In our model, it is assumed that some
individuals possess an allele (like ∆32 of CCR5) that prevents the successful invasion
or replication of HIV. Our model therefore differentiates by genetic and epidemiological
status and naturally ignores the reproduction process. Furthermore, HIV infected individ-
uals are classified as rapid, normal or slow progressors. In this complex setting, the basic
reproductive number <0 is derived in various situations. The separate or combined effect
of therapies, education and vaccines are analyzed. Our results support the conclusions
of Shu-Fang Hsu Schmitz that some integrated intervention strategies are far superior to
those based on a single approach.
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Background

The human immunodeficiency viruses (HIV-1 and HIV-2), are pathogens that causes the deadly
disease of the acquired immune deficiency syndrome (AIDS). The origins of these viruses, HIV-1
and HIV-2 are not known, but the first known cases in the U.S were reported in gay men from
San Francisco in 1981. Even though HIV is considered to be a relatively young disease, evidence
has shown a case of HIV-1 positive from Zaire in 1959. Some evolutionary biologist belief that
the virus was first transmitted to humans from monkey viruses. Humans, transmitted the
disease mainly through sexual intercourse and intravenous drug users. During the 1980’s and
1990’s two waves of HIV infection emerged: one among heterosexual men and women in Africa,
and two among homosexual men and intravenous drug users in the U.S, as well as in Europe.
The rates of HIV infection in Africa are very high compared to U.S and Europe. Currently,
AIDS is the fourth leading cause of death globally and the leading cause in Africa. For the
year 1996, approximately 23 million people were HIV positive world wise. As of today, 36
million people have been reported to be HIV positive worldwide [14]. These shows a difference
of approximately 13 million new infecteds, which shows the rapid transmission of HIV. [14]
HIV specifically targets the “white blood” cells, i.e helper T cells. Helper T cells are vital for

the function of the immune system since their job is to activate killer T cells to destroy anything
that is foreign to the human body. HIV attaches itself to the CD4 protein (a receptor) from the
helper T cells, and once there it uses the host cell’s enzymatic machinery to reproduce, and grow.
Once the HIV is inside the host cell, the virus uses reverse transcriptase to copy its RNA genome
into double stranded DNA molecules. This double helix enters the host cell’s nucleus, where
the virus genome integrates into the host chromosome. In most cases, this infected chromosome
replicates two new infective cells for each cell division. The immune system responds to HIV
infection by destroying the virions floating on the bloodstream, or by killing its own infected T
cells. The life cycle and gene composition of HIV-2 is very similar to that of HIV-1. Yet HIV-2
is much more benign and has a much lower mutation rate than HIV-1’s reverse transcriptase.
[21] In this research we are only working with the human immunodeficiency virus-1.
HIV does not kill people directly or quickly; instead, the destruction of CD4+ T cells

weakens the immune system. Reverse transcription is high error prone and T cells are not able
to recognize all of the altered epitotes in order to destroy them. This is because the immune
system is limited to recognize certain proteins or epitotes as foreign. HIV is constantly changing
its epitotes because the virus uses reverse transcription for its reproduction. Consequently, the
immune system is not able to keep up with all the mutations, and the virions overturn the T
cells, in the long run the immune system collapses. This is the last of a three-phase sequence of
AIDS. In the first phase, 30% of those infected, the person presents symptoms of skin rashes and
fever, but this only lasts a few weeks. The duration of the second phase has an average of ten
years. In this phase, T cells and HIV are constantly fighting for survival, but as time progresses
the number of T cells continues to decline from a “normal level of about 1,000 cells/milliliter
of blood to only 200 cells/mL.” It is at this threshold that infected individuals enter the third
AIDS phase. The disintegration of the immune system happens because it can no longer defend
itself against other bacterial and fungal pathogens, especially when most T cells are dead or
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infected by the virus. The expected life for individuals in this phase is about 2 years. [21]
The devasting global impact of HIV has increased research efforts to find an effective vaccine,

or drugs that would stop the progression and transmission rate of HIV. These efforts have been
mildly successful since HIV evolves resistance to drugs and mutates extremely fast. Recent
genetics studies indicate a correlation of mutant genes in HIV co-receptors that may provide
protection against HIV. This gives us the hope that researchers may be able to develop a drug
that may mimic the resistant gene or that gene therapy may be useful in preventing HIV. This
“insertion’ of a resistant gene might be able to stop the HIV infection from progressing to
AIDS, and therefore lowering the transmission rates of HIV/AIDS.
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1 Introduction

Recent genetic studies observed that many individuals with multiple exposure to HIV-1 remain
seronegative, while others continue to be infected by HIV-1. Researchers have correlated these
findings with some mutant genes in HIV co-receptors. Studies found the presence of mutant
alleles such as ∆32 and m303 of CCR5 suggesting resistance or protection against HIV for
some individuals. Our interest lies precisely on these mutant alleles and the receptors from the
host’s cell and the virus’s cell. It seems that mutant alleles have somehow change the structure
of the helper T cells in a way that it is very difficult for the virus’ receptor to connect to
it. Hence, the virus stops replicating and individuals show a resistant to HIV. According to
the findings, the mutant alleles seem to provide full protection against HIV in homozygotes,
and partial resistance for heterozygotes. These results were observed in about 10% of the
Caucasian population. For Hsu Schmitz [2] these conclusions indicated the “existence of genetic
heterogeneity with respect to susceptibility to HIV infection and to rate of AIDS progression
in general populations”. Therefore, using this inference Hsu Schmitz investigated the impact
of genetic heterogeneity via a deterministic model for homosexually active population. Hsu
Schmitz concluded that giving treatment and vaccination to patients was helpful in reducing
the transmission rate, but they were not helpful if they were implemented alone. This project
starts from Hsu Schmitz’s basic ideas and model. A similar model is constructed in which
a susceptible population is subject to vaccination, education and treatment. Our primary
goal is to investigate the effects of education, temporary vaccination and treatment on HIV
transmission in a homosexually active population with genetic heterogeneity.
Vaccination and treatment are not efficient control methods. Vaccines in development may

only give a temporary immunity to HIV/AIDS. Antiviral drugs used in treatment such as AZT
(zidovudine), ddc(dideoxycytidine), and ddl(dideosyinosine) also worked temporarily. Theses
antiviral drugs blocks the replication of the virus. However, the virus’s high rate of mutation
eventually catches on. Those two methods are costly both at the individual and population
level. Hence, education may be the key factor in altering the course of this detrimental world
pandemic. In our model, education means that individuals are encouraged to use condoms,
or have fewer partners. Abstinence and safe sexual behavior are also involved. This paper
is divided into the following sections. Section 2 explains the complex model and includes the
diagram of the compartmental model which illustrates the dynamics of the population under
study. Section 3 explains in great detail the different cases for the reproductive number, R0.
Conclusions and final thoughts are in Section 4. Acknowledgments are given in Section 5.
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2 The Complex Model

Following Hsu Schmitz [1] we classify the homosexually active population into three classes of
susceptible individuals: no resistant (S1), partially resistant (S2) and fully resistant (S3) to HIV
infection. Infected individuals are classified as rapid (I1), normal (I2) and slow (I3) progressors.
Throughout this paper, the index i refers to the non infected groups, i.e.susceptible, vaccinated
and educated individuals and the index j refers to infected classes capable of transmitting the
disease, i.e.,infected and treated individuals. In this model we assume that AIDS patient are
sexually inactive, hence, AIDS patients do not affect the HIV process.
As in Hsu Schmitz (1999), we assume that recruitment occurs at a constant rate, π. The

three susceptible groups get the respective fixed fractions, gi (i = 1, 2, 3 and
P

i gi = 1),
which are related to the frequencies of relevant genotypes. Although genotype frequencies
usually change with time due to random fluctuation and/or to disease, the frequencies in a
homosexually population will have little effect on new recruits, hence we ignore them. Because
in general the frequencies of mutant alleles are relatively small, it is expected and reseanable
to assume that

g1 > g2 > g3; (1)

that is, most individuals have no resistance, a small fraction have partial resistance, and an even
smaller fraction have complete resistance. All individuals are subject to the common per-capita
natural removal rate, µ.
The average number of partners per unit time is denoted by ci (i = 1, 2, 3) for Si-individuals

and for Ij-individuals. As in Hsu Schmitz’s paper we assume that genetic heterogeneity does
not influence pairing behavior because most individuals do not know their genotypes at loci
related to HIV susceptibility and/or AIDS pathogenesis. Furthermore, we assume that all
individuals of a given disease status have the same average number of partners per unit time,
i.e., ci = c for all i. To make the model simpler, as Hsu Schmitz we further assume that disease
status does not affect pairing behavior, as in Anderson, Gupta and May (1991), McLean and
Blower (1993), and Castillo-Chavez, et, al (1989a, b). We follow this same approach.
The per-capita progression rates for Ij individuals are denoted by γj (j = 1, 2, 3). Because

1/γj is the average incubation time of Ij-individuals, it is obvious that

γ1 > γ2 > γ3. (2)

The infectiousness of Ij individuals is reflected by the per-partnership transmission rate,
βj (j = 1, 2, 3). We assume that fast progressors (I1) have the highest viral load, thus are
most infectious. In addition, slow progressors (I3) have the lowest viral load, hence are least
infectious. More specifically, we hypothesize the following relation:

β1 ≥ β2 ≥ β3. (3)

It has been shown that the viral load and the infectiousness may change dramatically during
the incubation period. However, to incorporate this fact we would need to keep track of the
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“age” of infection of each individual and end up with a complicated model [22]. For the sake of
simplicity, here we assume βj are constant as in Anderson, Gupta and May (1991), in McLean
and Blower (1993) and Castillo-Chavez, et, al (1989a, b).
During the partnership between an S2-individual and an Ij-individual (j=2,3), the trans-

mission rate βj of the infected partner is reduced to xjβj, with 0 < xj < 1 to account for
partial resistance to HIV in S2-individuals. Newly infected Si-individuals (i = 1, 2) join the
three infected groups with respective proportions fij, which satisfy:

0 ≤ fij ≤ 1 and
3X
j=1

fij = 1. (4)

We expect the new infecteds who have no resistance (S1) to generate a larger fraction of rapid
progressors (I1) and a smaller fraction of slow (I3) progressors than those coming from S2, that
is,

f11 < f21 and f13 < f23. (5)

A certain number of individuals from the susceptible class Si (i = 1, 2, 3) are assumed to
be educated at a rate α. A certain proportion (pi) of newly recruited Si-individuals is assumed
to be effectively vaccinated. Moreover a certain number of individuals from the infected Ij-
individuals (j = 1, 2, 3) are assumed to be effectively treated at a rate, (mj) . We assume
that the transmission rate of effectively treated individuals (Tj) is reduced from βj to a βj with
0 ≤ a < 1, and the progression rate is reduced from γj to y γj with 0 ≤ y < 1. The value of 1 is
not included in the ranges of a and y because it means treatment does not reduce infectiousness
and rate of progression at all, which does not sound reasonable based on current knowledge.
As in [10], and [2] we assume that the vaccines have a “take” proportion of ² (0 < ² < 1), an
efficacy of ξ (0 < ξ < 1) and a protection duration of 1/ω units of time. The ranges of ² and ξ do
not include 0 and 1 because 0 implies the vaccine is useless and 1 implies the vaccine is perfect;
both are unrealistic. These vaccine parameters indicate [100× (1− ²)]% vaccinated individuals
are not effectively vaccinated and they are in principle like other unvaccinated individuals. As
in [2], those effectively vaccinated individuals (in a proportion of pi²), denoted by Vi, still have
[100 × (1 − ξ)]% chance to be infected within the protection duration of 1/ω units of time.
No reduction in infectiousness is assumed for infecteds who have been vaccinated. Although
individuals might become more active (i.e., having more sexual partners per unit of time) after
being treated or vaccinated, for simplicity we assume as in [2] that neither the treatment nor
the vaccination changes people’s pairing behavior, so the common pairing activity c and the
proportional mixing pattern are still in effect. In addition, we assume that the effectiveness of
education is given by Ψ and its range does not include 0 and 1 because 0 implies that education
is useless and 1 implies that education is completely effective. Now, let the total population be
denoted by

Φ :=
3X
i=1

(Vi + Si + Ei) +
3X
j=1

(Ij + Tj) (6)
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We reparameterize the transmission rates via β := β2, or more specifically,

β1 = b1β and β3 = b3β. (7)

Relation (3) implies that the multipliers

b1 ≥ 1 and 0 ≤ b3 ≤ 1. (8)

Currently there are no data that throw light on whether or not the reduction factors xj for
βj depend on j. To continue our goal of analyzing the simplest possible genetic-epidemiological
model, we assume that xj = x for all j.
Then the forces of infection for S1 and S2 individuals are

σS1 = β (
3X
j=1

bj Ij + a
3X
j=1

bj Tj)/Φ, (9)

σS2 = xσS1 , (10)

for E1- and E2-individuals are

σE1 = (1−Ψ)σS1, (11)

σE2 = xσV1
= x (1−Ψ)σS1. (12)

and for V1- and V2-individuals are

σV1 = (1− ξ)σS1, (13)

σV2 = xσV1
= x (1− ξ)σS1. (14)

The numbers of newly infected Si-, Vi- and Ei- individuals (i = 1, 2) are

δSi = c Si σSi , (15)

δVi = c Vi σVi , (16)

δEi = cEi σEi . (17)

These newly infected individuals enter the jth (j = 1, 2, 3) infected group (Ij and Tj) at the

rate

ρj =
2X
i=1

fij (δSi + δVi + δEi). (18)
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Figure 1: Diagram of the Compartmental Model.
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The mathematical model is described by the following system of equations, where i=1, 2
and j=1,2,3 :

V̇i = giπpi²− (µ+ ω)Vi − δVi
V̇3 = g3πp3²− (µ+ ω)V3

Ṡi = giπ(1− pi²) + ωVi − (µ+ α)Si − δSi
Ṡ3 = g3π(1− p3²) + ωS3 − (µ+ α)S3

Ėi = αSi − µEi − δEi (19)

Ė3 = αS3 − µE3
İj = ρj − (µ+mj + γj)Ij

Ṫj = mjIj − (µ+ yγj)Tj

P (t) =
3X
k=1

(Vk + Sk + Ek + Ik + Tk)

2.1 Simple model

For interpretation purposes we first considered a homozygotic population (note that the fre-
quencies of genotypes is equal to 1). By doing so we obtained the following reproductive number
(where the subscript S denotes “Simple”)

<0S =
1

2

 fcβbk

µ+m+ γ
+

sµ
fcbkβ

µ+m+ γ

¶2
+ 4a

µ
fbkcmβ

(µ+ yγ)(µ+m+ γ)

¶ (20)

where

k =

µ
1− α

µ+ α
Ψ

¶µ
1− µ

µ+ ω
p²

¶
+ (1− ξ)

µ
µ

µ+ ω

¶
(21)

It is worthwhile to notice that k contains only parameters involving education and vacci-
nation. The first two terms denote the reduction factor for education and the proportion of
non-vaccinated individuals respectively. The other two terms represent the reduction factor for
vaccination and the proportion of vaccinated individuals respectively. Notice that the range
of k will always be between 0 and 1, which implies that education and vaccination will always
reduce the value of <0S .

For convenience let

<0SI =
fcβbk

µ+m+ γ
and <0ST =

m

µ+ yγ
(22)

by making these substitutions we can write <0S as follows

<0S =
1

2

³
<0SI +

p
<0SI (<0SI + 4a<0ST )

´
(23)
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The square root in <0 represents the 2 step process that a treated person takes before s/he
can actually generate another treated individual. In order to analyze the value of <0S , we shall
take its derivative with respect to m and show under what circumstances,

d<0ST
dm

< 0

which implies that increasing treatment lowers <0S . Thus by taking the derivative we obtain

2aη

ηy
− fcbkβ

µ+m+ γ
−
sµ

fcbkβ

µ+m+ γ

¶2
+

4afbkcmβ

(µ+ yγ)(µ+m+ γ)
< 0

which gives the following inequality

a < <0ST (0)
µ
µ+ yγ

µ+ γ

¶
(24)

Hence, treatment will reduce <0ST . We should start a treatment program, only if it reduces
the infectivity by at least this factor. Reducing infectivity is more beneficial than letting people
live longer, since the more an individual lives the more people s/he infects, so the good effect
of treatment (a) has to outweigh the “bad” effect (y) on the population. Hence, by increasing
treatment we will be able to lower the value of <0. The analysis of this homozygotic population
would be helpful to understand the analysis of <0 for the heterogeneity population, which is
presented in the next section.

3 The Basic Reproductive Number

3.1 The <0 of the Complex Model
As mentioned in [7] the reproductive number (<0) is the effected number of secondary cases
produced by a typical infected individual during its entire period of infectiousness in a demo-
graphically steady susceptible population. Therefore, in order to study whether HIV will invade
a population or stabilize over a given region we must investigate the dynamics of <0.
We are now ready to move on and compute the reproductive number when treatment, educa-
tion and vaccination are applied to the population. To study the potential of disease spread-
ing, we shall compute the basic reproductive number, R0 as in Diekmann et al.( 1990), and
Castillo-Chavez et al (forthcoming), which indicates whether disease may invade a population
in demographic steady state when there is no disease present. The computation is done by
linearizing our system (20) around the disease-free state and looking for conditions that guar-
antee the growth of the three infected classes, Ij as well as the three treated classes, Tj.

The resulting 6-dimensional system is represented in the following form:
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Ẋ = (M−D)X,
where

X =


I1
I2
I3
T1
T2
T3

 , D =


η1 0 0 0 0 0
0 η2 0 0 0 0
0 0 η2 0 0 0
0 0 0 ϕ1 0 0
0 0 0 0 ϕ2 0
0 0 0 0 0 ϕ3



M = c β


b1τ1 τ1 b3τ1 ab1τ1 aτ1 ab3τ1
b1τ2 τ2 b3τ2 ab1τ2 aτ2 ab3τ2
b1τ3 τ3 b3τ3 ab1τ3 aτ3 ab3τ3
m1 0 0 0 0 0
0 m2 0 0 0 0
0 0 m3 0 0 0


with

τ1 = f11 (δS1 + δE1 + δV1),

τ2 = f12 (δS1 + δE1 + δV1) + xf22(δS2 + δE2 + δV2),

τ3 = f13 (δS1 + δE1 + δV1) + xf23(δS2 + δE2 + δV2),

ϕi = µ+ yγi,

ηi = µ+mi + γi

The six eigenvalues of the matrix MD−1 are 0, 0, 0, 0, λ− and λ+, which are given by

λ− =
1

2

µ
<0I −

q
<20I + 4a ~<I · ~<T

¶
and λ+ =

1

2

µ
<0I +

q
<20I + 4a ~<I · ~<T

¶
(25)

where

<0I = c

·
k1(f11

β1
η1
+ f12

β2
η2
+ f13

β3
η3
) + xk2(f22

β2
η2
+ f23

β3
η3
)

¸
~<I =

µ
k1f11β1

η1
, (k1f12 + xk2f22)

β2
η2
, (k1f13 + xk2f23)

β3
η3

¶
(26)

~<T = (
m1

ϕ1
,
m2

ϕ2
,
m3

ϕ3
)
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and

ki = gi

·
(1−Ψ

α

µ+ α
)(1− Pi² µ

µ+ ω
) + (1− ξ)(Pi²

µ

µ+ ω
)

¸
(27)

Because all elements on the right hand side of λ+ are positive, it is clear λ+ > 0. Therefore, λ+
is the dominant eigenvalue of MD−1, which is also referred to the basic reproductive number,
<0 (Diekmann et al. 1990). Further issues about <0 < 1 are discussed later when different
cases are studied. The reproductive number for the complex model, <0 is a combination of
the secondary infections caused by the infected and treated class. Notice that the square root
denotes the 2 step process that a treated individual takes before s/he generates another treated
person, (since when s/he infects a person the person must become infected first before s/he
gets treated).

3.2 Global Stability of Disease Free Equilibrium

Here we define a Lyapunov function to prove that disease free equilibrium (DFE) is globally
stable in the absence of an endemic equilibrium.

Theorem 3.1 Suppose that

cβ
3X
k=1

(g1f1k + g2f2k)
b3

µ+ γ3
< 1 (28)

and

cβ
3X
k=1

(g1f1k + g2f2k)
ab3

µ+ yγ3
< 1 (29)

Then the disease-free equilibrium is globally stable.
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Proof Let L =
P

j(Ii + Tj) be a Lyapunov function.

L0(t) =
3X
j=1

{(µ+ yγj)Tj − (µ+ γj)Ij

+
cβ

Φ

3X
k=1

bk(Ik + aTk)[f1j(S1 + (1− ξ)V1 + (1−Ψ)E1) + xf2j(S2 + (1− ξ)V2 + (1−Ψ)E2)]

<
3X
j=1

(
cβ

P3
k=1 bk(Ik + aTk)

Φ
(g1f1j + g2f2j)

π

µ
− (µ+ γj)Ij − (µ+ yγj)Tj

)
(30)

<

"
cβ

3X
k=1

(g1fk1 + xg2f2k)
3X
j=1

bjIj −
X
j

(µ+ γj)Ij

#

+

"
acβ

3X
k=1

(g1fk1 + xg2f2k)
3X
j=1

bjTj −
X
j

(µ+ yγj)Tj

#

=
3X
j=1

(µ+ γj)

"
cβ

3X
k=1

(g1f1k + xg2f2k)
bj

µ+ γj
− 1
#
Ij

+
3X
j=1

(µ+ yγj)

"
cβ

3X
k=1

(g1f1k + xg2f2k)
abj

µ+ yγj
− 1
#
Tj

Observe that the inequality (30) is true because ξ and Ψ are positive. In addition by hy-
pothesis (28) and (29) we get L0 < 0 for all j(=1,2,3), therefore the diseases-free equilibrium is
globally stable.

Note that if a
H3
< 1 where H3 =

µ+yγ3
µ+γ3

, i. e., the reduced infectivity “outweighs” the factor

by which mortality is reduced for slow progressors, then (28) implies (29).

Now will do some analysis of this reproductive number for the heterogeneity population. By
plotting the reproductive number for the complex model, as a function of α and Ψ and fixing
the values for ω = 1/60, and ξ = .95, we obtained the following graph. Which describes the
impact of education when the efficacy of education is between 0 and 1.
As shown in figure 2(parts a, b), <0 < 1 as long as Ψ (effectiveness of education) and α

(the rate at which susceptibles go to the educated class) are not close to 0. This means that
by educating some small portion of susceptible individuals will have some effect in reducing
the generation of secondary newly infective persons, i.e <0. Hence, education does reduce the
reproductive number for the complex model.
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Figure 2: <0 for education as function of Ψ ∈ (0, 1] and α ∈ (0,∞) intercepted with <0 = 1 plane.

Figure 3: <0 for vaccine as function of ξ ∈ (0, 1] and ω ∈ (0,∞) intercepted with the plane <0 = 1
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Then to see the impact of vaccination over the reproductive number, we graphed Re0 as
function of ξ (effectiveness of the vaccine) and ω (duration protection against HIV) and fixed
α = 1/32 and ξ = 0.95. Figure 3 (parts a, b) shows that <0 < 1 if ω is approximately 0,
and ξ is approaching to one. That is, the vaccine program is effective only when the vaccine
is almost perfect and no individuals are losing their immunity to HIV, which implies that they
will remain in the vaccinated class. However, this is unrealistic given that no vaccine is perfect,
and individuals are only temporarily immune to the virus.

3.3 <0 for different cases
If mi is set to 0, which implies that no treatment is applied to the population, <0 will be given
by the following relation,

<0I = c
·
k1(f11

β1
η1
+ f12

β2
η2
+ f13

β3
η3
) + xk2(f22

β2
η2
+ f23

β3
η3
)

¸
(31)

and the only thing that will change when either vaccination and education or both are applied
is ki.
Let us first consider the most simple case, which is when only three susceptible classes S1,

S2 and S3 and the three infected classes I1, I2 and I3 are taken into consideration. Then, ki
will be denoted by

ki = gi (32)

thus, <0I is given by the sum of the secondary infections caused by each of the infected classes
contained in our model.
Now, if only vaccination is applied to the population, then ki will be given by

ki = gi(1− ξ
µ

µ+ ω
Pi²) (33)

<0 will be reduced based on the fact that ki is being multiplied by a factor which is always
less than 1. This factor is denoted by reduction term due to the vaccine, and depends on the
efficacy of the vaccine and number of people who were vaccinated.
If only education is applied to the population, then ki will take the following form

ki = gi(1− α

µ+ α
Ψ) (34)

if we require that the education is effective in the population level to slow the spread of the
disease, then one would expect that ki < 1. Notice that for any values of µ and α, ki is always
less than 1, thus, education will reduce <0.
Now, if we compare the ki’s of vaccination and education respectively to analyze which of

the two have the most effect on the population, we get the following relation

ξ
µ

µ+ ω
Pi² <

α

µ+ α
Ψ
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which indicates that it is better to apply education than vaccination. Otherwise, vaccination
would be better, however, this is very unlikely to happen since we will be requiring that the
efficacy of the vaccine is almost perfect and we know that all vaccines available only provide
temporary immunity.
If both vaccination and education are applied to the population, then the value of ki is given

by (27). The joint intervention of treatment and vaccination will reduce the basic reproductive
number more than if one or the other are applied. Now, if we wanted to determine which of
the two has the most effect in the reduction of <0, we compared their respective k0is and by
doing so we get

ξ <
α

µ+ α
Ψ

this inequality implies that education will have a greater impact than vaccination when both
are present in the population, otherwise vaccination will have a greater effect.

3.4 The <0 for the SIT, VSIT and SIET Models

When treatment is applied to the population, the basic reproductive number denoted by <0T
with T indicating treatment, is

<0T =
1

2

µ
<0I +

q
<20I + 4a ~<I · ~<T

¶
(35)

where

<0I = c

·
k1(f11

β1
η1
+ f12

β2
η2
+ f13

β3
η3
) + xk2(f22

β2
η2
+ f23

β3
η3
)

¸
~<I =

µ
k1f11β1
m1

, (k1f12 + xk2F22)
β2
ϕ2
, (k1f13 + xk2f23)

β3
ϕ3

¶
(36)

~<T = (
m1

η1
,
m2

η2
,
m3

η3
)

In a similar manner as studied in the previous section, we will present the reproductive
number when treatment is present for different cases and again the only thing that will change
for each case are the ki. Then, an analysis of how treatment affects <0T will be given.
If only susceptibles, infecteds and treateds are considered, then ki will be gi. Notice that

the square root appears in <0T when treatment is present due to the two step processes that a
treated individual takes before s/he can generate another treated.
Now, when vaccination is added to the previous case ki will be given by (33). In this case

we see that <0T will be reduced by this factor and by the contribution of treatment which will
be presented in the next section.
When education is introduced into the system in addition to treatment ki, are denoted by

(34). <0T is reduced by the factor of ki and the contribution of treatment.

16



To examine the effectiveness of treatment not only in the individual level, but also in the
population level to slow down the spread of the disease we took the partial derivatives of <0T
with respect to mi and look for conditions under which the derivatives are less than 0.
For convenience let,

F1 = ck1f11β1

F2 = c(k1f12 + xk2f22)β2

F3 = c(k1f13 + xk2f23)β3

Now, by taking the partial derivative of <0T with respect to m1 we get

∂<0T
∂m1

=
F1
η1

"·
(F1, F2, F3) ·

µ
1

η1
,
1

η2
,
1

η3

¶¸ 1
2

+ 4a

µ
F1
ϕ1

F2
ϕ2
,
F3
ϕ3

¶
·
µ
m1

η1
,
m2

η2
,
m3

η3

¶#
(37)

After some simplifications and by setting
∂<0T
∂m1

< 0 we obtain the following,

a

µ
µ+ γ1
ϕ1

¶2
− µ+ γ1

ϕ1
~F ·
µ
1

η1
,
1

η2
,
1

η3

¶
−
µ
F1
ϕ1
,
F2
ϕ2
,
F3
ϕ3

¶
·
µ
m1

η1
,
m2

η2
,
m3

η3

¶
< 0

hence,

∂<0T
∂m1

< 0⇐⇒ a < H1 ~F1 ·
µ

1

µ+ γ1
,
1

η2

µ
1 +

m2

ϕ2
H1

¶
,
1

η3

µ
1 +

m3

ϕ3
H1

¶¶
(38)

where

Hj =
µ+ γjy

(µ+ γj)
(39)

Likewise

∂<0T
∂m2

< 0⇐⇒ a < H2 ~F1 ·
µ
1

η1

µ
1 +

m1

ϕ1
H2

¶
,

1

µ+ γ2
,
1

η3

µ
1 +

m3

ϕ3
H2

¶¶
(40)

∂<0T
∂m3

< 0⇐⇒ a < H3 ~F1 ·
µ
1

η1

µ
1 +

m1

ϕ1
H3

¶
,
1

η2

µ
1 +

m2

ϕ2
H3

¶
,

1

µ+ γ3

¶
(41)

note

Hi = 1− (1− y) γi
µ+ γi

so γi < γj ⇐⇒ Hi > Hj

by assumption of (2) we have H1 < H2 < H3.
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Now define

hij(mj) =
1

ηj

µ
1 +

mj

ϕj
Hi

¶
(42)

note that

hii =
1

µ+ γi

is independent of all m1,m2,m3.

Thus for i 6= j,

h0ij(mj) =
1

η2j

µ
Hi
Hj
− 1
¶
> 0⇐⇒ i > j.

hence,

h011 = 0, h
0
12 < 0, h

0
13 < 0,

h021 > 0, h
0
22 = 0, h

0
23 < 0,

h031 > 0, h
0
32 > 0, h

0
33 = 0

also note

lim
mj→∞

hij(mj) =
Hi
Hj

1

µ+ γj

Therefore, if no treatment program is currently in effect, i.e, m1 = m2 = m3 = 0, then small
increase in any or all the mi will reduce <0, i.e,

∂<0
∂m1

(0, 0, 0) < 0

∂<0
∂m2

(0, 0, 0) < 0 (43)

∂<0
∂m3

(0, 0, 0) < 0

if the following inequality obtained from (38)-(40) and (41) is satisfied:

a < min(H1, H2, H3)<0(0) = H1<0(0) (44)

If some treatment is already in effect, i.e., m1 +m2 +m3 > 0 then changes in the mi will
reduce <0T if and only if the appropriate one(s) of the conditions in (43) hold for the current
values of m1,m2 and m3.
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Now, if we want to ensure that increments in any mi will reduce <0T regardless of the
current values for m1, m2, m3, then we must have

a < min



H1 ~F ·
³

1
µ+γ1

, H1
H2

1
µ+γ2

, H1
H3

1
µ+γ3

´
,

H2 ~F ·
³

1
µ+γ1

, 1
µ+γ2

, H2
H3

1
µ+γ3

´
,

H1 ~F ·
³

1
µ+γ1

, H1
H2

1
µ+γ2

, H1
H3

1
µ+γ3

´
A sufficient but not necessary condition to make this happen is

a <
H2
1

H3
<0(0) (45)

since H1H3
is the smallest of the fractions above. Basically, the infectivity should be reduced at

least as much as the lifespan is prolonged, with respect to <0(0).
Based on the previous results we can see that if both vaccination and treatment are applied

to the population, the basic reproductive number denoted by <0T (35)with ki given by (33) will
be reduced if the above inequalities are satisfied. However, reduction of <0T does not guarantee
extinction of the disease, since both vaccination and treatment are not completely effective
and does not give immunity nor eradicate the HIV respectively. Furthermore, if education and
treatment are applied to the population, the basic reproductive number denoted by <0T (35)
and ki given by (34) will be reduced.
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4 Conclusion

We have presented a novel model to incorporate genetic heterogeneity into HIV/AIDS epidemi-
ology. The basic reproductive number for this model was derived and the relative contributions
from different cases were discussed. Our results support the conclusions of Shu-Fang Hsu
Schmitz that some integrated intervention strategies (i.e., vaccination and treatment) are far
superior to those based on a single approach. The secondary cases produced by the infected-
treated individuals is reduced the most when vaccination, education and treatment are applied
to the population. However, education is the most effective in reducing the <0 without having
to fulfill any conditions and/or restrictions. This is because education is more reliable and it is
always better to educate than not to. This is not only supported by our deterministic analysis
but by the graphical analysis too. This analysis tell us that if we at least effectively educated
some small portion of the suceptible individuals this will reduce the generation of secondary
infections. In addition, by deterministic analysis we concluded that vaccination will make a
difference only if it takes and gives immunity to the susceptible individuals for a longer period
of time. The graphical analysis shows that the vaccine program would be effective only when
the vaccine is almost perfect and none of the vaccinated individuals are losing their immunity
to HIV. In the case of treatment, ‘a’, the reduction factor for infectivity must be really small in
order for the treatment to reduce the value of <0. Treatment will reduce <0 if the infectivity
is reduced at least as much as the lifespan is prolonged. Therefore, the education program
is a good option in reducing the number of secondary cases produced by the infected-treated
individuals, not only because it is less costly at the individual and population level, but because
in the long run people can get a lot more from education than from temporary vaccines and
treatment. Nevertheless reduction in <0 from the three different therapeutic approaches to HIV
will not guarantee eradication of HIV, since both vaccines and treatment are not completely
effective in reducing the infectivity rate. First, because vaccines are temporary and scientists
have not developed an everlasting vaccine in way that would lower the number of HIV infec-
tion, and antiviral drugs used in treatment is not 100% effective because after some time the
virus can still replicate even in the presence of these drugs. Likewise, even though education
has the most impact in reducing the <0, effectively educating individuals does not mean these
individuals will not get infected. It just means that these individuals will help in reducing the
spread of the disease. Thus, the spread of the disease will continue to grow, or at least be
control since up until now there is no cure for HIV.
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