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City College of New York, New York, NY

Fernando Peña
University of Texas at San Antonio, San Antonio, TX

Rosalyn Rael
Western New Mexico University, Silver City, NM

Abdul-Aziz Yakubu
Cornell University, Ithaca, NY

August 2001

Abstract

Genetically modified corn crops have been developed to reduce the impact
of potentially devastating agricultural pests such as the European Corn Borer
(Ostrinia nubilalis). Continuous exposure to Bt toxins in genetically modified
corn results in the increased prevalence of European Corn Borers that are resis-
tant to these toxins. In this article, we first analyze the evolution of resistance
in a uniform environment using a system of nonlinear difference equations. The
evolution of resistance is then simulated in spatially explicit environments based
on the biology of the insect and using parameters found in the literature. The
optimum initial conditions and various stripe patterns on a corn field which
will minimize the evolution of a resistant population are explored numerically.
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1 Introduction

Insect pests are inherent problems in the agriculture industry which have plagued
growers for countless years. As a result, a multitude of insecticides have been em-
ployed for their control. However, environmental and human health issues have always
been a concern surrounding pesticide use. Recent technological advances, though,
have allowed for a dramatic decrease in the use of externally applied insecticides.
Crops have been engineered to contain exotic genes which allow them to exhibit con-
tinual expression of toxins, thus making external application of insecticides virtually
unnecessary in combating infestations of some pests. The result is an approximate
90% reduction in annual insecticide use for genetically modified sweet corn, which
amounts to a savings of over 700,000 pounds of insecticides annually [8]. It is es-
timated that $2.7 billion of the $8.1 billion spent annually on insecticides could be
replaced by genetically modified crops [8].
A particular transgenic crop, known as Bt corn, has been manufactured to be

resistant to the European Corn Borer (Ostrinia nubilalis). The European Corn Borer
is the most devastating insect pest of corn in the United States and Canada. It causes
damage and requires control resulting in losses that exceed $1 billion every year [13].
Bt corn provides more effective and consistent control of O. nubilalis than insecticides
for a lower cost than insecticide application and with fewer health or environmental
concerns [16]. This crop contains a gene from the naturally occurring soil bacte-
ria Bacillus thuringiensis, which produces a protein lethal to European Corn Borer
larvae. Various strains of genetically modified Bt corn produce crystalline proteins
known as Cry Proteins in different forms that selectively kill groups of insects. The
protein forms Cry1Ab, Cry1Ac, and Cry9C are effective against Ostrinia nubilalis,
with Cry1Ab being the most commonly used [13]. The toxic form of the protein is
activated by the insect’s digestive enzymes. It binds to specific receptors on the lining
of the intestine and the cells rupture, letting the gut contents leak into the body fluid.
Most larvae die within two or three days of initial ingestion [13].
A characteristic of organisms in naturally occurring biological systems is the abil-

ity to adapt for survival. Studies show that there exists substantial genetic diversity
for minor resistance genes to be present in wild populations of O. nubilalis [16]. If
this gene happened to emerge in an environment comprised entirely of Bt corn, the
individuals with the genetic trait that makes them resistant would survive, while all
the normal insects would perish. The greater the duration of exposure and the higher
the proportion of exposed individuals, the faster the process of resistance development
occurs, as the intensity of selection is increased [14]. Much to the dismay of growers,
selection for the resistant insect would occur, and the survivors would proliferate,
producing an entirely resistant population.
The resistant allele has been assumed to be recessive; however, studies have

demonstrated that insects with one resistant allele (R) and one susceptible allele
(S), or heterozygotes, are not completely susceptible to Bt [1]. Instead they display a
range of survival rates depending on the degree of plant toxicity. Incompletely dom-
inant Bt resistance can therefore be effectively dominant at some Bt concentrations
[1]. Major incidences of resistance can be associated with the loss of affinity of the
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toxin produced by the Cry protein for the toxin receptors in the gut of the insect [1].
Disrupted or altered enzyme activity in the gut of the insect is a factor which could
make the allele phenotypically display incomplete dominance [1]. Levels of codomi-
nance are determined by the portion of heterozygotes which survive Bt exposure.
The U.S. government recognizes the magnitude of the problem of selective evo-

lution that could accompany widespread use of genetically modified crops. As a
result, the U.S. Environmental Protection Agency (EPA) and the U.S. Department
of Agriculture (USDA) have proposed guidelines to manage insecticide resistance
[8]. A strategy necessary for the control of insect resistance is known as the high
dose/structured refuge strategy [8]. This strategy consists of planting Bt corn with
high levels of toxin expression along with sufficient normal corn to provide an ade-
quate number of susceptible adult insects to dilute the frequency of resistant genes.
Planting refuges, which are proportions of crop acreage designated to contain only
non-Bt corn, have also been shown to be economically beneficial [16]. Studies show
that Bt cultivars must produce a toxin concentration strong enough to kill most in-
sects which are heterozygous for the resistance gene [15]. According to the Scientific
Advisory Panel, a toxin concentration that is 25 times the concentration required
to kill susceptible insects would be sufficient to kill heterozygotes [15]. Growers in
the U.S. are required to plant non-Bt corn refuge over at least 20% of their total
field acreage [8]. This ratio has been shown to be the most “economically superior”
considering all costs involved for farmers [16]. The minimum refuge area of 20% is
supported by data on regional genetic structure of O. nubilalis along with theoret-
ical models [16]. The minimum recommended portion of normal corn on a field is
increased to 40% if the land is to be sprayed, in order to increase the chance of sus-
ceptibles surviving [16].
The high dose/structured refuge strategy is based on three major assumptions

which are outlined by the 1998 regional research committee NC-205 [16]. The first
is that the frequency of major resistance genes must be sufficiently low to ensure
that nearly all resistant genes are found in heterozygous (RS) individuals. The sec-
ond is that heterozygote survival rates must be very low on Bt plants. This occurs
when the resistance gene is nearly recessive (the codominance level is low). The third
assumption is that random mating occurs within the typical dispersal distances of
the adults, so that resistant insects have enough susceptible individuals within their
range of travel to make it likely that their offspring will be heterozygous rather than
homozygous for the resistant allele. These assumptions were considered when para-
meters were designated for our simulation.
The ultimate goal of this project is to determine possible refuge configurations

which may reduce the rate of evolution of a resistant population of O. nubilalis, based
on a 20% refuge plan. We begin by analyzing a deterministic model representing the
basic population dynamics of O. nubilalis. We then analyze a deterministic model
with selection to evaluate the population dynamics of the insect in an environment
with selective pressure. This is followed by a discussion of the operation of the com-
puter simulation and the application of the derived models to this simulation. Finally,
the results and conclusions obtained from the performed simulations are given.
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2 Deterministic Model

We begin with the introduction and analysis of a deterministic model which represents
the basic vital dynamics of Ostrinia nubilalis. This model generates the number of
larvae in a population based on the number of adults in the previous generation, and
we assume there is no overlap of generations. The larval stage is vital to consider,
as it is at this stage that the insect damages the corn plant through herbivory. This
model will be used as a reproductive mechanism in our computer simulations.

2.1 Model

To build a model of the population dynamics of O. nubilalis, we assume that the
initial larval population at any generation is equivalent to the number of eggs that
hatch. We define µ1 to be the fraction of eggs that are not viable, so 1 − µ1 is the
fraction of eggs laid by the previous generation that survive to the larval stage. The
number of initial larvae, then, is 1− µ1 multiplied by the total number of eggs laid.
We define γ to be the fraction of females in the adult population and an to be the
total number of adults, so γan becomes the total number of females in the adult
population of the nth generation. The average number of eggs laid by an adult female
is defined as β, so γβan is the total number of eggs laid by generation n. This leads
to the equation:

ln+1 = γβ(1− µ1)an (1)

The adult population of the next generation depends on the larvae of the present
generation. We use the Verhulst Model to provide a basis for the derivation of our
model. The Verhulst Model is defined as follows [2]:

xn+1 =
rxn

1 + axn

This model was chosen because it represents a population in which xn+1 is bounded
above by a carrying capacity, k = r

a
, and xn+1 is close to k whenever the xn population

is large.
It is assumed that generations do not overlap and that each corn plant can only

hold a limited number of larvae. The number of adults of the next generation cannot
exceed the number of larvae of the present generation. From this information the
following difference equation is derived:

an+1 =
αln

1 + µ2ln
(2)

where:

1. α is a constant that must be less than or equal to 1 for an+1 not to exceed ln.
For simplification, let α = 1.

2. µ2 is the larval death rate.
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3. k1 =
1
µ2
is the adult carrying capacity.

Substituting equation (2) into equation (1) yields the following difference equation:

ln+1 =
γβ(1− µ1) ln−1
1 + µ2 ln−1

(3)

Equation (3) can be expanded as a system of equations. First, we introduce the
following definition:

jn = ln−1

Substituting this equation into equation (3), we define the system of equations as:

ln+1 =
γβ(1− µ1) jn
1 + µ2 jn

(4)

jn+1 = ln (5)

The carrying capacity, or maximum survival rate of the population is:

k2 =
βγ(1− µ1)

µ2

2.2 Analysis of the Model

We will now analyze the system of equations (4) and (5) for equilibria and their
respective stabilities. This process allows us to see the long term dynamics of the
model, and determine the eventual fate of the insect population.

2.2.1 Equilibrium Points

The equilibrium points are derived by defining the reproduction functions f(l, j) and
g(l, j), and setting them equal to l and j respectively.

Definition 1 A reproduction function is a function f : I → I, I ⊂ Rn , n = 1, 2, 3...
such that if xm = (x1,m, x2,m, ..., xn,m) ∈ I,m = 0, 1, 2..., then xm = fm(x0), where
fm denotes f ◦ f ◦ ... ◦ f| {z }

m times

, and f0(x0) := x0.

The reproduction functions of this model are:

f(l, j) =
γβ(1− µ1)α j
1 + µ2 j

g(l, j) = l
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Definition 2 If f1 : I → I, f2 : I → I, ...fn : I → I, I ⊂ Rn, n = 1, 2, 3... are
reproduction functions of a system of difference equations, then, x∗ = (x∗1, x

∗
2, ..., x

∗
n) ∈

I, is said to be an equilibrium point of f1, f2, ..., fn if and only if f1(x
∗) = x∗1, f2(x

∗) =
x∗2, ..., fn(x

∗) = x∗n are true.

In order to find the equilibrium points we set f(l∗, j∗) = l∗ and g(l∗, j∗) = j∗. The
equilibrium points are:

l∗1 = 0

l∗2 =
(γβ(1− µ1)− 1)

µ2

Where j∗1 = l
∗
1, and j

∗
2 = l

∗
2.

2.3 Stability of Equilibria

Definition 3 An equilibrium point x∗ = (x∗1, x
∗
2, ..., x

∗
n) ∈ I, n = 1, 2, 3... of a system

of reproduction functions f1 : I → I, f2 : I → I, ...fn : I → I, I ⊂ Rn is stable if and
only if ∀²m > 0 ∃δm > 0, m = 1, 2, ..., n, such that |xm,p − x∗m| < ²m, p = 1, 2, 3...
whenever |xm,0 − x∗m| < δm.

Theorem 1 If A is the Jacobian matrix of the system of reproduction functions
f(x∗, y∗) and g(x∗, y∗), and if all roots of the characteristic equation det(A(x∗, y∗)−
λI) satisfy |λ| < 1, then all solutions of the system with initial values sufficiently
close to an equilibrium approch the equilibrium [4].

The characteristic equations for l∗1 = 0 and l
∗
2 =

(γβ(1−µ1)−1)
µ2

derived from the Jacobian
matrix of the reproduction functions are:

λ21 − γβ(1− µ1) = 0,
and

λ22 −
1

γβ(1− µ1) = 0

respectively.
From the characteristic equations we determine the stability of the fixed points

by using Theorem 1.

For l∗1 = 0, λ is:

|λ1| =
p

γβ(1− µ1)
For l∗2 =

(γβ(1−µ1)−1)
µ2

, λ is:

|λ2| =
s

1

γβ(1− µ1)
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Whenever 1
γ(1−µ1) < β, then |λ1| > 1, and |λ2| < 1. Here l∗1 = 0 is unstable, and

l∗2 =
(γβ(1−µ1)−1)

µ2
is locally asymptotically stable. If 1

γ(1−µ1) > β, then |λ1| < 1, and
l∗2 is locally asymptotically stable. In this instance the equilibrium point l∗2 does not
make sense biologically, since whenever 1

γ(1−µ1) ≤ β is true, l∗2 is not a positive value.

If 1
γβ(1−µ1) then l

∗
1 = l∗2 = 0, and the point l∗1 = l∗2 = 0 is an equilibrium with

|λ| = 1. In this case |λ| = 1 tells us that the equilibrium point l∗1 = l∗2 = 0 is an
attractor whenever ln > 0 and a repeller whenever ln < 0. According to Theorem 1,
l∗1 = l

∗
2 = 0 would not be considered stable if it were not an endpoint of the interval

on which f(l, j) and g(l, j) are defined; however, since ln < 0 does not have biolog-
ical significance (f(l, j) and g(l, j) are not defined when l < 0) we take the point
l∗1 = l

∗
2 = 0 to be locally asymptotically stable.

β l∗1 l∗2
1

γ(1−µ1) < β Unstable Asymptotically Stable
1

γ(1−µ1) = β Asymptotically Stable —
1

γ(1−µ1) > β Asymptotically Stable —

Table 2: Stability Chart for Equilibria

Note: If 1
γ(1−µ1) = β then l∗2 = l

∗
1 = 0. If

1
γ(1−µ1) > β then l∗2 < 0, and does not make sense biologically.

In summary, the characteristics of the equilibria are determined by the way the
value of β, the number of eggs laid by each female, relates to the value of 1

γ(1−µ1) ,
the reciprocal of the fraction of the population that is female, multiplied by the
fraction of eggs that hatch. If β > 1

γ(1−µ1) , there are two eqilibria, l
∗
1 = 0, which is

unstable, and l∗2 > 0, which is asymptotically stable. In this case the population of
O. nubilalis reaches a stable positive population size. If β ≤ 1

γ(1−µ1) , there is only
one non-negative equilibrium, l∗1 = 0 which is asymptotically stable. In this case the
population eventually goes extinct.

3 Deterministic Model with Selection

In this section, we introduce and analyze a deterministic model representing the
selection of resistance in Ostrinia nubilalis. This model will be used to calculate
succeeding generations based on the selective pressures of the environment. The
frequencies of two alleles are analyzed. These include the resistance allele R, which
represents the ability to survive on Bt corn, and the susceptibility allele S, which
represents no resistance to the Bt toxin. The three possible genotypes of these alleles
are: RR, RS, and SS.
Again, we assume that the population changes in a discrete-time manner so there

exists no overlapping of generations. The fitness of an individual (relative probability
of survival and reproduction) is independent of its genotype frequency. Since this
model assumes random mating, it is related to the Hardy-Weinberg Principle for
establishing proportions of initial genotypes [12].
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3.1 Hardy-Weinberg Principle

The Hardy-Weinberg Principle states that random mating among genotypes is equiv-
alent to random combination of gametes and assumes the following conditions:

1. Fitness is independent of genotype frequency.

2. There is no movement into or out of the system.

3. Population size is large enough to ignore stochastic effects.

4. No mutations occur at the locus of the allele of interest.

5. Mate selection is independent of genotype.

The alleles R and S are defined as having frequencies p and q respectively, where
p + q = 1. According to the Hardy-Weinberg Principle, in a population without
overlapping generations, only a single generation of random mating is needed for the
frequencies of the genotypes to be established as follows [12]:

pRR = p
2

pRS = 2pq

pSS = q
2

This is commonly referred to as Hardy-Weinberg equilibrium [12].

3.2 Model

We now introduce the notion of fitness (w), which represents the relative survival
rates of individuals. The following table summarizes the information required to find
the respective frequencies of the adult population given an initial population of larvae
assumed to be in Hardy-Weinberg equilibrium.

RR RS SS
Larvae Freq. p2 2pq q2

Relative Survival Rates wRR wRS wSS
Relative Adult Freq. p2wRR 2pqwRS q2wSS
Adult Freq. p2wRR/w 2pqwRS/w q2wSS/w
Table 1: Selection Model for Two Alleles at a Single Locus [12]

The mean fitness of the population at generation n is given by:

w(n) = p2nwRR + 2pnqnwRS + q
2
nwSS

and the average fitnesses of the alleles at generation n are defined as:

wR(n) = pnwRR + qnwRS (6)

wS(n) = pnwRS + qnwSS (7)
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The frequencies of the alleles in generation n are given by the following system of
difference equations [12]:

pn = p
2 + pq (8)

qn = q
2 + pq (9)

This system can be reduced to a single formula. Since p + q = 1 for all generations,
it is obvious that:

qn = 1− pn (10)

Substituting the values of the adult frequencies of R from Table 1 into (8), the
difference equation for the frequency of the allele R in generation n+ 1 becomes:

pn+1 =
pnwR(n)

w(n)
(11)

Now we focus our attention on deriving equations that represent the fitness of the
three different genotypes: RR, RS, and SS. These fitnesses will help us clearly define
the values of the fitnesses of each allele. The fitness of the genotype depends on the
environment in which it is found: Bt corn or normal corn.

wRR = Prob[RS found in Bt]wRS[Bt] + Prob[RS found in normal]wRS[normal]

wRS = Prob[RS found in Bt]wRS[Bt] + Prob[RS found in normal]wRS[normal]

wSS = Prob[SS found in Bt]wSS[Bt] + Prob[SS found in normal]wSS[normal]

The following simplifying assumptions are vital to the deterministic model:

1. An individual with both resistant alleles is unaffected by Bt corn. Hence,
wRR[Bt] = 1.

2. An individual with genotype RS is not completely resistant to Bt corn. Hence,
0 ≤ wRS[Bt] ≤ 0.025 [16]. Here we denote wRS as δ.

3. An individual with both non-resistant alleles has no resistance to Bt corn.
Hence, wSS[Bt] = 0 [16].

4. Individuals of all genotypes persist on normal corn. Hence, wRR[normal] =
wRS[normal] = wSS[normal] = 1.

Therefore, if we define fBt to be the fraction of Bt corn, it is easy to see that

wRR = 1

wRS = fBtδ + (1− fBt) = 1− (1− δ)fBt

wSS = 1− fBt
From this information and equation (11) we obtain a simplified equation for pn+1,
and since qn = 1− pn we consider only pn.

pn+1 =
pn − pnqnfBt(1− δ)

1− q2nfBt + 2pnqnfBt(1− δ)
(12)
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3.3 Analysis of the Model

We will now analyze the nonlinear difference equation (12) for equilibria and their
respective stabilities. This process allows us to see the long term dynamics of the
model, and determine the eventual fate of the insect population.

3.3.1 Equilibrium Points

The reproduction function for equation (12) is:

f(p) =
p− pqfBt(1− δ)

1− q2fBt + 2pqfBt(1− δ)

The equilibrium points of this model are:

p∗1 = 0, q
∗
1 = 1

p∗2 = 1, q
∗
2 = 0

p∗3 =
δ

(3− 2δ) , q
∗
3 =

3(1− δ)

(3− 2δ)
If δ = 0 then p∗3 = p

∗
1 = 0 and if δ = 1 then p

∗
3 = p

∗
2 = 1.

3.3.2 Stability of Equilibria

Theorem 2 Let x∗ be a hyperbolic fixed point (an equilibrium point where |f 0(x∗)| 6=
1) of a smooth function f : I → I where I is an open interval in R [5].

1. If |f 0(x∗)| < 1 , then x∗ is locally asymptotically stable.
2. If |f 0(x∗)| > 1 , then x∗ is unstable.

From the reproduction function we determine the stability of the fixed points by using
Theorem 2.

For p∗1 = 0, f
0(p) is:

|f 0(p∗1)| =
1− fBt(1− δ)

(1− fBt) ≥ 1,∀δ and fBt

For p∗2 = 1, f
0(p) is:

|f 0(p∗2)| = 1 + 3fBt(1− δ) ≥ 1,∀δ and fBt
For p∗3 =

δ
(3−2δ) , f

0(p) is:

|f 0(p∗3)| =
3fBt(1− δ) + |2δ − 3|
3fBt(1− δ)2 + |2δ − 3| ≤ 1,∀δ and fBt
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For 0 < δ < 1 and fbt 6= 0, the less than or equal to and greater than or equal to
signs become strictly less than and greater than, respectively. Thus for 0 < δ < 1, p∗3
is locally asymptotically stable (|f 0(p∗3)| < 1), and p∗1 and p∗2 are unstable (|f 0(p∗1)| > 1
and |f 0(p∗3)| > 1). The special cases: δ = 0, δ = 1 and fBt = 0 are considered further
in the following section.

Special Cases

When fBt = 0, then wRR = wRR[normal] = wRS = wRS[normal] = wSS = wSS[normal] =
1, and there is no selection occuring. Thus the population is in Hardy-Weinberg Equi-
librium, and p = p∗,∀p ∈ [0, 1]. In this case p∗ is stable, but is not asymptotically
stable.
The following summarizes the special cases of δ = 0 and δ = 1:

1. If δ = 1, wRR[Bt] = 1 and wSS[Bt] = 0. R is completely dominant.

2. If δ = 0, wRR[Bt] = 1 and wSS[Bt] = 0. R is completely recessive.

Note that for δ = 0 the first derivatives of the reproduction function are:
For p∗1 = 0, f

0(p) is:

|f 0(p∗1)| = 1

For p∗2 = 1, f
0(p) is:

|f 0(p∗2)| = 1 + 3fBt
For p∗3 =

δ
(3−2δ) , f

0(p) is:

|f 0(p∗3)| = 1

Also note that for δ = 1 the first derivatives of the reproduction function are given
as follows.
For p∗1 = 1, f

0(p) is:

|f 0(p∗1)| =
1

(1− fBt)
For p∗2 = 1, f

0(p) is:

|f 0(p∗2)| = 1

For p∗3 =
δ

(3−2δ) , f
0(p) is:

|f 0(p∗3)| = 1

To determine the stability of the nonhyperbolic equilibrium points that exist when
δ = 0, and when δ = 1, an additional technique is required.
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Figure 1: Cobwebbing Graphs: Deterministic Model with Selection

Cobwebbing Graphs

Cobbwebbing is used to graphically verify the stability of the equilibria. According
to the graphs, for δ = 0, p∗1 = p∗3 = 0 is locally asymptotically stable, and p∗2 = 1
is unstable. For δ = 1, p∗2 = p∗3 = 1 is locally asymptotically stable, and p∗1 = 0 is
unstable.
The following chart summarizes the stability of the equilibria for different values

of δ.

δ p∗1 p∗2 p∗3
δ = 0 Asymptotically Stable Unstable —

0 < δ < 1 Unstable Unstable Asymptotically Stable
δ = 1 Unstable Asymptotically Stable —

Table 3: Stability Chart for Equilibria

Note: If δ = 0 then p∗3 = p
∗
1 = 0 and if δ = 1 then p

∗
3 = p

∗
2 = 1.

In summary, the equilibria and their characteristics are determined by the value of
δ. If δ = 0, the resistance allele (R) is essentially fully recessive, so all heterozygotes
perish on Bt corn. In this case, there is only one stable equilibrium (p∗ = 0), which
means that the resistance allele (R) goes extinct for any initial frequency of this allele.
If 0 < δ < 1, then the resistance allele will not go extinct for any initial frequency.
Instead, the frequency approaches the equilibrium point: p∗3 =

δ
(3−2δ) . If δ = 1, the

resistance allele is fully dominant, so all heterozygotes survive on Bt corn. In this case,
the stable equilibrium point is p∗ = 1, which means that the frequency of resistance
will approach 100% for any initial resistance frequency.

4 Stochastic Simulation

We created a computer simulation using JAVA to analyze the evolution of resistance
corresponding to various arrangements of refuge within a Bt corn field. The relative
widths of stripes in a field were varied to test the effects of the heterogeneity of the
environment on the evolution of resistance. Each simulation was run 30 times over
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100 generations. The changes in the frequencies of the resistant (R) and susceptible
(S) alleles were determined after each larval generation, and the ultimate dynamics
of the allele frequencies occurring in each generated field were investigated.
Knowledge of the biology of the insect is essential for constructing the simulations

to yield the most realistic results possible. To make biological processes simpler for
the efficiency of the simulation, however, individual insects are disregarded and the
processes they undergo are applied to alleles. The equations (1) and (2) are used
to generate succeeding generations of larval and adult alleles. An adult population
consisting of only females is considered, which means that new alleles are generated
from every existing allele. The reproduction habits of O. nubilalis are incorporated
in the simulation as well, represented by the creation and distribution of new alleles.
Insect populations are affected by a variety of naturally occurring events. The

survival rates of larvae are different for those that hatch in the spring and those that
hatch during mid-summer [3]. The toxicity of the environment in which the larvae is
born also influences survival rates according to alleles involved. We assume that that
the resistant allele (R) does not adversely affect the ability of the insect to reproduce.
We also assume that no homozygous susceptible individuals survive on Bt corn [16].

Field Arrangement

The simulations were performed for five different arrangements of refuge within a
Bt corn field. One spatial arrangement contains 100% Bt corn and one contains
100% normal corn. These arrangements serve as controls to test the accuracy of the
simulations, as the general trend of the results can be predicted. The remaining three
fields consist of 80% Bt corn and 20% non-Bt corn with varying degrees of uniformity
of integration in stripe patterns. The simulated field is composed of 200x50 square
patches. Each stripe is one patch wide and runs the entire length of the field. The
patch dimensions were established to be 215 ft2 for the efficiency of insect distribution.
Therefore, the simulated field size is approximately 8 miles wide by 2 miles long and
is composed of 200 stripes. The specific dimensions, however, are not as significant
as the degree of uniformity because the field is programmed as being torus shaped.
The uniformity of the three heterogeneous fields varies as follows:

1. Normal corn and Bt corn are highly integrated with every 4 stripes of Bt corn
alternating with 1 stripe of normal corn.

2. Normal corn and Bt corn are less integrated with every 80 stripes of Bt corn
alternating with 20 stripes of normal corn.

3. Normal corn and Bt corn are not integrated, but placed in blocks with 160
stripes of Bt corn adjacent to 40 stripes of normal corn.
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The figure below shows a pictorial representation of the five arrangements.

Figure 2: Field Arrangements

Numerical Parameters

Many of the numerical parameters which determine the dynamics of the simulations
were collected from a variety of literary sources. The remaining were deduced relative
to each other considering the efficiency of the simulation. The parameters used in the
simulation are:

1. The initial frequency of the resistance allele (R) is: p0 =8.39x10
−4 [16].

2. The fitness of the genotype RS on Bt corn is: wRS = δ = 0.025 [16].

3. The fitness of the genotype SS on Bt corn is: wSS = 0 [16].

4. The fitness of the genotype RR on Bt corn is: wRR = 1.

5. Only females were considered, thus γ = 1.

6. The number of egg packets laid by each female insect ranges from 15 to 25
[18][9].

7. The average number of eggs per packet laid by each female insect is 23 [9].
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8. The fraction of eggs laid which are not viable, µ1, is 0.65.

9. The larval death rates are: µ2,1 = 0.02 and µ2,2 = 0.09. These values were esti-
mated to be as realistic as possible considering a low enough carrying capacity
to allow the simulations run efficiently.

10. The initial capacity of alleles per patch is: 300.

11. The maximum egg laying range of the female is 1500 ft [3].

12. The size of the field is 8 miles by 2 miles.

The Simulation

The simulation begins with a field composed of square patches. A number of alleles
are randomly distributed over an empty field with a limit on the initial number of
alleles placed in each patch. This initial distribution of alleles is used for all simula-
tions on all fields so that the dynamics can be statistically compared. The specific
composition of the heterogeneity of the field is then set, and in each patch, processes
are set to occur over each generation. These processes are mortality, reproduction,
and distribution.

Mortality

The first vital process to occur within each patch is death. There are two types
of mortality which occur here: death due to natural causes such as predation or
competition (natural death), and death due to susceptibility to Bt (Bt death). Natural
death occurs at the same rate for both alleles. The number of larval alleles surviving
to adulthood are generated using equation (2), where α = 1, and µ2 varies between
two values which alternate with successive generations. These are: µ2,1 = 0.02 and
µ2,2 = 0.09. Bt death is variable depending on whether or not the patch is composed of
Bt corn and depending on the fitness of each allele with respect to the environment. If
the patch is composed of normal corn, Bt death does not occur for either allele. If the
patch is composed of Bt corn, the number of surviving resistant (R) and susceptible
(S) alleles are represented by the following equations:

Rn+1 = wRRn

Sn+1 = wSSn

The fitnesses wR and wS are defined by equations (6) and (7). With the defined
parameters, these equations become:

wR(n) = pn + qn(0.025)

wS(n) = pn(0.025)

The frequencies pn and qn are recalculated with each generation.
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Reproduction

During the reproduction process, a number of new alleles are created in each patch,
simulating the number of eggs laid by the female adults. This process comes from
equation (1). For the simulation, β = (#eggs per packet)(#of packets), where the
number of eggs per packet is 23, and the number of packets laid is a randomly
generated number between 15 and 25. The number of new alleles produced, then, is:
23(1− .65) and these will be distributed between 15 and 25 times.

Distribution

During the stochastic distribution process, alleles are distributed as the female adult
would distribute her eggs. We assume that the female is more likely to lay eggs
near her place of birth. We represent this with a two-dimensional approximation
to a normal distribution of alleles, centered over the patch in which the allele was
created. The maximum range in which a female lays eggs is set to be 1500 ft, so for
the efficiency of placing the normal distribution by patch, this number is divided by
seven, making each patch 215 ft2. Each surrounding patch within the range is assigned
a probability of having an allele placed in it according to a normal distribution chart
[11].
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5 Results

The results of 30 simulations of the frequency of the resistance allele (R) in the overall
population are plotted over 100 generations. The means of the fields are graphed
against each other for comparison. Graphs of the standard deviations for fields B, C,
D, and E are also included in this section. The simulations and standard deviations of
Field A are not included because the populations of both alleles (R and S) go extinct
within very few generations.

Generation Plots

The following graphs show the results of 30 simulations over a 100 generation time
period.

Figure 3: Stochastic Simulation Graphs
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Means

The following graph incorporates the plot of the means for fields B, C, D, and E. The
mean converges the overall behavior of the simulations for every field. Field A is not
shown since allele R and allele S go extinct within the first generation.

Figure 4: Means

18



Standard Deviation

The following graphs show the standard deviation of fields B, C, D, and E for each
generation. On all fields, except field B, the standard deviations eventually go to zero.
This occurs when all simulations have reached equilibrium. Field B does not show
this behavior because of the single simulation in which the resistant allele (R) goes
extinct. Field A is not shown since both alleles go extinct within the first generation.

Figure 5: Standard Deviation Graphs
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Deterministic Model

The graphs of the deterministic model are included to provide a visual reference for
comparison with the graphs of the stochastic simulations. The evolution of resistance
in a field with 80% Bt corn and δ = 0.025 for two different initial frequencies of the
resistant allele (R) is graphed. In addition, the evolution of resistance after 200 gen-
erations is included for fields with varying percentages of normal corn. The resistance

Figure 6: Deterministic Model Graphs

in the deterministic model does not approach 100% as it does in the simulation. This
is because this model represents an infinitely large population in which an allele with
a low frequency does not go extinct from natural causes.

6 Discussion

We observed through our research that the evolution of resistance in the stochas-
tic simulations followed the general trend of evolution depicted by the deterministic
models. The differences between the mean trends of the simulations are a result of
the varying degrees of heterogeneity.
Spatial arrangement is not a factor of evolution in Field A because it is comprised

entirely of Bt corn. The deterministic model shows that the resistance should im-
mediately increase under these conditions. However, in our simulations, the initial
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frequency of the resistance allele (R) is very low relative to the carrying capacities
of the patches. The result is the extinction of the resistance allele within the first
few generations due to natural death. The susceptible alleles are all eliminated by Bt
exposure. Thus, in our computer simulations, the entire population goes extinct on
Bt corn with a low initial frequency of resistance.
Field B is the most thoroughly mixed field. Bt and normal corn are integrated on

this field by alternating four stripes of Bt corn with one stripe of normal corn. The
graph of Field B in Figure 3 depicts the behavior of resistance evolution for 30 simu-
lations. In 29 of the simulations, the population reaches 100% resistance after various
lengths of time, but the resistance allele goes extinct in one simulation. The stochas-
tic process of death by natural selection forces the resistance allele in one simulation
to be eliminated. This result does not present a problem though, as it is a justified
anomaly. The graphs of the means and the standard deviations were included for
statistical analysis. The mean of each field summarizes the overall behavior of that
field. The mean of Field B is not altered significantly by the simulation in which the
resistance goes extinct. The standard deviation does not decrease to zero after its
peak value as it does in each of the other fields. This is the effect of the simulation
in which resistance is eliminated.
The two types of corn are mixed much less on Field C than on Field B. Bt and

normal corn are integrated on this field by alternating 80 stripes of Bt corn with
20 stripes of normal corn. The interval in which all simulations reach 100% resis-
tance is relatively small. Resistance increases rapidly within the first ten generations;
however, after the tenth generation, the rate of evolution of resistance appears to
decrease.
The two types of corn are not mixed on Field D. All Bt corn (160 stripes) is

placed in a block adjacent to the entire portion of normal corn (40 stripes). The
simulations all appear to reach 80% rapidly, then the rate of increase of resistance
sharply decreases.
Spatial arrangement is not a factor of evolution in Field E because it is comprised

entirely of normal corn. Our deterministic model shows that the allele frequencies
under these conditions would approach a positive equilibrium in a natural system
with a very large initial population of insects. However, since the initial frequency of
the resistance allele (R), is very low relative to the carrying capacities of the patches,
the resistance allele goes extinct within the first few generations due to natural death.
When the resistance drops to approximately 0.01%, it appears to show a brief increase
before going extinct due to the higher natural death rate in our simulations. This
event may be related to the equilibrium which would be reached in a natural system,
as demonstrated by the deterministic model (Figure 6).
The initial frequency of the resistance allele is significant in our simulations. The

high dose/structured refuge strategy proposes that the inital frequency of the resis-
tance allele must be sufficiently low to ensure that nearly all resistant genes in the
population are in heterozygous individuals. One literary source gave an initial fre-
quency value of 8.39x10−4 and a 95% confidence interval for the frequency of [0,
4.38x10−3] for very large populations [16]. However, for our stochastic simulations,
these tested values proved to be too low. The combination of death by Bt toxin in
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the heterozygous individuals along with natural death rates pushed the resistance
allele to extinction because the carrying capacity of each patch was very low relative
to the initial frequency. Therefore, to obtain better results, a higher initial frequency
(p0 = 0.05) was used. This initial frequency of the resistant allele was high enough
result in evolution of 100% resistance over time, which is the main concern of our
project.

7 Conclusions

The simulations performed showed that normal corn more intricately interspersed
with Bt corn results in the slower increase of resistance frequency. The general be-
havior pattern of the evolution of resistance observed in the deterministic models is
the same as that observed in the stochastic simulations, which leads us to conclude
that the results of the simulation are reasonable bases for predicting long term be-
havior of resistance frequency. The only inconsistancies occurred in the extreme cases
of the pure Bt and pure normal corn fields. These were results of the low carrying
capacity relative to the low initial frequency of the resistance allele and the effects of
natural death.
Although less distinction can be observed between the two fields with less inte-

gration, the distinction between the least integrated and most integrated fields can
be clearly observed in the results of the simulations. The resistance frequency ap-
proached 100% in each case; however, the rates at which the frequency increased
appeared to depend on the level of refuge integration. This phenomenon is most
likely related to the distribution of resistance alleles. In a more thorougly mixed
environment, resistant insects are more likely to be in close vicinity with susceptible
insects. This increases the chances of maintaining a significant number of heterozy-
gotes in the population, which are less likely to survive than insects homozygous for
the resistance gene. Thus, with a sufficiently diluted frequency of resistance in a
naturally large population achieved by increased intricacy of field refuge integration,
evolution can be slowed.
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