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1 Abstract

Repeated and frequent alcohol use can have serious repercussions on the nervous system,
particularly the brain. Here, we focus on the nerve cell (neuron), the fundamental compo-
nent of the brain. In 1952, Hodgkin and Huxley received the Nobel Prize in Physiology and
Medicine for their research on neuron dynamics (firing) with the help of a mathematical
model. Our research begins with the assumption that alcohol impairs neuron dynamics.
Hence, we begin with the Hodgkin and Huxley model but its complexity moved us to the
Fitzhugh-Nagumo equations, a caricature of the Hodgkin and Huxley model. The Fitzhugh-
Nagumo equations include only two variables, the membrane potential and the restoring
force. In our research, we assumed that alcohol delays the effect of the restoring force
and changes the normal state of the system. We analyzed the dynamics of the Fitzhugh-
Nagumo equations with and without delay using computer simulations, the qualitative
theory of dynamical systems, and bifurcation theory. Alternative hypotheses are discussed
in the conclusions.
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2 Introduction

Alcohol is a mood altering depressant drug that slows brain activity down and produces
various effects on neural activity on brain function in different regions (see appendix).
Alcohol induces many forms of typical behavioral changes such as impaired judgement,
extreme emotion, and slowed behavior. Long-term effects include damage in cognitive
behavior especially associated with the frontal lobes of the brain such as slowed processing
of information, and difficulty in learning new material. The reason that alcohol can cause
such extensive damage because there is no body cell resistant to alcohol. Alcohol is absorbed
directly into the blood stream and moves quickly to the brain and passes the blood-brain
barrier, which normally keeps harmful substances away from the brain.

In 1996, a study conducted by Richard Gross and Rose Gubitosi-Klug showed that
alcohol accelerates the release of Potassium ions. This will result in a disruption that could
inhibit the release of neurotransmitters [29]. Potassium ion play a major role in the hyper-
polarization of the action potential. Since the ionic concentration of potassium determines
how quickly hyper-polarization occurs, we can assume that hyper-polarization will take a
longer time. The system takes a longer time to get to the resting state. Consequently, there
is a delay in the firing of the neuron (depolarization).

Alcohol, ethyl alcohol, acts primarily on the nerve cells within the brain, interfering
with communication between nerve cells and all other cells. Alcohol has the ability to
enhance the effects of the neurotransmitter GABA, which is an inhibitory neurotransmitter.
Enhancing an inhibitor would retard the process of message transfer between neurons.
Glutamate is an example of an excitatory neurotransmitter weakened by alcohol. Thus,
making transmitter less effective(Tsai [23]).

All brain functions involve communication among nerve cells, or neurons that con-
nects with hundreds or thousands of adjacent neurons. Messages travel within the neuron
as an electrical impulse. When a nerve signal is sent by the nervous system, the dendrites
receive the signal. The axon then transmits the nerve signal to the axon terminals, which
synapse with dendrites or other tissues such as a muscle. (Refer to the Figure1). Messages
are then carried across synapses (gaps between neuron) by neurotransmitters. The neuron
membrane has an unequal distribution of ions and electrical charge between the membrane.
The outside of the membrane has a positive charge and inside has a negative charge. This
charge difference is a resting potential and is measured in milli-volts. Nerve action po-
tentials are the electrical signals sent out by the body to control bodily processes such as
muscular movement, which are controlled by ions and their concentrations surrounding the
nerve cell.

Sodium and Potassium ions are essential to the normal action potential. An external
stimulus causes an influx of Sodium in the nerve cell. This depolarization (B) or action
potential, see Figure 3, continues down the neural pathway until it reaches its destination.
After the cell depolarizes, it must hyper-polarize to its resting potential before it can be
stimulated again(depolarize). This hyper-polarization phase (C) is controlled by Potassium.
Consequently, efflux of Potassium causes the potential to return to its resting state. hyper-
polarization (C) occurs when the membrane potential is returning to the resting state and
undershoot (D) occurs due the Potassium gate staying open longer.

There are three gates that are associated with the action potential: m, h, and n.
Ion gates are protein channels that regulate ion flow into and out of the cell. The m and h
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Figure 1: The Structure of the Neuron from Neurons, Hormones, and the Brain
http://www.gpcpeachnet.edu/ reynold/backup/101-04.htm

Figure 2: The nervous system:http://gened.emc.maricopa.edu/bio/bio181/BIOBK/BioBookNerv.htm
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gates control sodium flow, while the n gate controls potassium flow. In reference to figure
3, the resting phase (A) of the action potential, the m gate is closed, while the h gate is
open. Therefore, sodium is neither leaving nor entering the cell. The n gate is also closed,
so potassium can neither leave nor enter the cell. During depolarization (B), the m gate
opens, allowing sodium to diffuse its gradient, while the n gate is still closed. During hyper-
polarization (C), the h gate closes, preventing sodium from coming into the cell. The n
gate is open during this phase so potassium moves out. In the undershoot phase (D), the
m gate closes, the h gate remains closed, and the n gate remains open. Finally, the h gate
opens, the n gate closes, and resting state is once again achieved.

Figure 3: The Action Potential http://www.du.edu/ kinnamon/3640/actionpotential

Drinking alcohol affects many areas of the brain that control perception and reaction
(see appendix for the order in which areas are affected). However, only indirect evidence of
alcohol’s actions are available. Therefore, we must be careful in our interpretations. From
research articles we have found that alcohol interferes with messages transfer within the
brain and between the brain and the body. Based on research previously conducted, we
can say that alcohol disrupts the normal flow of electrical impulses and chemical systems,
which will undoubtedly interfere with the communication between neurons. Thus, showing
that alcohol delays the effect of the restoring force and changes the normal state of the
system. In deriving a mathematical model to explain the change in the system, we will
assume alcohol impairs neuron dynamics resulting in a time-delay in the firing of a neuron,
which makes response slower.
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Figure 4: Ion gates during nerve action potential http://www.du.edu/ kinnamon/3640/actionpotential

3 Mathematical Model

3.1 Hodgkin and Huxley Model

Groups of neurons with similar functions extend from one brain region to another, forming
neural circuits, which interact with one another to integrate the functions of the brain.
Therefore, we decided to use the classical Hodgkin and Huxley mathematical model neuronal
theory, which was derived from a series of experiments that Hodgkin and Huxley conducted
on a squid axon in the 1950’s.

The axon was placed in a bath of seawater, which was inserted with a microelec-
trode into the axon and stimulated by a voltage. To analyze the nerve action potential that
occurred as the stimulus was applied, they measured the membrane potential during its
propagation along the squid axon. The Hodgkin-Huxley model of the electrical and ionic
behavior of the membrane of the squid axon describes the electrical behavior of both inver-
tebrate and vertebrate neurons, and with slight modifications, of muscle cells and other cell
types as well. This is discussed further in the appendix.

The Hudgkin and Huxley Equations:

dn

dt
= αn(v)(1− n)− βn(v)n (1)

dm

dt
= αm(v)(1−m)− βm(v)m (2)

dh

dt
= αh(v)(1− h)− βh(v)h (3)

dv

dt
= − 1

C
[gNa(v)(v − vNa) + gK(v)(v − vK) + gL(v − vL)] (4)

As stated earlier, the first set of equations that accurately gave insight to neural theory were
the Hodgkin and Huxley equations, a system consisting of four coupled ordinary differential
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equations with non-linear terms. Its complexity however, led us to look at a caricature of
the Hodgkin-Huxley equations, the Fitzhugh-Nagumo equations.

3.2 Fitzhugh-Nagumo Model

The Fitzhugh-Nagumo model was independently derived by Fitzhugh, (Fitzhugh 1961) and
Nagumo (Nagumo, Arimoto, and Yoshizawa 1962), from the Hodgkin-Huxley equations.
Looking at equations (1) and (4), the argument was that since the time scales for m, n,
and h were not all of the same order, certain assumptions could be made. For example, m
can be neglected because this variable represents the opening of the sodium gates in the
membrane. Relatively speaking this phenomena is instantaneous. Therefore, dmdt = 0. Since
the system still maintained most of the features observed experimentally when h is set equal
to a constant h0, h is also neglected. The Hodgkin and Huxley model was then reduced to
a more traceable mathematical model. The result is a two variable (ω, v) model that can
be approximated by the following dimensionless system,

dv

dt
= f(v)− ω + Ia,

dω

dt
= bv − γω, (5)

f(v) = v(a− v)(v − 1) (6)

where a, b, and γ are all positive parameters, and 0 < a < 1.

In this system of equations v plays the role of V in the Hodgkin-Huxley equations
(1)-(4), the membrane potential, and ω the recovery variable, plays the role of all three
variables m, n, and h in equations (1)-(4), it represents the recovery of hyper-polarization
of neuronal action potential (Murray [17]).

Although the Fitzhugh-Nagumo equations are a very good mathematical portrayal
of neural excitation, they are not meant to accurately convey the physiological mechanisms
operating inside the axonal membrane. Instead, they are a behavioral paradigm, phrased
in terms of equations that are mathematically easier to analyze as oppose to the Hodgkin-
Huxley equations (Edelstein-Keshet [6]).

Mathematical investigations of the Fitzhugh-Nagumo model (5) and (6) have been
performed in many works (see Murray [17] and Eldelstein-Keshet [6]). We used work by
Fitzhugh 1961 [8] and also papers by Volokitin and Treskov, 1994 [26], and Armburster,
Dieter 1997 [1]. It was proven in these investigations that the model Fitzhugh-Nagumo
model demonstrates 21 topologically different phase portraits by varying parameters a, b,
and γ, and gives a bifurcation of co-dimension 4, “three-multiple neutral equilibrium-focus
with symmetry “ (Khibnik et. al,1998 [14]). Corresponding bifurcation diagram is given in
section 9.1. Due to the focus of our research, we are only interested in the portraits which
correspond to the existence of a spike, like that of the dynamics similar to the ones seen
in section 9.4b. In an attempt to simplify model (5) and (6) we normalized it in the form
proposed by Bazykin and Berezovskaya 1995 [3].

Before our attempt to normalize we took I = 0, since it does not affect the possible
number of phase portraits. We make I = 0 and normalize the system to simplify the process
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of identifying which phase portraits correspond to normal neuron firing. We normalize the
Fitzhugh-Nagumo equations in the following steps:

STEP 1: Let dωdt = z, then take the time derivative of z and get
dz
dt = b

dv
dt + γ dωdt .

STEP 2: Solve for v from z = bv − γω and substitute this new v into dz
dt .

STEP 3: Since we are dealing with small z we ignore terms that have z3 and z2.

STEP 4: We introduce a new parameter µ; ω = u+ µ and plug this new ω into dω
dt

After plugging this new ω into dz
dt we manipulate it to make it look like the following

equation.

dω

dt
= F (u) + zG(u), (7)

where F (u) is a cubic polynomial and G(u) is a quadratic polynomial.

Our final normalized equations are the following,

du

dt
= z,

dz

dt
= ²1 + u²2 − u

3γ3

b2
+ z

µ
²3 +Au− 3u

2γ2

b2

¶
(8)

where ²1, ²2, and ²3 are new parameters that depend a, b, and γ.
(See appendix for full explanation of the normalization process and for ²1, ²2, and ²3).

We now find the equilibria of (8), by setting du
dt = 0 and

dz
dt = 0. we find:

z = 0, (9)

²1 + u²2 − u
3γ3

b2
= 0 (10)

We solve found the roots of (10) using

x3 + 3px+ q = 0 (11)

where the roots of (11) are given by the formula

x = 2
√−p cos θ + (0, 2π, 4π)

3
where θ = cos−1

Ã
−q

2
p
−p3

!
(12)

Note that if q2+4p3 < 0 we have 3 real roots, otherwise we have one real and two imaginary.
This can be seen graphically in section 9.5a, where we know that we always have at least
one root and at most three. Noting that whenever we have only two roots, a double root
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and a single root, we have a saddle-node bifurcation occurring.

Manipulating (10) to look like (11) we get

F (u) = u3 + 3u(
−b2
3γ3

²2) + (−²1 b
2

γ3
) (13)

by (12) our roots are

u1 =

Ã
0, 2

s
²2
b2

3γ3
cos

θ

3

!
(14)

u2 =

Ã
0, 2

s
²2
b2

3γ3

"
−1
2
cos

θ

3
−
√
3

2
sin

θ

3

#!
(15)

u3 =

Ã
0, 2

s
²2
b2

3γ3

"
−1
2
cos

θ

3
+

√
3

2
sin

θ

3

#!
(16)

where

θ = cos−1
Ã

²1
b2

γ3

2( ²2b
2

3γ3
)3/2

!
(17)

Finding the Jacobian of the system and evaluating it at every fixed point would be
the first step in determining the stability of each fixed point. By means of the determinant
and the trace of the coefficient matrix we could determine its stability (Refer to section 9.5b
for further aid in this process).

In our analysis, we found that by fixing one of the three parameters and varying
the other two, the system displayed ten distinct phase portraits (see section 9.2 for the ten
different domains). Being that our interest lied solely on the effects of alcohol on action
potentials in neurons, we focused primarily on portraits that displayed stable limit cycles
(Murray [17]), since these phase portraits correspond to the dynamics of periodic neuron
firing (see section 9.4b). We first decided to analyze the system with the absence of alcohol
via the normalized Fitzhugh-Nagumo (8), and identify parameter spaces that corresponded
to continuous spiking. After identifying these parameter spaces we would then analyze how
these parameter spaces would change due to a time delay. Based on research and on advice
from both neurobiologist and applied mathematicians, we were able to assume that alcohol
would cause a neuronal communication delay. Therefore, we placed the time delay on the
recovery variable ω. This will be discussed in detail in a later section.

From the simulations we ran using TRAX, we found that the normalized equations
(8), had ten different phase portraits, where each corresponded to a different parameter
space. From the ten, we found stable spirals, stable and unstable nodes, stable and unstable
limit cycles, and others that will not be discussed due to their irrelavance. As we said earlier
we focused on portraits that had stable limit cycles. We discovered that when ever a stable
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limit cycle does not exist we do not get a full complete spike, this can be compared to the
original Fitzhugh model, where if the initial stimulus I is less than the threshold then we
have no action potential but there is a short reponse (see section 9.3b). After analyzing
these phase portraits we found that there are three possible outcomes, the rest are variation
of these three. The absence of a stable limit cycle, is one of the three, where we know that
we get dynamics like that of section 9.3b. Another possibility is when we do have limit
cycles (see section 4a). In any of these cases we know that we will eventually end up with
a u-t plane like section 9.4b, where we have continuous spiking occurring. The third, does
not occur biologically but we will mention it only because we do have an action potential
occurring. This case is a unique one because we only have one spike occurring (see section
9.3a). It is unique in the sense that this kind of dynamics is only seen for very specific
parameter values. Referring to section 9.2, these particular parameter values correspond to
a point that directly lies on the curve L, where L corresponds to the birth or destruction of a
separatrix loop (see section 9.3a). That is why this is very unique because any perturbation
of these values would give completely different outcomes. Now that we have found these
parameter spaces we will see how a time delay, affects them.

4 Fitzhugh-Nagumo Delay Models

In the Fitzhugh-Nagumo system the ω term biologically means the recovery or hyperpo-
larization of neuronal action potential. This variable represents potassium gating, leakage
currents, and ATP pump action. Since, we are assuming alcohol causes a neuronal commu-
nication delay, we will input the delay into the ω variable also referred to as the restoring
force or recovery force. In reference to the spike (action potential), by the introduction of
the delay into the ω variable we are assuming that the delay will be prevalent in the “slope“
from sodium inactivation to resting potential. We will model the delay in two forms, a
distributed delay and an explicit (fixed) delay.

4.1 Original Fitzhugh-Nagumo

dv

dt
= v(a− v)(v − 1)− ω + I (18)

dω

dt
= bv − ωγ = ²(v − γω)

mean of the ω variable: 1
²γ

In the original Fitzhugh-Nagumo equation we observe that the recovery variable has an
exponential distribution delay with mean 1

²γ

4.2 Fitzhugh-Nagumo Distributed Delay in the Recovery Variable, ω

dv

dt
= v(v − 1)(a− v)− ω + I (19)
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dω1
dt

= ²(v − δω1)

dω

dt
= ²(δω1 − δω)

mean of the ω and ω1 variable:
2
²δ

In the first approach we model the distributed delay. We reconstruct the ω variable into
ω1 and ω and we allow these two equation to have the characterisitic that it has a gamma-
distribution(n=1). The ω1 and ω variables now have mean time 2

²δ .

4.3 Fitzhugh-Nagumo Fixed Delay in ω

dv

dt
= v(v − 1)(a− v)− ω(t− T ) + I (20)

dω

dt
= ²(v − γω)

mean of the ω variable: T
In the second approach a fixed delay of length, T, is introduced into the recovery variable.
The recovery variable now has mean time distribution of T.
To calibrate our model we first assume that the mean response time is the same for the
three models, this allows a relationship between γ and δ to be constructed.
T = 1

γ² and
2
δ² =

1
γ² . Further to depict a delay in the system the following mean time

inequalities must be true and we will not be concerned with the variances.
1
γ² < T and

1
γ² <

2
δ²

5 Data Analysis of Fitzhugh-Nagumo Delay Equations

In this section we will consider two Fitzhugh-Nagumo delay equations with the bound on
delta, δ < 2γ, and the original Fitzhugh-Nagumo equation. The three equations that we
will compare will use ² = 0.008 and a = 0.139 as suggested by John Rinzel (2001). The
following discussion will be of the data from the Matlab simulation of the original Fitzhugh-
Nagumo and the two delay models.

Since we are investigating neuronal firing from the perspective of dynamical systems,
we will make reference to certain bifurcation regions which have a biological interpretation.
We want to investigate the delay in neuronal firing and as such we will be looking at peri-
odic spiking. Periodic spiking in the neuro-computational sense depends on the bifurcation
of large amplitude limit cycles [13]. The Fitzhugh-Nagumo equation has 15 qualitatively
distinct regions in the bifurcation diagram (2). We will only investigate three regions with
limit cycles and vary the impulse, I, and γ. The data for the three regions under investi-
gation can be found in section 9.6 in the appendix. The graphs for all three regions can be
found in the appendix sect 9.6 a, b, and c.
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Note: In the discussion of the regions when referring to equation 18 we are discussing the original

Fitzhguh-Nagumo, equation 19 the distributed delay, and equation 20 the fixed/explicit delay.

Region 1: γ=.04 and I=2.54
In this region, equation 18 has repetitive firing with spike period(SP) of 131.89 units of
time(t), in comparison equation 19 has repetitive firing with SP of 216.795 t. This 60-
percent increase in spike period directly depicts the delay in firing. We can also look at
the spike width (SW) measured at one-half the amplitude height. SW for equation 18 is
43.047t and equation 19 is 81.129t, thus, these values depict an 88-percent increase in width
of the spike. Biologically this increase means that the communication between cells has
decreased i.e delay in neuron firing. Another significant aspect of the spike is the refractory
period (RP) this is when the action potential reaches its peak at sodium inactivation and
the cell begins hyper-polarization and approaches its resting potential. RP was found by
measuring the time it takes for the spike to get from its maximum value to its minimum
value. Normal RP, as depicted in equation 18, is 41.387t and in equation 19 is 86.095t.
A 108-percent increase in RP from normal firing to delay firing makes it obvious that the
delay has affected the hyper-polarization. Biologically this means that the it will take a
longer time for the neuron to respond to another stimulus, a delay in communication.

The behavior of the explicit time delay equation 20, as compared to the normal
behavior of equation 18 depicts a significant delay. This difference is most likely due to the
spike minimum value (Smin) reached by equation 20 at -.286 volt units(vu) versus the Smin of
equation 18 which is -.246vu. This aspect is interesting because it shows an experimentally
proven biological affect that alcohol has on neuron action potential, namely it causes GABA
increase which in turn controls Chlorine (-) influx. Thus, the increase in influx of the neg-
atively charged Chlorine ions serves to further hyperpolarize (lower the resting potential).
This influx both explains the delay and why a lower spike minima is reached in the delay
equation. Inspection of the SW shows a 43.047t and 87.91t measure from equation 18 to
20. This is a huge increase in the width of the spike, which correlates precisely with the
expectation that a delay will occur. SP in equation 18 is 131.89t and in equation 20 is
195.89t, a 48-percent increase compared to a 60-percent increase as seen between equation
18 and equation 19.
Note:There exists a slight difference between the distributed delay, equation 19, and the fixed delay,

equation 20, this may be due to T = 2
δ²

Region 2:γ=0.027 and I=4.42
In this region, equation 18 and 19 show an overall delay; however, the delay is shorter than
the behavior of the equations in region 1. SP for equation 18 in this region is 143.915t and
for equation 19 is 183.775t, this is only a 27-percent increase in spike period. Examining SW
in this region give values 66.22t and 76.16t, for equation 18 and 19 respectively. SW only
increases by 15-percent. This decrease in delay from that of the region 1 comparison may
be linked to some biological meaning such as, the BAC of the intoxicated person decreasing
below a certain point or the bifurcation region under inspection may be one in which the
action potential is highly altered. Inspecting the RP of the equations conveys the slight
delay that the spike undergoes. RP is 67.88t and 72.847t, for equation 18 and 19 respec-
tively, accounting for only a 7-percent increase in the time it takes the spike to get from the
peak, sodium inactivation, to the minimum value below resting potential. One factor that
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may be affecting the decrease in delay percentage from region 18 to that of region 19 is the
value of I, the impulse. Perhaps, the high impulse perturbs the delay in a similar fashion
then would a high voltage stimulus on neuron. That is, if too high a stimulus is applied to
the neuron it may actually cause some biological change in channels that then alters the
normal behavior of the cell firing.
In this region, equation 20 maintains a delay; however, the delay seems to be shortened.
Smin for equation 18 and 20 respectively is, -.1956(uv) and -.28565(uv), a 46.04-percent
(equations 18 to 19 only showed a 30-percent increase) increase. Unfortunately, SP showed
a close to zero (0.8-percent) increase which is alarming because this means that though
the spike is reaching a lower resting potential it is going at frequency close to that of the
non-delay spike. Equation 20, the explicit time delay, may be depicting this unexplain-
able behavior because this type of delay perturbs some of the dynamics represented by the
Fitzhugh-Nagumo equation.

Region 3: γ=0.022 and I=4.65
In this region we expect to observe a delay, but not as high as that of region 1. Inspecting
SW we only observe a 9.5-percent increase and an 11.2 percent increase in SP from equation
18 to equation 19. These small percent increases still account for a delay, but it is not that
significant. Over time the periodic firing of the spike may return to that of the equation 18,
implying that the greatest delay occurs for values in region 1 and other regions other then
that may produce minimal delay. In this region the equation 19, shows a lower Smin value
of -.256uv compared to equation 18 value of -.1956uv, a 30-percent increase. We know that
Smin can not get too low because the minimum value or resting potential a neuron can attain
is bounded below by potassium equilibrium. Thus, if we continue to observe a decline in
Smin then we may be observing irrelevant mathematical data that has no biological inter-
pretation when considering an action potential.

Considering the explicit delay equation and the original equation we observe unex-
pected results. For equation 18 and 20 the SW values are 69.53t and 70.43t, respectively,
this only accounts for a 1.3-percent increase. Most perplexing is the SP, equation 18 de-
picts a 168.87t value and equation 20 depicts a 143.33t, a decrease of 15.2-percent, which
biologically means that the spike is actually moving quicker in the delay equation. This
behavior in spike frequency is indicative of the effect alcohol has been known to have on
different areas of the brain, some areas are inhibited and some are excited.

6 Conclusion

The analysis of the data attained from the periodic spiking of the Fitzhugh-Nagumo dynam-
ical system, considering two types of time delay and the original Fitzhugh-Nagumo form
gives us an understanding of the different ways neuron firing frequency can change depend-
ing on what bifurcation region is considered. Further, it may lead us into the understanding
that upon different bifurcation regions, i.e. (different electrophysiological environments for
the neuron) behavioral changes in spiking can be delayed and can accelerated.

Although one region that we examined showed that neuron firing increases. This
may mean that this model does not accurately represents our assumptions about the neuron.
In the brain different neuron have different behavior and may respond differently when
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alcohol is introduced into the system. Due to the fact that there are about 100 different
neurotransmitters, which either stimulate or inhibit the flow of an impulse between neurons.
Alcohol can behave differently based on the type of neurotransmitters and receptors in that
particular region. Moreover, since alcohol can act as a depressant or stimulant, we can infer
that in region 3 alcohol is acting as a stimulant. For the most part, we can conclude that
the distributed and fixed time-delay models correctly support our assumptions. Therefore,
we can say that alcohol causes a delay response in the firing of neuron.

7 Future Work

Tolerance refers to the decrease in sensitivity to a drug brought about by continued use of a
substance. Alcohol elicits a wide variety of behaviors and tolerance of alcohol differs greatly
from person to person. Continuous alcohol use will lead to a given dose having less of an
effect and the need for increasing doses to obtain the same psychological or physiological
effect which will have an impact on the delay of neuron firing. For our future work we could
take the continuous use of alcohol into consideration.
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9 Bifurcation Diagrams and Phase Portraits

9.1 Bifurcation Diagram for the Fitzhugh-Nagumo Model
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9.2 Bifurcation Diagram for Normalized Fitzhugh-Nagumo Model
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9.3 Phase Portraits and Corresponding u-t Plane
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9.4 Stable Limit Cycles with Corresponding u-t Plane
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9.5 Variability of Fixed Points and their Stability
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9.6 Data Analysis of Time Delay Equations (1)
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9.7 Data Analysis of Time Delay Equations (2)
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10 Appendix

10.1 How Areas in the Brain are Affected by Alcohol

Figure 5: Function of the various regions of the brain

Figure 6: Area of the Brain Affected. McCarty [16]
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10.2 Hodgkin and Huxley

Hodgkin and Huxley developed methods for observing the time and voltage dependence of
sodium and potassium channels in the squid giant axon. Figure 4 shows their simulation of
a propagated action potential. The time course of the membrane potential is a good, but
not perfect, match to the time course of the action potential in a real squid measurements
to simulate changes in conductance that take place during an action potential axon.

We can also examine the action potential by considering the electrical network
considered in figure 4. The sequence of events during the propagated action potential is as
follows: First, the membrane potential rises above threshold due to electronic current spread
from nearby excited regions of the axon. Depolarization causes gNa to increase, bringing
about an increase in the inward flux of sodium and thereby a still greater depolarization (i.e.
as gNa increases, EM moves towards ENa) leading to further depolarization, which increases
gNa even more, and so on. The activation of gNa is “regenerative“, in that an increase in gNa
brings about a depolarization, which causes gNa to increase still further. This regenerative
cycle is known as the Hodgkin cycle. During the next phase of the action potential, the
axon begins to hyper-polorize due to two occurrences: first, gNa automatically inactivates,
which allows the membrane potential to move away from ENa and towards EK and ECl.
Second, depolarization causes activation of gK , which occurs much more slowly than did
activation of gNa. Activation of gK moves EM toward EK and, owing to the reduction of
tM due to increased gK , the change in potential towards EK occurs much more rapidly than
without an increase in gK . Finally, as the membrane potential approaches EK , which is
more hyperpolarized than resting potential, the voltage dependence of gK brings about its
return to the rest level, and the resting potential is again attained.

Figure 7: Simulation of a propagated action potential of a squid giant axon at 18.5 degrees Celcius.
Redrawn from Huxley, based on data in Hodgkin and Huxley [7].
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10.3 Normalizing the Fitzhugh-Nagumo equation

Normalizing the Fitzhugh-Nagumo equation

dv

dt
= f(v)− ω + Ia (21)

dω

dt
= bv − ωγ (22)

f(v) = v(a− v)(v − 1), (23)

We let z = dω
dt and Ia = 0 so then, z = bv − ωγ. Taking the time derivative of z we get,

dz

dt
= b

dv

dt
− γ

dω

dt
(By Chain Rule) (24)

Pluging in dv
dt and

dω
dt into (34) we get,

dz

dt
= b [f(v)− ω]− zγ (25)

Since we know z = bv − ωγ we can solve for v and get v = z+ωγ
b ,

plugging v into (5)

dz

dt
= b

·
f(
z + ωγ

b
)− ω

¸
− zγ (26)

dz

dt
= b

"
(γω + z)(a− γω+z

b )(γω+zb − 1)
b

− ω

#
− zγ (27)

After distributing and factoring we get,

dz

dt
= −z

3

b2
+ z2

·
−3γω

b2
+
a+ 1

b

¸
+ z

·
−3γ

2ω2

b2
+
2γω(a+ 1)

b
− (a+ γ)

¸
(28)

−ω
3γ3

b2
+ ω2

·
γ2(a+ 1)

b
)− ω(b+ aγ

¸
(29)

Since we are examining very small z values, terms with z3 and z2 are ignored.
System now becomes:

dz

dt
= −ω

3γ3

b2
+ ω2

·
γ2(a+ 1)

b

¸
− ω(b+ aγ) + z

·
−3γ

2ω2

b2
+
2γω(a+ 1)

b
− (a+ γ)

¸
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A new parameter µ expressed by parameters a b γ from (31) and (32), is
introduced into ω where ω = µ+ u. Substituting ω into dz

dt

dz

dt
= −(µ+ u)

3γ3

b2
+ (µ+ u)2

·
γ2(a+ 1)

b

¸
− (µ+ u)(b+ aγ)

+z

·
−3γ

2(µ+ u)2

b2
+
2γ(µ+ u)(a+ 1)

b
− (a+ γ)

¸
.

Simplifying, we get

dz

dt
= −u3 3γ

3

b2
− u2

·
3γ3µ− bγ2(a+ 1)

b2

¸
− u

·
3γ3µ2 − 2bµγ2(a+ 1) + b2(aγ + b)

b2

¸

−γ
3µ3 − bγ2µ2(a+ 1) + b2aγµ+ b3µ

b2
(30)

+z

·
−3u

2γ2

b2
− u

µ
6µγ2 − 2bγ(a+ 1)

b2

¶
− 3γ

2µ2 − 2bγµ(a+ 1) + b2(γ + a)
b2

¸
.

Observe that dzdt is now in the following form
dz
dt = F (u) + z G(u)

where,

F (u) = −u3 3γ
3

b2
− u2

·
3γ3µ− bγ2(a+ 1)

b2

¸
− u

·
3γ3µ2 − 2bµγ2(a+ 1) + b2(aγ + b)

b2

¸

−γ
3µ3 − bγ2µ2(a+ 1) + b2aγµ+ b3µ

b2
,

And,

G(u) = −3u
2γ2

b2
− u

µ
6µγ2 − 2bγ(a+ 1)

b2

¶
− 3γ

2µ2 − 2bγµ(a+ 1) + b2(γ + a)
b2

.

Looking at our normalized form

du

dt
= z

dz

dt
= ²1 + u²2 − u

3γ3

b2
+ z

·
²3 +Au− 3u

2γ2

b2

¸
We see that

F (u) = ²1 + u²2 − u
3γ3

b2
and G(u) = ²3 +Au− 3u

2γ2

b2
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Noting that from G(u) the coefficient of u2 must equal to zero:

3γ3µ− bγ2(a+ 1)
b2

= 0.

We solve for µ

µ =
b(a+ 1)

3γ
.

Similarly we can solve for ²1, ²2, ²3, and A:

²1 = −γ
3µ3 − bγ2µ2(a+ 1) + b2aγµ+ b3µ

b2
, ²2 = −3γ

3µ2 − 2bµγ2(a+ 1) + b2(aγ + b)
b2

,

²3 = −3γ
2µ2 − 2bγµ(a+ 1) + b2(γ + a)

b2
, A = −6µγ

2 − 2bγ(a+ 1)
b2

.

After substituting µ into ²1, ²2, ²3, and A we get the following

²1 =
b(a+ 1)(2γ − 5aγ + 2a2γ − 9b)

27γ
, ²2 = γ

a2 − a+ 1
3

− b,

²3 =
a2 − a+ 1

3
− γ, A = 0.
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10.4 Change of Variables of the Fitzhugh-Nagumo Equations

We first consider

dv

dt
= f(v)− ω

dω

dt
= bv − γω f(v) = v(a− v)(v − 1) (31)

We define v, ω, and t to be

v = Ax+B, ω = Cy +D, and t = Rτ (32)

Next we use a new system of equations, where it was first introduced in the original work
of Fitzhugh (1961), see also Volokitin and Treskov (1994):

dx

dt
=
1

µ
(−x3 + x− y) dy

dt
= x− k1y − k2 (33)

We make

dx

dτ
=
dx

dv

dv

dt

dt

dτ
and

dy

dτ
=
dy

dv

dω

dt

dt

dτ
(34)

Finding dx
dt ,

dy
dt , and

dω
dt from (42)

dx

dv
=
1

A

dy

ω
=
1

C

dt

dτ
= R (35)

Making the necessary substitutions into (43) we get,

dx

dτ
=
R

A
[f(Ax+B)− (Cy +D)] (36)

dy

dτ
=
R

C
[b(Ax+B)− γ(Cy +D)] (37)

Simplifying,

dx

dτ
=
R

A

£−A3x3 + x2(−3A2B +A2(a+ 1)) + x(−3AB2 + 2AB(a+ 1)− aA¢ (38)

−B3 +B2(a+ 1)−Ba− Cy −D)],

dy

dτ
= x

RAb

C
+ y(Rγ) +

R

C
(Bb−Dγ) (39)

Matching the coefficients of equations (47) and (48) to those of equations (42)
From dx

dτ ,

−A3R
A

=
1

µ
− C = 1

µ
R

µ−3A2B +A2(a+ 1)
A

¶
= 0 (40)
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µ−B3 +B2(a+ 1)−Ba−D
A

¶
= 0

R

A
(−3AB2 + 2AB(a+ 1)−Aa) = 1

µ
(41)

From dy
dτ ,

RAb

C
= 1 K1 = Bγ K2 =

R

C
(Bb−Dγ) (42)

Using (47), (48), and (42) we can solve for A, B, C, D, R, and µ

A =

√
a2 − a+ 1√

3
B =

a+ 1

3
C =

(a2 − a+ 1) 32
3
√
3

(43)

D =
(a+ 1)(2a2 − 5a+ 2)

27
µ =

9b

(a2 − a+ 1)2 R =
a2 − a+ 1

3b
(44)

After our transformation the initial system reduces to the form (42)
By change of variable (42):

z = x−K1y −K2 and u = y +
K2
K1
, where K1 = 0 (45)

we obtain the following system

u = z z =
1

µ
(−z3 +G(u)u2 + g(u)z + F (u)) (46)

where

G(u) = −3uK1 (47)

g(u) = −(3K2
1u
2 +K1µ− 1) (48)

F (u) = −K3
1u
3 + u(K1 − 1) + K2

K1
(49)

Comparing (55) to our original normalized equations,

du

dt
= z,

dz

dt
= ²1 + u²2 − u

3γ3

b2
+ z

µ
²3 +Au− 3u

2γ2

b2

¶
, (50)

it is reasonable to assume the following:

²1 =
K2
K1
, ²2 = K1 − 1, ²3 = K1µ− 1. (51)

We now solve for ²1, ²2 and ²3

²1 =
b(a+ 1)(2γ − 5aγ + 2a2γ − 9b)

27γ
, ²2 = γ

a2 − a+ 1
3

− b, (52)

²3 =
a2 − a+ 1

3
− γ. (53)
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