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Abstract

A principal aim of population biologists is to understand the role of intraspe-
cific competition at the metapopulation level (populations of populations).
We study the dynamics of a two-patch age-structured metapopulation model
where the local (patch) intraspecific competition regimes are of the same
type (scramble or contest) or mixed (scramble and contest) types. Metapop-
ulations behave as single patch systems under the same competition regime
whenever dispersal is symmetric and all local populations find themselves un-
der contest competition regimes. However, multiple attractors are possible
whenever a local patch is under scramble competition regime. The results of
this research demonstrate that dispersal between patches, and age-structure
provide an evolutionary advantage.
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1 Introduction

The importance of spatial structure and the physiological traits of individual
species, both in controlling the total population sizes and the local variations
in densities, in real-world populations are well known [11-13]. Chronologi-
cal age of individual species is an example of such physiological traits. The
model for this study is a juvenile-adult two-age class discrete-time metapop-
ulation model where local populations are connected by dispersal. Previous
studies on the impact of intraspecific competition at the metapopulation level
(populations of populations) were initially presented in genetics by Wright[7],
ecology by Levins [8,9] and epidemiology by Ross [10]. Our model relates to
species that thrive at very low densities with no interference - such species
are called pioneer species. For example, pine trees, fish population, and birds.

Similar studies on metapopulation dynamics were carried out by C. Castillo-
Chavez and A. Yakubu [16]. However, their studies did not take in account
age structure. Hence, in this paper, we extend their work to include a spe-
cific simple age-dependent population structure. Specifically, we divide each
patch population into non-reproductive juveniles and reproductive adults.
Thereafter, our patch system is regulated by discrete-time Ricker’s and Ver-
hulst equations.

Scramble and contest competition are two extreme forms of intraspecific com-
petition for resources. A population that is governed by scramble competi-
tion support all individuals-even the non-reproductive ones. That is, the
resources are distributed equally among individuals. Therefore, beyond a
threshold density, none can get enough of a share of the resource to survive
or reproduce. This system is modeled by the Ricker’s equation where new
recruits face scramble competition [4-6]. In contrast, in contest competition
the resources are distributed unequally. Some individuals get enough of a
share of the resource to survive and reproduce at the expense of the rest.
The Verhulst model is an example where new recruits face contest competi-
tion [4-6].

The simulations considered for each patch system demonstrates that in single
contest intraspecific competition regime the population is either surviving or
dying as we vary the growth rate with respect to the growth speed ratio. In
contrast, the local dynamics for the single scramble competition regime show
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multiple attractors, Hoft bifurcation, and coexisting chaotic attractors. In
two-patch systems with dispersal, contest-contest intraspecific competition
the dynamics are the same as in single contest with symmetric and asym-
metric dispersal, also rescue effect from patch one to patch two occurs.

2 Single Patch System

In this section, we study the single patch model

J(n+1) = Ang(An) (1)

A(n+1) = sJn

where Jn and An represent the juvenile and adult population at generation
n, and where the per capita growth rate g : [0,∞) → [0,∞) is a strictly
decreasing continuous function and s is the constant proportion of juveniles
that survive to adulthood in one generation.

If we let J̄n = sJn, Ān = An and ḡ = sg, then in the new variables (1)
becomes

J̄(n+1) = ĀnḡĀn (2)

Ā(n+1) = J̄n.

Consequently, we study the following system:

J(n+1) = Ang(An) (3)

A(n+1) = Jn.

After two generations the population of juveniles are governed by J(n+2) =
Jng(Jn) and that of the adults by A(n+1) = Ang(An). In system (3), the pop-
ulation is under scramble competition if the reproduction function f(x) =
xg(x) has a positive fixed point and same initial conditions overshoot it un-
der iteration. For example, if f is the Ricker’s model f(x) = xer−x then the
population is under scramble competition.

The population is governed by contest competition if f(x) = xg(x) has a
positive fixed point and no initial condition overshoot it under iteration. For
example, if f is the Verhulst’s model f(x) = rx/x+ b then the population is
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under contest competition.

Theorem 1: In system (3) if g < 1 then the population goes extinct. For
example, in Verhulst’s model g < 1 if r < b.

Theorem 2: If g : [0,∞)→ [0,∞) is a strictly decreasing function and lim
g(x) < 1, then there is no population explosion in system (3). For example,

J(n+1) = Ang(An) < An

A(n+1) = Jn

A(n+2) = J(n+2). < An

The model has a compact attractor (trapping region) that contains the
omega limit set of every point. Notice that (0, 0) is a fixed point in sys-
tem (3). Moreover, if g(0) > 1 then system (3) has a positive fixed point at
(g−1(1), g−1(1)). For example, if g(x) = er−x the positive fixed point is (r, r)
and if g(x) = r/x+ b, the positive fixed point is (r − b, r − b) when r > b.

2.1 Contest competition: Verhulst’s model

If juveniles and adults are governed by Verhulst’s model in every two gener-
ations, then system (3) becomes

J(n+1) =
Anr

An + b
(4)

A(n+1) = Jn.

We now analyze the system (4), the fixed points are (0, 0) and (r− b, r− b).

2.1.1 Stability of Fixed Points

To determine the stability of the fixed points we calculate the Jacobian matrix

B(J,A) =

µ
0 r

A+b
− Ar

(A+b)2

1 0

¶
.

So,

B(0, 0) =

µ
0 r

b

1 0

¶
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we find the traceB = 0 and the detB = −r/b. In accordance to the Jury
test [1], determining the stability of a fixed point is as follows: |traceB| <
1 + detB < 2; 0 < 1 + r/b < 2, then the point is stable. Here, the fixed
point (0,0) is stable only for the case where r < b, resulting global population
extinction (see Figure 1).

Linearizing about the fixed point (r − b, r − b) we obtain the Jacobian

B(r, r) =

µ
0 b

r

1 0

¶
and we get the traceB = 0 and the detB = −b/r. A
gain we use the Jury test to determine the interval of stability for this

fixed point which is 0 < 1 + b
r
. The condition for stability of the fixed point

(r − b, r − b) is r > b, as a result the population survives but there is no
population explosion (see Figure 2).

Figure 1: Trajectory graph where r < b.
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Figure 2: Trajectory graph where r > b.

2.2 Scramble competition: Ricker’s model

If juveniles and adults are governed by Ricker’s model in every two genera-
tions, system (3) reduces to

J(n+1) = Ane
r−An (5)

A(n+1) = Jn

now we analyze system (5), the fixed points are (0, 0) and (r, r).

2.2.1 Stability of Fixed Points

To determine the stability of the fixed points we calculate the Jacobian matrix

B(J,A) =

µ
0 er−A − Aer−A
1 0

)

Substituting each fixed point into the Jacobian to determine its stability:

B(0, 0) =

µ
0 er

1 0

¶
.

By evaluating the Jacobian, one gets the trace equal to 0 and the determinant
equal to −er. The eigenvalues of B(0, 0) are λ = ±√er > 1, thus, the fixed
point (0, 0) is unstable. We evaluate the Jacobian at the fixed point (r, r)
and obtain

B(r, r) =

µ
0 e0 − re0
1 0

¶
.

One gets the trace B = 0 and the detB = r − 1. The eigenvalues are thus
λ = ±√1− r.
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By the Jury test of stability, if |traceB| < 1 + detB < 2, that is, if 0 <
2− r < 2, the point is stable. Thus if 0 < r < 2 the fixed point (r,r) is stable
(see Figure 3). If r = 2 B(r, r) has an eigenvalue equals −1, a signature for
Hopf bifurcation. Figure 2 shows Hopf bifurcation in system (5) as we vary
r. System (5) supports multiple attractors with fractal basin border (refer to
Figure 4 and 5).

Figure 3: Trajectory graph where 0 < r < 2.

Figure 4: Hopf bifurcation diagram.
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Figure 5: Basin of attraction when r = 2.7, with 2 coexisting chaotic attrac-
tors.

3 Two Patch Systems

3.1 Contest-Contest competition

Now, we study the impact of dispersal in a two patch model with subpopu-
lation under contest-contest competition.

Let d1 and d2 be the dispersal rate of the first species and d3 and d4 be
the dispersal rate of the second species characterize by (A1, J1) and (A2, J2)
respectively. Where r1 and r2 are the carrying capacity of population for
the first and second species respectively and b1 and b2 are the growth speed
ratio’s for the first and second species. The equation for the contest-contest
competition is given by

J1(n+ 1) = (1− d1) A1(n)r1
A1(n) + b1

+ d2
A2(n)r2
A2(n) + b2

(6)

A1(n+ 1) = (1− d3)J1(n) + d4J2(n)
J2(n+ 1) = (1− d2) A2(n)r2

A2(n) + b2
+ d1

A1(n)r1
A1(n) + b1

(7)

A2(n+ 1) = (1− d4)J2(n) + d3J1(n)

For the single patch system we were able to determine the fixed points and
find there stability mathematically. A graphically analysis is considered for
our two-patch system under contest-contest competition.
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Figure 6: Trajectory graph where r > b, symmetric dispersal.

Figure 7: Trajectory graph where r > b, asymmetric dispersal.

As shown above in Figure 6 and 7, contest-contest competition is similar to
single contest competition. The dynamics is locally stable fixed point, when
r > b with symmetric and asymmetric dispersion, the population survives
without explosion. Similar to single contest regime for r < b the population
goes extinct. The coupling of one dying and one living patch result a rescue
effect, that is population in patch decreases while population in patch two
increases (look at Figure 8).
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Figure 8: Rescue Effect

3.2 Scramble-Scramble competition

In this section, we study a two-patch population with dispersal that is mod-
eled in accordance with the Ricker’s equation.

Let d1 and d2 be the dispersal rate of the first species, d3 and d4 be the
dispersal rate of the second species characterized by (A1, J1) and (A2, J2)
respectively. Where r1 and r2 are the reproduction rate for both populations
respectively. The Ricker’s equation for the scramble-scramble competition is
given by

J1(n+ 1) = (1− d1)A1(n)er1−A1 + d2A2(n)er2−A2(n) (8)

A1(n+ 1) = (1− d3)J1(n) + d4J2(n)
J2(n+ 1) = (1− d2)A2(n)er2−A2(n) + d1A1(n)er1−A1(n) (9)

A2(n+ 1) = (1− d4)J2(n) + d3J1(n).

3.2.1 Graphical Analysis of Scramble-Scramble competition

As shown in section[2], for the single species we were able to calculate fixed
points and stability mathematically. However, in this section a graphical
analysis of our system is more efficient. Denoting P1 and P2 the population
of both species respectively, we produce a graphical analyzation of the effects
of dispersion.
First, we consider two local patches under scramble competition regime,
where both patches are on stable period four cycles (without dispersal). With
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sufficiently large symmetric dispersal between the two patches, the metapop-
ulation follows the local dynamics and lives on a period four cycle.

Figure 9: Period-4 Trajectory for P1

When the dispersal rate from Patch 2 to Patch 1 is fixed while we increase
the dispersal rate from Patch 1 to 2, a remarkable bifurcation occurs. The
metapopulation has a positive fixed point while the local dynamics live on
period four attractors.

Figure 10: Trajectory graph for P1 at fixed point.
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Figure 11: Trajectory graph for P2 at fixed point.

Local patches governed by Rickers’s Model have two coexisting chaotic at-
tractors with fractal basin boundaries of attraction whenever r = 2.7 and
there is no dispersal.

Figure 12: Basin of Attraction for a Single Patch at r = 2.7

With symmetric dispersal, the metapopulation follows the single patch dy-
namics and has two coexisting chaotic attractors with fractal basin bound-
aries. However, the metapopulation dynamics is on a fixed point whenever
the dispersal rate from one patch to another is high. In other words, dis-
persion between two initially chaotic patches results in having much simpler
dynamics. In our case, this occurs at d1 = .7 and d2 = .1
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Figure 13: Trajectory graph of fixed point for P1 chaotic attractor as local
dynamics.

Figure 14: Trajectory graph of fixed point for P2 chaotic attractor as local
dynamics.

At intermediate values of dispersal rates, the metapopulation changes from
chaotic dynamics to simple periodic dynamics. For example, at d1=.4, we
have both patches experiencing four cycle dynamics.

3.3 Scramble-Contest competition

Now we study a two patch system that is modeled in accordance with the
combination of the Verhulst’s and Ricker’s equations.

Denoting d1 and d2 as the dispersal rate of the first species,which is gov-
erned by the Ricker’s equation, and d3 and d4 be the dispersal rate of the
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second species, which is governed by the Verhulst equation, characterize by
(A1, J1) and (A2, J2) respectively. Denoting r1 and r2 are the carrying ca-
pacity of population for the first and second species, and s1 and s2 are the
fraction capacity of juveniles becoming adults for the first and second species
respectively. The parameter b represents the growth speed ratio of the sec-
ond species. The equations of motion for the scramble-contest competition
is given by

J1(n+ 1) = (1− d1)A1(n)er1−A1(n) + d2 A2(n)r2
A2(n) + b

(10)

A1(n+ 1) = (1− d3)J1(n) + d4J2(n)
J2(n+ 1) = (1− d2) A2(n)r2

A2(n) + b
+ d1A1(n)e

r1−A1(n) (11)

A2(n+ 1) = (1− d4)J2(n) + d3J1(n).

3.3.1 Graphical Analysis of Scramble-Contest competition

Denoting the population of first species,the scramble population, as P1 and
the population of second species, the contest population, as P2, we graphically
examine the Scramble-Contest system.
First, we examine one-dimensional dispersion from P1 to P2. We have pre-
viously found that if our initial value of the reproduction rate for P1 is set
to certain values our local dynamics becomes a period-4 oscillation. We cou-
ple a period-4 scramble population with a contest population where r¿b, i.e.
a surviving contest population. It is noticed that as dispersal from P1 to
P2 is increased both populations approach a stable fixed point. This fixed
point occurs when the dispersal rate is greater than .5. We also couple a
chaotic attracting scramble population with a surviving contest population.
The value of the reproduction rate for the scramble population is 2.8. The
characteristics of this coupling is similar to the previous example. Here, we
move from a chaotic attractor (Figure 15) to a period-eight oscillation and
so on until we reach a stable fixed point. Our stable fixed point also occurs
when the value of the reproduction rate is greater that .5 (Figure 16). Gen-
erally, in the couple of scramble population, governed by the Ricker’s model,
and a contest population, governed by the Verhulst’s model, with dispersion
from the scramble population to the contest population, an increase of dis-
persion is equivalent to adjusting parameters and analyzing local dynamics
for the scramble population. In this population the decrease of dispersal
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has the same effect as increasing the reproduction rate in its local dynamics.
The contest competition gains the ability to handle multiple attractors where
as before it could not. Figure 17 shows the system dynamics as dispersion
varies.

Figure 15: Basin of attraction for chaotic attractor.

Figure 16: Stable fixed point at d1 = .51
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Figure 17: Bifurcation about d1

Here, there is dispersal from the contest competition population P2 into the
scramble competition population P2. This dispersal effects the size of P1
but not the actual periodic oscillations in P1. The competition population
decreases when dispersal is introduced and dies out soon after.
Now we look at two-dimensional dispersion. First, we have the case of sym-
metric two-dimensional dispersal. Symmetric dispersals behaves the same as
one way dispersal from P1 to P2. As dispersals are increased symmetrically
a stable fixed point is approached. Fixed points also occur for values of the
dispersal rate greater than .5 (see Figure 15 and 16).
The introduction of asymmetric two-dimensional dispersion between P1 and
P2 is similar to the introduction of symmetric dispersion. There is change
in system dynamics as before, but there is a different range of dispersals in
which the populations approach a fixed point. As seen in figure 18, which
is a bifurcation about the dispersion from patch2 d4, while fixing the value
of the dispersion from patch1 d1 at .1, the system does not approach a fixed
point. In figure 19 d1 has been increased to .7. Now we see that the system
approaches a stable fixed point.
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Figure 18: Bifurcation about d4 with d1 = .3

Figure 19: Bifurcation about d4 with d1 = .7

4 Conclusion

Using our analysis of the two patch systems we can conclude:

• In a single patch system: contest intraspecific competition local dy-
namics show that the population at any initial condition can either
die or survive, however in scramble regime under different variation of
the reproductive rate either the population persists, or global stability,
Hoft bifurcation, or multiple attractors with basin boundaries.

• In two-patch systems with dispersal the local dynamics for contest-
contest competition are similar to those of a single patch contest regime
if the reproduction rate (r) is either greater or smaller than the speed
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ratio (b). However, we coupled one living patch with one dying patch
and increase dispersal, the results show that population in patch one
is decreasing and patch two are increasing. This effect is known as the
”Rescue Effect”.

• The Scramble-Scramble coupled dynamics show that dipersion rate can
severly affect the dynamics of the system. If we couple two chaotic
patches, and have an intense net dispersion rate from one path to the
other, both patches contain a fixed piont. If the dispersion rate de-
creases, we can have both patches in period four cycles. Thus, as
the dispersion rate decreases from one patch to another, both locally
choatic patches head toward stability.

• For the coupled Scramble-Contest system the addition of both one-
dimensional and two-dimensional dispersal has an effect on the indi-
vidual patches. Most importantly, we show that we are able to couple
a scramble population, with local dynamics of periodic oscillations or
a chaotic attractor, with a surviving contest population and find fixed
points of the system for various values of dispersion. In such systems
there are also cases where the contest population can handle periodic
oscillations.
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