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Abstract

Chronic wasting disease (CWD) is a degenerative and fatal prion disease
affecting cervid (deer and elk) populations in North America. While the dis-
ease exists in captive herds throughout the western United States and southern
Canada, the only free-ranging populations afflicted are in northern Colorado,
southeastern Wyoming, and the western panhandle of Nebraska. CWD, sim-
ilar to other prion diseases such as scrapie in sheep, bovine spongiform en-
cephalopathy in cattle, and Creutzfeldt-Jacob disease in humans, attacks the
central nervous system via an accumulation of abnormal prion proteins.

For this investigation, we use both analytical and computational approaches
to model the dynamics of the disease in mule deer populations. We focus on
modifying the structure of an existing model by integrating sources of infection
previously excluded. We proceed to model the effects of two interacting pop-
ulations and the subsequent impact on disease dynamics. We hope that our
analysis and simulations will help in the development of spatial models to be
used in CWD management, a central goal of wildlife management agencies.
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1 Introduction

1.1 Disease Background

Chronic wasting disease (CWD) belongs to a class of diseases known as transmissi-
ble spongiform encephalopathies (TSEs). More specifically, CWD is a degenerative
and fatal prion disease afflicting cervid (deer and elk) populations in North Amer-
ica. CWD is similar to other prion diseases, such as scrapie in sheep and goats,
bovine spongiform encephalopathy in cattle, and kuru and Creutzfeldt-Jacob disease
in humans, as it affects the central nervous system via an accumulation of abnormal
prion proteins. These abnormal prions are resistant to degradation by proteases, the
enzymes responsible for catalyzing protein breakdown. The accumulation of prions
results in reduced neurological function that leads to a lack of coordination, weakness,
fatigue, excessive salivation, emaciation, and invariably death.[1]

While the disease exists in captive herds throughout the western United States and
southern Canada, the only free-ranging populations afflicted are in northern Col-
orado, southeastern Wyoming, and the western panhandle of Nebraska. CWD was
first recognized in free-ranging cervids in 1981, but the origin of the causative agent is
unknown [7]. Thus far, the disease has been observed in mule deer, white-tailed deer,
and elk. There is uniform transmission of the disease within a species irrespective of
age and sex, although CWD is more prevalent in deer species than in elk. In epidemic
areas, prevalence among the two deer species is as high as 11% versus 1% for elk.[5]

1.2 Epidemiology of CWD in Mule Deer

Chronic wasting disease is a progressive disease that advances as the prion proteins
accumulate in the nervous system. Individuals typically have the infection for 18-36
months, during which there is an initial period that is asymptomatic and likely not
infectious. As the disease progresses and prions accumulate, individuals likely become
increasingly infectious as more prions are shed from the lymph system via mucous
membranes. The time from onset of symptoms to death ranges from 2 weeks to 8
months.[7, 10]

Many aspects of the epidemiology of this disease are poorly understood. It is un-
clear as to whether or not the current population is at equilibrium or whether the
population is experiencing an epidemic, although the latter seems more probable.
While relatively little is known about the way in which the disease is spread among
individuals, the agent is very likely transferred through exposure to the saliva, urine,
feces, and/or carcasses of infected individuals via the alimentary canal. It has been
estimated that less than 3.4% of cases result from maternal transmission, therefore it
is assumed that the impact of vertical transmission on disease dynamics is negligible.
Some sources suggest that infectious material is able to persist in the environment
for significant periods of time, which would certainly complicate disease management
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in wild populations. [7, 5, 6]

1.3 Existing Chronic Wasting Disease Models

Researchers and wildlife management agencies have employed mathematical models
and computational techniques to learn more about the dynamics of chronic wasting
disease in cervid populations. Two of these models come from Gross and Miller and
from Miller et al (2000), and each will be introduced here briefly to provide familiarity
with the models that have been constructed thus far.

Gross and Miller developed an individual-based model that tracked the sex, age, and
death of each individual. The stages of infection were also tracked for individuals.
The model included annual recruitment, aging, natural death, population monitoring
and harvesting. Density-dependent changes in the rates of recruitment or survival
were not incorporated into the model, instead harvesting was used to regulate the
population. Since it is unclear whether or not excreta and carcasses of infected indi-
viduals transmit the disease, these effects were not incorporated into the model. In
this case, the model was able to simulate the currently observed conditions within the
mule deer populations that have been studied in the Colorado-Wyoming study area.
The model predicted that CWD prevalence would continue to increase in infected
areas, with the spread of the disease only stopping once the deer populations were
extinct. Indeed, no realistic parameter values were found that supported an endemic
existence of the disease in the deer population.[3]

Miller et al constructed a discrete deterministic model for CWD, taking into consid-
eration sex and age classes. Fixed survival rates were used and recruitment was not
compensatory. The disease classes were divided into susceptible, infected-but-not-
infectious, and infectious classes. For this model, their primary focus was to explore
some basic assumptions about CWD and to estimate ranges of the different parame-
ter values that resulted in plausible disease dynamics.[7]

In the above models, field data were available and used to estimate parameter val-
ues. Therefore, much of the work here employs parameter value ranges and dynamic
results from these two earlier models. Hopefully we can show that a simpler disease
model with similar parameter values can be used to generate disease dynamics similar
to those generated by more complex models.

1.4 Research Goals & Objectives

The goals of our research are two-fold. The first goal is the establishment of a sim-
ple yet realistic disease model for CWD that incorporates the effects of infectious
materials in the environment. The second goal is to study the effects of population
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interactions on the disease dynamics within mule deer using a two-patch model.

The remainder of this paper consists of four sections. The second section in the paper
introduces our first model where we explore the dynamics of the model and identify
parameter values that result in realistic behavior of the system. The next section in-
troduces the refined model and simulations to illustrate that it describes the desired
behavior. The following section introduces the two-patch model and presents the
results of the two-patch system and its dynamics. Lastly, our results are summarized
in section 5.

2 Preliminary Model

2.1 Assumptions

While many of the epidemiological details of this disease have yet to be revealed, there
is sufficient evidence for making simplifying assumptions that can be incorporated into
a model of the disease [3, 6]. First, we assume that the progression of the disease can
be considered in terms of susceptible, exposed, and infectious classes. In addition,
all individuals are born into the susceptible class; and birth, death, and harvest rates
are proportional to population size. Transmission is assumed to be strictly horizon-
tal, from infectious individuals and/or infectious materials to susceptible individuals,
with random-mixing within the population. We assume that infectious individuals
produce infectious materials and carcasses that accumulate in the environment and
lead to infection of susceptible individuals. Additionally, we assume that prion build
up hastens the rate of movement of individuals from the exposed class to the infec-
tious class. It is also assumed that there is homogeneity among ages and sexes within
the population with respect to disease prevalence. Finally, there is no recovery from
the disease once an individual is infected.

2.2 Model

From the sketch of the model (Figure 3), the system can be represented by the follow-
ing set of ordinary differential equations (shown below). For details of the parameters,
see Table 2.5
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Figure 1: Diagram of the preliminary CWD model.
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Ḋ = ρααI + ρδδ (µ + ch + ω) I − rD

Ṅ = ΛN − (µ + h) N − ωI

(1)

Due to the difficulties in obtaining useful analytical results for this model, we can
assume constant population for certain analytical purposes, such as calculating R0.
The system can then be reduced to the following equations, where s = S

N
, i = I

N
,

e = E
N

, and d = D
N

with s + e + i = 1.

ṡ = µ + h + ωi− (µ + h) s− β1si− β2sd

ė = β1si + β2sd− (µ + h + γ) e− β3ei− β4ed

i̇ = β3ei + β4ed− (µ + h + ω) i + γe

ḋ = ρααi + ρδδ (µ + ch + ω) i− rd

2.3 R0 Calculation From The Disease-Free Equilibrium

R0 was calculated using the next generation operator approach for the constant-
population model at the disease-free equilibrium (1,0,0,0) [2]. Thus, our model is put
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in the form:

~X = [s], ~Y = [e], ~Z = [i, d]

where mij ≥ 0 and dii ≥ 0 and D is a diagonal matrix given by

M =

[ γβ1

µ+h+γ
β2γ

µ+h+γ

ραα + ρδδ(µ + ch + ω) 0

]

D =

[
µ + h + ω 0

0 r

]

It then follows that R0 is given as the dominant eigenvalue of the matrix MD−1, thus

R0 ≡ 1
2

(
β1

γ
µ+h+γ

1
µ+h+ω

+

√(
β1

γ
µ+h+γ

1
µ+h+ω

)2

+ 4β2
ραα+ρδδ(µ+ch+ω)

r
γ

µ+h+γ
1

µ+h+ω

)

While the next generation operator method does give the proper boundary condi-
tion for the stability of the disease-free equilibrium, the form of this threshold may
not be in the form of R0. However, this form of the threshold does make biological
sense as R0. In Table 2.3, the terms in the above representation of R0 are interpreted.

Term Interpretation
γ

µ+h+γ
Proportion of infected individuals who become infectious

1
µ+h+ω

Average time spent in infective state

β1 Rate of infections per infected individual
β2 Rate of infections per unit of infectious material

ραα+ρδδ(µ+ch+ω)
r

Amount per area of infectious material produced per infectious individual
Table 1. Interpretation of terms in R0 expression.

It should be mentioned again that this definition for R0 comes from the analysis of the
disease-free equilibrium where constant population is assumed. Given that the popu-
lation is currently increasing in the low-density areas where the disease is present [4],
this basic reproductive number should only be considered as a close approximation.

2.4 Endemic Equilibrium

i∞ =
B ±√B2 + 4AC

2A

s∞ =
µ + h + ωi∞

µ + h + (β1 + β2
α+δ(µ+ch+ω)

r )i∞
i∞

e∞ =
µ + h + ω

γ + (β3 + β4
α+δ(µ+ch+ω)

r )i∞
i∞

d∞ =
α + δ(µ + ch + ω)

r
i∞
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where,

A = (µ + h)
(

β1 + β2
ραα + ρδδ(µ + ch + ω)

r

)(
β3 + β4

ραα + ρδδ(µ + ch + ω)
r

)

B =
(

β1 + β2
ραα + ρδδ(µ + ch + ω)

r
− µ− h

)(
β3 + β4

ραα + ρδδ(µ + ch + ω)
r

)
(µ + h)

+ (ωγ − (µ + h + ω)(µ + h + γ))
(

β1 + β2
ραα + ρδδ(µ + ch + ω)

r

)

C =
((

β1 + β2
ραα + ρδδ(µ + ch + ω)

r

)
γ − (µ + h + ω)(µ + h + γ)

)
(µ + h)

(2)

Figure 2: Bifurcation graph illustrating the backwards bifurcation.

There are two endemic equilibria in our model. There is a backward bifurcation
for certain parameter values (Figure); however, these parameter values are not bi-
ologically significant, some being two orders of magnitude greater than biologically
reasonable estimates. For biologically significant parameter values we have a single
positive endemic equilibrium (Figure). We did not perform further analysis of this
bifurcation.
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Figure 3: Bifurcation graph using realistic parameter values.

2.5 Parameter Estimation

To investigate the plausible range of parameter values for this model, literature values
were used, when available. For parameter values that could not be estimated in this
manner, reasonable estimates were made that fit the observed behavior of this disease
and agreed with the results of the earlier CWD models.

Parameter V alue Description Units
Λ 0.57 Recruitment rate[3, 7] year−1

β1 1.8− 2.2 Annual infectious contacts per infectious individual year−1

β2 1 · 10−2 Annual infectious contacts per infectious individual year−1

β3 ≤ 1 Annual infectious contacts per infectious individual year−1

β4 ≤ 1 · 10−2 Annual infectious contacts per infectious individual year−1

µ 0.2 Rate of death due to natural causes year−1

h 0.3687 Rate of death due to hunting year−1

ω .6− 1.2 Death rate due to disease[7] year−1

γ .7− 1.3 Rate of leaving the latent class and becoming infectious[3, 7] year−1

c 0.3 Proportion of hunted carcass left in the wild ——
r 0.4 Rate of infectious material removal from the environment year−1

α 3.79 Density of waste produced annually per individual[8, 9] g·km−2·year−1

δ 0.47 Density of biomass per carcass[8, 9] g·km−2

ρα 0.001 Amount of infectious material in waste g−1

ρδ 0.001 Amount of infectious material in carcasses g−1
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Table 2. Parameters

Reported literature values for β were in the range (1, 1.5)[3]. For β1, however, this
range proved to be somewhat small. Changing β1 to a range of (1.5, 2) gave us more
realistic disease dynamics. This discrepancy between infection rates is very likely the
result of having such different models, with our model certainly being less complex.

Experimenting with different parameter values for ρα, ρδ, r, and β2 yielded varied
insights. While different densities of infectious material in the environment resulted
in the expected changes in the disease dynamics, the system was most sensitive to the
chosen value of β2. Indeed, this would be an expected result in light of the notion that
it is individual interactions that drive the disease, which might lead one to believe
that β1 À β2. Therefore, a value roughly two orders of magnitude less than β1 was
chosen for β2.

The constants α and δ are defined as the rates of production of excreta and carcass
biomass per area per individual, respectively. These values were calculated from ap-
proximate values of food intake, body mass, and estimated home range size for mule
deer.[8, 9] Given that deer have variable home-range sizes, the larger of the areas
was used because the deer populations in the Colorado-Wyoming study area exist at
relatively low densities. [4, 9]

Individual interactions are likely the primary force driving the spread of this disease
throughout cervid populations [6]. Based on this assumption, computer simulations
were done where values of ρα and ρδ were varied while fixing other parameter values.

Indeed, values that were used in our simulations vary from the literature values in
some cases, however this is reasonable given the differences between our model and
previous models.

2.6 Computer Simulations

Computer simulations using MatLab were used to further explore certain components
of the preliminary model, the main objectives being to approximate parameter val-
ues, determine the importance of the β3

E
N

I +β4ED terms, and to determine whether
or not proportional growth and death was a satisfactory approximation for this model.

Figures 2, 3, and 4 show that overall population dynamics are not influenced signif-
icantly by the term β3

E
N

I + β4
E
N

D, which increases the rate of exposed individuals
becoming infectious as they come into contact with more sources of infection. As the
figures demonstrate, even a substantial change in β3 and β4 have little influence on
the population dynamics. In addition, and perhaps more importantly, neither term
appears in R0. Given their relative unimportance to the disease dynamics, these
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Figure 4: The effects of varying values of β3 and β4. Population size only.

terms may be omitted from the model without any significant effect, and are there-
fore dropped in our revised model. This of course makes sense, given that relatively
large doses of prions would be needed to increase the present levels within an indi-
vidual to any significant degree.

Figure 5 shows population growth or decline is very sensitive to birth and death rates
in the population. A proportional recruitment rate is most reasonable given the re-
productive capabilities of cervids, and therefore anything more than a proportional
recruitment function seems unreasonable. Indeed, when a slightly more compensatory
model is used the dynamics for the system become much more inclined to stabilize
about some endemic equilibrium values which does not agree with current research.
Therefore, in this case, proportional recruitment appears to be a better model for this
process.

In practice, populations are regulated in part by variable harvesting in the form of
hunting. For the model developed here, this process was not taken into account, but
instead an average rate of h was used. While the resulting system dynamics were still
within the realm of those observed in deer populations, a variable hunting rate as a
function of prior population size may help to further improve the model.
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Figure 5: Population explosion for h = 0.375.

2.7 Preliminary Findings

The original model did not fulfill our expectations and was unable to correctly model
the dynamics of the disease. It did let us find parameter values (listed in Table 2).
The most important estimation that was achieved was the two-orders of magnitude
difference between β1 (deer-to-deer transmission) and β2 (environment-to-deer trans-
mission). The β3 and β4 terms were also found to not contribute to the dynamics of
the disease and, therefore, can be dropped in future models.

The original model used the term D/N (density of prions in the environment per in-
dividual). This was an assumption to allow us to study a constant population model,
and while it could be justified biologically it compromised the accuracy of the model.
In light of the removal of the constant population model, this assumption is no longer
needed and will be removed in further models.

The numerical analysis of the model (constant and non-constant population) showed
that the constant-population assumption does not allow us to study the dynamics of
the disease which result in extinction of the population.
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3 The Revised Model

As a result of the computational analysis we removed the β3 and β4 terms as explained
in 2.8. We also replaced the standard incidence terms for the interaction between
susceptibles and infectious material with mass-action terms. Therefore, we have the
following model.

Figure 6: A diagram of the revised model.

Ṡ = ΛN − (µ + h) S − β1
S

N
I − β2SD

Ė = β1
S

N
I + β2SD − (µ + h + γ)E

İ = γE − (µ + h + ω) I

Ḋ = ρααI + ρδδ (µ + ch + ω) I − rD

It should be noted here that for this model, the same parameter values were used (see
Table 2).

3.1 R0 Calculation From the Disease-Free Equilibrium

The revised model does not have a disease free-equilibrium for a non-constant popu-
lation. Indeed, at (E,I,D)=(0,0,0) we find that

S(t) = eΛ−µ−h
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This shows that the population will either grow exponentially or die out without the
disease. As a result the model does not have a R0 in the usual meaning of the term.
However, under the assumption of a constant population we were able to obtain an
R0 using the next generation operator approach[2]. From this method, we find that
R0 is identical to the basic reproductive number in the first model.

R0 ≡ γβ1

(µ+h+γ)(µ+h+ω)
+

√
( γβ1

(µ+h+γ)(µ+h+ω)
)
2 − 4γβ2(ραα+ρδδ(µ+ch+ω))

r(µ+h+γ)(µ+h+ω)

3.2 Endemic Equilibrium

Additionally, we were able to calculate the endemic equilibrium for a variable popu-
lation:

S∞ =
β1(µ + h + γ)(µω(h + µ + ω) + β1(λ− µ− h− ω)) + β1λω

γωβ2
ραα+ρδδ(µ+ch+ω)

r

I∞ =
(λ− µ− h)(ωλβ1γ − (µ + h + γ)(µ + h + ω)((µ + h)ω + β1(λ− µ− h)))

((λ− µ− h)(µ + h + ω)(µ + h + γ)− γλω)β2ω
ραα+ρδδ(µ+ch+ω)

r

E∞ =
(µ + h + ω)(λ− µ− h)(ωλβ1γ − (µ + h + γ)(µ + h + ω)((µ + h)ω + β1(λ− µ− h)))

((λ− µ− h)(µ + h + ω)(µ + h + γ)− γλω)β2ωγ ραα+ρδδ(µ+ch+ω)
r

D∞ =
(λ− µ− h)(ωλβ1γ − (µ + h + γ)(µ + h + ω)((µ + h)ω + β1(λ− µ− h)))

((λ− µ− h)(µ + h + ω)(µ + h + γ)− γλω)β2ω

N∞ =
(ωλβ1γ − (µ + h + γ)(µ + h + ω)((µ + h)ω + β1(λ− µ− h)))

((λ− µ− h)(µ + h + ω)(µ + h + γ)− γλω)β2
ραα+ρδδ(µ+ch+ω)

r

(3)

Consider the case where Λ < µ + h. Observe that N∞ = I∞ ω
Λ−µ−h

. Therefore, in this
case I∞ and N∞ would have opposite signs. Biologically, it does not make sense to
have negative population values, thus they will not be considered.
Now, let us consider the case where Λ > µ + h. Then,

I∞, E∞, D∞, N∞ > 0

which implies that

(ωλβ1γ − (µ + h + γ)(µ + h + ω)((µ + h)ω + β1(λ− µ− h)))

((λ− µ− h)(µ + h + ω)(µ + h + γ)− γλω)
> 0 (4)

In order for this fraction to be greater than 0, it follows that both the numerator and
denominator must have the same sign. For the case where both are positive, we have

(ωλβ1γ − (µ + h + γ)(µ + h + ω)((µ + h)ω + β1(λ− µ− h))) > 0 (5)

((λ− µ− h)(µ + h + ω)(µ + h + γ)− γλω) > 0 (6)
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We see that equation 5 implies that

(µ + h + γ)(µ + h + ω)(µ + h)ω + β1(µ + h + γ)(µ + h + ω)(λ− µ− h)) < ωλβ1γ (7)

From equation 6 we see that multiplying through by β1 yields the inequality

β1(λ− µ− h)(µ + h + ω)(µ + h + γ) > β1γλω (8)

Thus, from 7 and 8 it follows that

(µ + h + γ)(µ + h + ω)(µ + h)ω + β1(µ + h + γ)(µ + h + ω)(λ− µ− h)) <
β1(λ− µ− h)(µ + h + ω)(µ + h + γ)

This implies that (µ + h + γ)(µ + h + ω)(µ + h)ω < 0 which is a contradiction. Thus,
it follows that 5 and 6 must be negative. Therefore, we reach the following conditions
for the endemic equilibrium:

(ωλβ1γ − (µ + h + γ)(µ + h + ω)((µ + h)ω + β1(λ− µ− h))) < 0

((λ− µ− h)(µ + h + ω)(µ + h + γ)− γλω) < 0

Λ > µ + h

These conditions are independant of each other, so none of them can be disregarded.
Numerical analysis has shown that the equilibrium is locally stable and it is positive
only if these conditions are met. (No further stability analysis was conducted at this
time).

3.3 Computer Simulations

The main purpose of running simulations was to show that the model still behaves
in accordance with the observed disease dynamics, given biologically-reasonable pa-
rameter values.

The growth rate of mule deer has been predicted at 6 % over 50 years without CWD.
Figure 6 shows that this is indeed true for our parameter values. The behaviors of
the disease after a 50-100 year period are not important since by then there would be
changes in the deer population and/or their environment:

The influence of the environment on the disease is important when the disease is
beginning in a population, however it is the deer-to-deer infections that drive the
model. A lack of this would slow down the spread of the disease, but would not stop
it, given realistic parameter values.
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Figure 7: 6% population growth for h = 0.3687, µ = 0.2, Λ = 0.57.

Figure 7 shows the population dying out within 50 years, which agrees with current,
more complex models. The value of β has to be larger than current estimates to
achieve this behavior, which may be due to the differences between this model and
other models. In addition, other parameters may have been underestimated.

3.4 Preliminary Findings

The revised model was altered to further simplify the first model and more accurately
model the chronic wasting disease. The β3 and β4 terms were discarded from the re-
vised model and the standard incidence terms for interactions between individuals
and the density of infectious material in the environment were replaced with mass-
action terms. The population dies out in 25 to 40 years based on realistic parameter
values, which agrees with other research. Having constructed a model that approx-
imates the disease dynamics within a single given deer population reasonably well,
the first aim of this investigation has been achieved.

4 The Two-Patch Model

We look at a two-patch model to simiulate two interacting deer populations. In this
model, individual deer populations interact by two means. The first is from inter-
actions between deer at the borders of the two populations. The second is through
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Figure 8: The population dies out within 25 to 40 years

the migration of deer between the two populations. We assume that the two pop-
ulations have separate S, E, I, and D classes and that individuals from each of the
three population classes migrate at the same rate (τ1 and τ2, respectively) regardless
of their disease-state. We further assume that border interactions are dependent on
the percentage of the adjacent population that is infected (I2/N2), the size of the
susceptible population (S1, and a force of infection for border interactions (β3 and
β6). We also assume that both β3 and β6 are small given the relatively lower number
of interactions between individuals in two different populations.
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Figure 9: Diagram of the two-patch model.

dS1

dt
= Λ1N1 + τ2S2 −

(
β1

I1

N1
+ β2D1 + µ1 + h1 + τ1 + β3

I2

N2

)
S1

dE1

dt
=

(
β1

I1

N1
+ β2D1 + β3

I2

N2

)
S1 + τ2E2 − (µ1 + h1 + γ1 + τ1)E1

dI1

dt
= γE1 + τ2I2 − (µ1 + h1 + ω1 + τ1)I1

dD1

dt
= (ρα1α1 + ρδ1δ1(µ1 + c1h1 + ω1))I1 − r1D1

dS2

dt
= Λ2N2 + τ1S1 −

(
β4

I2

N2
+ β5D1 + β6

I1

N1
+ µ2 + h2 + τ2

)
S2

dE2

dt
=

(
β4

I2

N2
+ β5D1 + β6

I1

N1

)
S2 + τ1E1 − (µ2 + h2 + γ2 + τ2)E2

dI2

dt
= γ2E2 + τ1I1 − (µ2 + h2 + ω2 + τ2)I2

dD2

dt
= (ρα2α2 + ρδ2δ2(µ2 + c2h2 + ω2))I2 − r2D2

The model does not have a disease-free equilibrium for a non-constant population
and, as such, it does not have an R0. In this case, no approximation was made to
calculate R0 for this model at the disease-free equilibrium.

The model appears to have a number of equilibria, however no further analytical
search for equilibria was conducted at this time.
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4.1 Parameters

As in the previous models, the same parameter values were used with the addition of
the rates of migration (τi) and the infectious force between the two populations (β3

and β6).

Parm. V alue Description Units
Λi 0.57 Recruitment rate for patch i[3, 7] year−1

β1 1.8− 2.2 Annual infectious contacts per infectious individual in a population year−1

β2 1 · 10−2 Annual infectious contacts per infectious material year−1

β3 1 · 10−2 Annual infectious contacts per infectious individual between populations year−1

µi 0.2 Rate of death due to natural causes in patch i year−1

hi 0.3687 Rate of death due to hunting in patch i year−1

ωi .6− 1.2 Death rate due to disease in patch i[7] year−1

γi .7− 1.3 Rate of leaving the latent class and becoming infectious in patch i[3, 7] years−1

ci 0.3 Proportion of hunted carcass left in the wild in patch i ——
ri 0.4 Rate of infectious material removal from the environment in patch i year−1

αi 3.79 Density of waste produced annually per individual in patch i[8, 9] g·km−2·year−1

δi 0.47 Density of biomass per carcass in patch i[8, 9] g·km−2

ραi 0.001 Amount of infectious material in waste in patch i g−1

ρδi 0.001 Amount of infectious material in carcasses in patch i g−1

τi 0− 0.2 Annual rate of migration out of patch i year−1

Table 3. Parameters for two-patch model.

4.2 Computer Simulations
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Figure 10: The two-patch model with each population having identical parameters
yields no change in the disease progression.
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Computer simulations using MatLab were run to further explore certain components
of the model. The objectives were primarily to investigate the disease dynamics
within a population with and without the interactions. The results are given for each
population with both a one- and two-patch model. As can be seen in Figure 8, the
top two graphs represent two separate individual populations, while the bottom two
graphs are those same two populations after they are coupled via the two-patch model
presented above.

Figure 10 illustrates the case where two populations exist in proximity to one another
and one of the populations has the disease. In the disease-free population we see that
interaction with the second population causes infection, resulting in the population
quickly acquiring the disease. As a result, one could conjecture that the deer popu-
lations would die out around the same time in the adjacent area, even if the disease
began later in some areas (the disease in the second area started causing population
death 10 years later than the first one, however the population died out around the
same time).
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Figure 11: In a one-patch model the second population would survive, however due
to the adjacent population with a higher infective force, both populations die out.

4.3 Preliminary Findings

The two-patch model adds a number of interesting dynamics to the population. Some
of these dynamics show that the deer population may survive using a two-patch model
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Figure 12: The infection of one population leads to a rapid infection of an adjacent
population.

while not surviving as long with a one-patch model due to migration. Further com-
putational analysis shows that endemic equilibria likely occur with a very low disease
rate in some cases. Indeed, we see that in the case of two populations interacting, a
patch which would survive alone may die off due to a adjacent patch which has the
disease.

5 Summary

From this investigation, we were able to meet our two main goals. The first was to
construct a reasonable yet simple model of chronic wasting disease in deer populations
and to incorporate the effects of diseased material in the environment. The second
was to investigate how two interacting populations of deer would effect the dynamics
of the disease in each population.

In constructing a mathematical model of CWD the deer population was thought of
as being divided into susceptible (S), exposed but not infectious (E), and infectious
classes (I). In addition, the density of infectious material in the environment (D) pro-
duced by infectious individuals was also taken into account and incorporated into the
model. This model was then studied and refined to yield our final disease model.

Following the construction of the disease model, two of these single-patch models were
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coupled together via migration between populations and interaction at the border be-
tween populations. This two-patch model was then investigated using computational
methods to gain some insight into the impact of population interactions on the dy-
namics of the disease in each population. It was observed that population interactions
do little to increase the health of a population with the disease (i.e., decreasing the
severity of the epidemic) for reasonable parameter values, but instead serve primarily
to spread the disease from the population with the higher prevelance to the healthier
population. While these results are preliminary and more analysis of this disease
model should be done, this study serves to illustrate that a simple disease model of
CWD can be used to obtain useful results.

6 Future Work

We are planning to look at the two-patch model more in-depth, including analytical
analysis of the endemic equilibrium and stability analysis. In addition, numerical
analysis should be performed on three- and four-patch models to see if there are any
changes in the dynamics. For the one-patch model, analytical analysis and endemic
quilibrium stability analysis require completion.
There are many aspects of the dynamics of chronic wasting disease that merit further
attention. For example, multi-patch and spatial models, as well discrete or stochastic
models could be studied. Additionally, interactions between different cervid species
or models involving captive populations may be insightful. It may also be beneficial
to include aspects such as seasonal birth and hunting, as well as age and gender struc-
tures. Hopefully, further research employing mathematical models will be utilized for
investigating those measures proposed for controlling the spread of chronic wasting
disease.
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A Appendix: MatLab Code

A.1 CallModel1.m

function CallModel1();
%This calls the CWD model with constant population and four betas using the
%parameters defined below

x0=[950 25 25 .1]; % Initial values of [S E I D]
tspan=100; % Time Period to look at (time units are years)

% Parameter Values:
lambda=.57; % Proportional birth rate
h=0.39; % Hunting death rate
r=.6; % rate of decay of infectious material
rhoa=.001; % Density of infectious material in waste per gram per area
rhod=.001; % Density of infectious material in carcass
beta1=0; % Infection rate of susceptible-environment interaction
beta2=.0; % Infection rate of susceptible-infective interaction < 1.45
c=.1; % proportion of carcass left in field from hunt
gamma=1.15; % 1/time spent in exposed class
omega=.65; % Disease death rate (infecteds only)
mu=0.2; % Natural death rate
alpha=3.79; % Infectious material made per I individual per year
delta=.47; % Infectious material made per avg I death per year
beta3=.0; % Rate at which increased contact with infectious individuals

%speeds up travel into infectious class
beta4=.0; % Rate at which increased contact with infectious material

%speeds up travel into infectious class

[t,x]=ode45(’Model1’,tspan,x0,[],lambda,beta1,beta2,beta3,beta4,mu,h,omega,gamma,
c,r,delta,alpha,rhoa,rhod);

%Population totals
hold on
plot(t,x(:,1),’--g’); %Susceptible population
plot(t,x(:,2),’-.b’); %Exposed population
plot(t,x(:,3),’:r’); %Infectious population
plot(t,x(:,1)+x(:,2)+x(:,3),’k’); %Total population

xlabel(’Time (years)’);
ylabel(’Number of Individuals’);
legend(’Susceptible’,’Exposed’,’Infectious’,’Total Population’);
title([’Beta1 =’,num2str(beta1),’,Beta2 =’,num2str(beta2),’,Beta3 =’,num2str(beta3),’,Beta4
=’,num2str(beta4),’,lambda-mu-h (effective reproduction number)=’,num2str(lambda-mu-h),’’]);
hold off

%Population percentages
figure(2)
hold on
plot(t,x(:,1)./(x(:,1)+x(:,2)+x(:,3)),’--g’); %Susceptible population percentage
plot(t,x(:,2)./(x(:,1)+x(:,2)+x(:,3)),’-.’); %Exposed population percentage
plot(t,x(:,3)./(x(:,1)+x(:,2)+x(:,3)),’:r’); %Infectious population percentage
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xlabel(’Time (years)’);
ylabel(’Percent of Individuals’);
legend(’Susceptible’,’Exposed’,’Infectious’);
title([’Beta1 =’,num2str(beta1),’,Beta2 =’,num2str(beta2),’,Beta3 =’,num2str(beta3),’,Beta4
=’,num2str(beta4),’,lambda-mu-h (effective reproduction number)=’,num2str(lambda-mu-h),’’]);
%title([’Lambda =’,num2str(lambda),’,Beta1 =’,num2str(beta1),’,Beta2 =’,num2str(beta2),’,
Beta3 =’,num2str(beta3),’,Beta4=’,num2str(beta4),’,mu =’,num2str(mu),’,h =’,num2str(h),’,
gamma =’,num2str(gamma),’,omega =’,num2str(omega),’,c=’,num2str(c),’,r =’,num2str(r),’,alpha
=’,num2str(alpha),’,delta =’,num2str(delta),’,rhoa =’,num2str(rhoa),’,rhod =’,num2str(rhod),
’’]);
hold off

A.2 CallModel2.m

function CallModel2();
%ecstasyode solves ’connecto’ function (ODE system) and plots it...
%
% Some param values...
% cwdode(x0,tf,tspan,v1,v2,v3,beta1,beta2,beta3,beta4,mu,h,omega,gamma,c,r,delta,alpha,
lambda)
% cwdode([400,0,1,0],50,100,1,2,3,1.1,.04,.3,.01,.1,.05,.69,1,.5,.1,.04,.05,.16)
% v1,v2,v3-if true (1) then Rc,q,Ro will be put in the title respectively.

x0=[850 75 75 .1]; % Initial values of [S E I D]
tspan=100; % Time Period to look at (time units are years)

% Parameter Values:
lambda=.57; % Proportional birth rate
h=0.3687; % Hunting death rate
r=.4; % rate of decay of infectious material
rhoa=.001; % Density of infectious material in waste per gram per area
rhod=.001; % Density of infectious material in carcass
beta1=1.85; % Infection rate of susceptible-environment interaction
beta2=.01; % Infection rate of susceptible-infective interaction < 1.45
c=.3; % proportion of carcass left in field from hunt
gamma=1.15; % 1/time spent in exposed class
omega=.65; % Disease death rate (infecteds only)
mu=0.2; % Natural death rate
alpha=3.79; % Infectious material made per I individual per year
delta=.47; % Infectious material made per avg I death per year

% Computationally solves system of differential equations
% with the above parameter values and initial conditions.
[t,x]=ode45(’Model2’,tspan,x0,[],lambda,beta1,beta2,mu,h,omega,gamma,c,r,delta,alpha,
rhoa,rhod);

%Population totals
subplot(211), hold on
plot(t,x(:,1),’--g’); %Susceptible population
plot(t,x(:,2),’-.b’); %Exposed population
plot(t,x(:,3),’:r’); %Infectious population
plot(t,x(:,.4),’.k’); %Infectious population
plot(t,x(:,1)+x(:,2)+x(:,3),’k’); %Total population
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xlabel([’Time (years) -’,’- Beta1 =’,num2str(beta1)]);
ylabel(’Number of Individuals’);
legend(’Susceptible’,’Exposed’,’Infectious’,’Total Population’);
title(’Preliminary Model With Non-constant Population’);
hold off

%Population percentages
subplot(212), hold on
plot(t,x(:,1)./(x(:,1)+x(:,2)+x(:,3)),’--g’); %Susceptible population percentage
plot(t,x(:,2)./(x(:,1)+x(:,2)+x(:,3)),’-.b’); %Exposed population percentage
plot(t,x(:,3)./(x(:,1)+x(:,2)+x(:,3)),’:r’); %Infectious population percentage

xlabel([’Time (years)’]);
ylabel(’Percent of Individuals’);
legend(’Susceptible’,’Exposed’,’Infectious’);
%title([’Lambda =’,num2str(lambda),’,Beta1 =’,num2str(beta1),’,Beta2 =’,num2str(beta2),
’,mu =’,num2str(mu),’,h =’,num2str(h),’,gamma =’,num2str(gamma),’,omega =’,num2str(omega)
,’,c =’,num2str(c),’,r =’,num2str(r),’,alpha =’,num2str(alpha),’,delta =’,num2str(delta)
,’,rhoa =’,num2str(rhoa),’,rhod =’,num2str(rhod),’’]);
hold off

A.3 CallModel3.m

function CallModel3();
%Calls the two patch CWD model and evaluates it for the parameters given below:

x0=[850 75 75 .1 850 75 75 .1]; % Initial values of [S E I D]
tspan=1000; % Time Period to look at.

% Parameter values for patch 1 deer: (time units are years)
lambda=.57 % Proportional birth rate
h=0.3687 % Hunting death rate
r=.6 % rate of decay of infectious material
rhod=.001 % Density of infectious material in waste per gram per area
rhoa=.001 % Density of infectious material in a carcass per area
beta1=1.85 % Infection rate of susceptible-infective interaction
betab1=.01 % Infection rate of susceptible-infectious material interaction
betac1=.001 % Infection rate of interactions with other patch
c=.1 % proportion of carcass left in field from hunt
gamma=1.15 % Rate of progression from exposed to infectious
omega=.65 % Disease death rate (infecteds only)
mu=0.2 % Natural death rate
tau=.01 % Migration rate
alpha=2.53 % Infectious material made per I individual per year
delta=.315 % Infectious material made per avg I death per year

% Parameter values for patch 2 Deer:
lambda2=.57 % Proportional birth rate
h2=0.3687 % Hunting death rate
r2=1 % rate of decay of infectious material
rhod2=.0001 % Density of infectious material in waste per gram per area
rhoa2=.0001 % Density of infectious material in a carcass per area
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beta2=.5 % Infection rate of susceptible-infective interaction
betab2=.01 % Infection rate of susceptible-infectious material interaction
betac2=.001 % Infection rate of interactions with other patch
c2=.1 % proportion of carcass left in field from hunt
gamma2=1 % Rate of progression from exposed to infectious
omega2=.5 % Disease death rate (infecteds only)
mu2=0.2 % Natural death rate
tau2=.01 % Migration rate
alpha2=2.53 % Infectious waste made per I individual per year
delta2=.315 % Infectious material made per avg I death per year

[t,x]=ode45(’Model3’,tspan,x0,[],beta1,betab1,betac1,mu,h,tau,omega,gamma,c,r,delta,alpha,
lambda,rhoa,rhod,beta2,betab2,betac2,mu2,h2,tau2,omega2,gamma2,c2,r2,delta2,alpha2,lambda2,
rhoa2,rhod2);

[tt,xx]=ode45(’Model2’,tspan,x0(1:4),[],lambda,beta1,betab1,mu,h,omega,gamma,c,r,delta,alpha,
rhoa,rhod);
% Plot of patch one:

subplot (221);
hold on
plot(tt,xx(:,1),’--g’);
plot(tt,xx(:,2),’-.b’);
plot(tt,xx(:,3),’:r’);
plot(tt,xx(:,4),’k’);
plot(tt,xx(:,1)+xx(:,2)+xx(:,3),’k’);
hold off

xlabel(’Time (years)’);
ylabel(’Number of Individuals’);
legend(’Susceptible’,’Exposed’,’Infectious’,’Infectious Biomass’,’Total Population’);
title(’Population 1 using a one-patch model’)%[’Beta1 = ’,num2str(beta1),’, Beta2 = ’,
num2str(beta2),’’]);

hold off
subplot (223);
hold on
plot(t,x(:,1),’--g’);
plot(t,x(:,2),’-.b’);
plot(t,x(:,3),’:r’);
plot(t,x(:,4),’k’);
plot(t,x(:,1)+x(:,2)+x(:,3),’k’);
hold off

% Title, legend and axis labels:
xlabel(’Time (years)’);
ylabel(’Number of Individuals’);
legend(’Susceptible’,’Exposed’,’Infectious’,’Infectious Biomass’,’Total Population’);
title(’Population 1 using a two-patch model’)%[’Beta1 = ’,num2str(beta1),’, Beta2 = ’,
num2str(beta2),’’]);
hold off

[ttt,xxx]=ode45(’Model2’,tspan,x0(5:8),[],lambda2,beta2,betab2,mu2,h2,omega2,gamma2,c2,
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r2,delta2,alpha2,rhoa2,rhod2);
% Plot of patch two:
subplot (222);
hold on
plot(ttt,xxx(:,1),’--g’);
plot(ttt,xxx(:,2),’-.b’);
plot(ttt,xxx(:,3),’:r’);
plot(ttt,xxx(:,4),’k’);
plot(ttt,xxx(:,1)+xxx(:,2)+xxx(:,3),’k’);
hold off

xlabel(’Time (years)’);
ylabel(’Number of Individuals’);
legend(’Susceptible’,’Exposed’,’Infectious’,’Infectious Biomass’,’Total Population’);
title(’Population 2 using a one-patch model’)
num2str(beta2),’’]);
hold off

subplot (224);
hold on
plot(t,x(:,5),’--g’);
plot(t,x(:,6),’-.b’);
plot(t,x(:,7),’:r’);
plot(t,x(:,4),’k’);
plot(t,x(:,5)+x(:,6)+x(:,7),’k’);
hold off

% Title, legend and axis labels:
xlabel(’Time (years)’);
ylabel(’Number of Individuals’);
legend(’Susceptible’,’Exposed’,’Infectious’,’Infectious Biomass’,’Total Population’);
title(’Population 2 using a two-patch model’)
num2str(beta2),’’]);
hold off
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