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Abstract

In this work, we analyze the spread of Foot-and-Mouth Disease (FMD) in
Uruguay using three different tools: a deterministic model, a continuous-time
Markov chain stochastic model and an explicit stochastic simulation model.
The deterministic model, a system of nonlinear ordinary differential equations,
uses the cow as the basic epidemiological unit. We compute the basic repro-
ductive number, R0, for a system that differentiates between beef and dairy
populations of cows. R0 is used to study FMD persistence and control. In the
stochastic model, the basic epidemiological unit is the farm. The impact of a
policy that quarantines farms is explored. The conditions for quarantine rate
that eradicate the disease are computed. The stochastic simulation model takes
into account the coordinates of farms, the traffic between farms, and the type
of farm (dairy or beef). Simulations of the FMD epidemic are based on data
from Uruguay, where we try to predict the regions to quarantine for a viable
national control measure in response to an index case.
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1 Introduction

FMD is caused by a small (23-nm) single-stranded RNA virus, and is a member of
the genus Apthovirus in the family Picornaviridae. This disease is not harmful to
humans, but can affect cattle, sheep, goats, swine, and other animals. Although it is
not usually lethal, FMD causes fever, lesions, and erosions on the tongue, lips, and
between hooves in infected animals. It leaves cattle debilitated for several months,
causing severe loses in meat and milk production, and annually could costs 50 billion
US dollars in lost productivity and worldwide export restrictions. It is for this reason
that an FMD epidemic can create severe economic consequences to infected regions,
and it is for this reason that this work focuses on the spread of FMD in populations
of cattle in Uruguay.

The disease can spread very rapidly, and can be transmitted by infected animals
as well as through contact with contaminated vehicles, animal holding facilities, food,
water, clothes, and footwear. Although there are vaccines available for FMD, a pre-
ventative vaccination policy is useless because immunity to one type of the virus does
not protect against other strains of the virus (there are at least seven types, with
many subtypes) and vaccines are only effective for one year. Efforts to prevent FMD
spread can include regulatory measures against countries with FMD outbreaks, quar-
antining infected areas, and massive slaughtering of infected animals.

Even strict regulatory measures are sometimes insufficient to control the FMD
spread, as evidenced by a recent Uruguayan epidemic. In this epidemic an index
case appeared on April 23, 2001 and quarantine and slaughter policies were quickly
implemented in the regions surrounding the source of infection. These policies were
insufficient to contain the disease, and Uruguay resorted to an expensive mass vac-
cination program that eventually ended the epidemic. The outbreak caused huge
economic losses because beef and dairy exports to the United States were halted.
The goal of this work is to mathematically model how FMD spread depends on con-
trol measures, and to formulate theoretical disease response strategies that could
contain future epidemics.

We present three approaches to model the FMD spread: a deterministic model,
a stochastic model, and a computer simulation program. In moving between these
models we make different tradeoffs concerning how much mathematical tractability
to give up for biologically realistic representations. In the deterministic model we
derive an expression for the basic reproductive number for the FMD epidemic, and
we determine how a more efficient screening process could reduce the disease impact.
With the stochastic model, we formulate the minimum rate at which quarantine of
farms is necessary to control FMD. This rate could be useful to policymakers who
could more effectively eliminate the disease without spending too much money. The
computer simulation model solves the practical problem of partitioning Uruguay into
regions where stamping out could be an effective enough response to an outbreak so
that national vaccination might be unnecessary. The three models above illustrate
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how the FMD epidemic can be tackled by determining how much analytical tractabil-
ity of a model to give up in order to incorporate realistic epidemiological dynamics.

2 Methodology

2.1 Deterministic Model

This model considers two coupled patches representing a dairy farm and a beef farm.
Let, Si, Li, Ii, Qi, and QL

i represent the suceptible, latent, infectious, quarentine
suceptible, and quarentine latent classes of the system for the ith patch, respectively.
Transmition is modeled based on the following nonlinear system of ordinary differen-
tial equations:

for DairyPatch:

dS1

dt
= τ1 − β1I1

S1

N1

− αS1 − µ1S1 (1)

dL1

dt
= β1I1

S1

N1

− γL1 − αL1 − µ1L1 + δL2 − εL1 (2)

dI1

dt
= γL1 − (µ1 + d)I1 (3)

dQ1

dt
= αS1 − µ1Q1 (4)

dQL
1

dt
= αL1 − (µ1 + d)QL

1 (5)

dN1

dt
= τ1 − (Q1 + QL

1 + S1 + L1 + I1)µ1 − (I1 + QL
1 )d + δL2 − εL1 (6)

for BeefPatch:

dS2

dt
= τ2 − β2I2

S2

N2
− αS2 − µ2S2 (7)

dL2

dt
= β2I2

S2

N2
− γL2 − αL2 − µ2L2 − δL2 + εL1 (8)

dI2

dt
= γL2 − (µ2 + d)I2 (9)

dQ2

dt
= αS2 − µ2Q2 (10)

dQL
2

dt
= αL2 − (µ2 + d)QL

2 (11)
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dN2

dt
= τ2 − (Q2 + QL

2 + S2 + L2 + I2)µ2 − (I2 + QL
2 )d − δL2 + εL1 (12)

where Ni gives us the population size in the patches and is given by the following
equations:

N1 = S1 + L1 + I1 + Q1 + QL
1

N2 = S2 + L2 + I2 + Q2 + QL
2

for i = 1 in the dairy patch, and i = 2 in the beef patch
Here the coupling per-capita rates ε and δ are used just to phenomenologically connect
both populations. There are more realistic methods for doing this but the resulting
model complexity does not seem to provide additional insight.

Table 1: List of Parameters

Parameters Description
µ1 natural mortatility rate in the dairy patch
µ2 natural mortatility rate in the beef patch
τ1 recruitement rate of the dairy patch
τ2 recruitement rate of the beef patch
β1 contact rate between infectious and susceptible farms in the dairy patch
β2 contact rate between infectious and susceptible farms in the beef patch
γ1 rate at which latent farms show symptoms in the dairy patch
γ2 rate at which latent farms show symptoms in the beef patch
d rate at which farms are removed from the system
ε coupling rate from the dairy patch to the beef patch
δ coupling rate from the beef patch to the dairy patch
α screening and quarantine rate for both patches
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2.1.1 The Model

We will study how to control the spread of the disease in animal to animal transmi-
tion. By solving the ODE system, we hope to calculate R0, needed for a biological
interpretation, and identify strategies for controlling the FMD epidemic. We assume
a migration rate δ from dairy to beef cows and a migration rate ε from beef to dairy
cows. Because this is not likely to happen in real life, rates δ and ε are very small.
We assume that quarantined cows cannot get infected and cannot infect other cows.

In equations (1) and (7) modeling the rate of change in the susceptible class per
day, τi is the number of new dairy and beef cows per day. The term βiIi

Si

Ni
is the

number of contacts in a day between infected and susceptible cows. The parameter
α represents the rate at which cows are “screened” and quarantined in a day.

Equations (2) and (8) model the rate of change of the latent class per day. In this
class, cows are infected but not infectious, and they move to the infectious class at
rate γ. Because latent cows show no symptoms, they cannot be distinguished from
susceptible cattle, and are also quarantined at rate α.

Equations (3) and (9) model the rate of change in the infected class. Infected cows
can be symptomatic, thereby causing the disease spread. One FMD control method
is to kill infected cattle at per-capita rate d.

The decision of whose to quarantine the cows will be based on screening for latent
infections. Equations (4) and (10), we show the rate of change in the quarantined
susceptible population. Equations (5) and (11) model the change in the quarantined
latent class. The cows reach that class and stay there until they are killed at the
same rate as cattle in the infectious class. The difference is that members of this class
cannot infect the susceptible cows, unlike the infectious class. The rate at which a
country can test and quarantine is given by α. Finally, the classes have a natural
death rate of µ1 for dairy cows and µ2 for beef cows. Also, equations (6) and (12)
show the change in the number of dairy and beef cows per day. The population is
obviously not constant (a common situation) for herds due to FMD control practices.
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Figure 1: Deterministic FMD Model

2.1.2 Model Reduction

In order to simplify the process of calculating the disease free equilibria and the basic
reproductive number (R0) we set equations (3) and (9)=0

This leads to:

I1 = γ L1

µ1+d
and I2 = γ L2

µ2+d

After substituting I1 and I2, the following system is obtained for the DairyPatch:

dS1

dt
= τ1 − β1L1

γ

µ1 + d

S1

N1
− α + µ1S1 (13)

dL1

dt
=

γ

µ1 + d
β1L1

S1

N1
− (µ1 + γ + α + ε)L1 + δL2 (14)

dQ1

dt
= αS1 − µ1Q1 (15)

dQL
1

dt
= αL1 − (µ1 + d)QL

1 (16)

Likewise, the following system of equations is obtained for the BeefPatch:
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dS2

dt
= τ2 − β2L2

γ

µ2 + d

S2

N2
− α + µ2S2 (17)

dL2

dt
=

γ

µ2 + d
β2L2

S2

N2
− (µ2 + γ + α + δ)L2 + εL1 (18)

dQ2

dt
= αS2 − µ2Q2 (19)

dQL
2

dt
= αL2 − (µ2 + d)QL

2 (20)

2.1.3 Equilibrium Points

The infection-free state has the coordinates I∗
1 = I∗

2 = L∗
1 = L∗

2 = QL∗
1 = QL∗

2 = 0

and,

S∗
1 =

τ1

µ1 + α

S∗
2 =

τ2

µ2 + α

Q∗
1 =

α

µ1

Q∗
2 =

α

µ2

2.1.4 Stability of the equilibrium points

The stability of the infection-free equilibrium points is determinated by the eigenval-
ues of the Jacobian matrix at S∗

1 , S
∗
2 , Q

∗
1, Q

∗
2, 0, 0, 0, 0. We also introduce the following

notation.

C1 =
γβ1S1

(µ1 + d)(S1 + Q1)

∆1 = µ1 + γ + α + ε

C2 =
γβ2S2

(µ2 + d)(S2 + Q2)

∆1 = µ2 + γ + α + ε

Then the Jacobian at this equilibrium becomes:
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J =




−(µ1 + α) 0 0 0 −β1S1

(µ1+d)(S1+Q1)
0 0 0

0 −(µ2 + α) 0 0 0 γ
µ2+d

0 0

α 0 −µ1 0 0 0 0 0
0 α 0 −µ2 0 0 0 0
0 0 0 0 C1 − ∆1 δ 0 0
0 0 0 0 ε C2 − ∆2 0 0
0 0 0 0 α 0 −(µ1 + d) 0
0 0 0 0 0 α 0 −(µ2 + d)




:The six negative eigenvalues are
eigenvalues = −(µ1 + d),−(µ2 + d),−µ1,−µ2,−(µ1 + d),−(µ2 + d)

Adittional eigenvalues are computed based on the reduced Jacobian below:

J =

(
C1 − ∆1 δ

ε C2 − ∆2

)

The characteristic equation is:

λ2 − [(C1 − ∆1) + (C2 + ∆2)]λ + (C1 − ∆1)(C2 + ∆2) − δε

The disease-free equilibrium is if the trace is negative and the determinant positive
(unstable otherwise).

(C1 − ∆1)(C2 − ∆2) > 0

(C1 − ∆1) + (C2 − ∆2) < 0

(C1 − ∆1)(C2 − ∆2) > δε

C1 − ∆1 = max{δ, ε}
C2 − ∆2 = max{δ, ε}

We define

Ri
0 =

Ci

∆i

as the reproductive number in patch i.
If both Ri

0 < 1 then the infectious-free is stable otherwise is unstable and

R0 ≡ max{Ri
0}

for i=1,2.
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Substituting, we get (Explicit expression):

Ri
0 = βi

1

µi + δ

S∗
i

Si + Q∗
i

γ

µi + γ + α + φ

where,

βi = contact rate in patch i

1
µi+δ

= average infectious period in patch i

S∗
i

Si+Q∗
i

= proportion of suceptible in patch i

γ
µi+γ+α+φi

= proportion of cows that become infected in patch i

φ = ε if i = 1 or δ if i = 2

We clearly can see that if α is large enough, the disease will not spread. As α
increases Si

Si+Qi
decreases, as well the proportion of cows that become infected. Conse-

quently, screening may be useful in control of an FMD epidemic because the disease
could not spread fast enough to become endemic if α were increased to the point
where R0 < 1. In conclusion, an effective method of screening may save considerable
time and money in future FMD outbreaks.

2.1.5 Stochastic Model

In this section we develop a stochastic model for the FMD epidemics. The goal is
to derive a mathematical expression for an “effective” quarantine rate. Such a rate
would help policy decision makers who must decide how stringent the controls should
be on animal movement, human transportation, and agricultural commerce during
an FMD outbreak. The basic epidemiological units in the model are farms that can
be susceptible (S), latent (L), infectious (I), quarantined (Q) or removed (R). A sus-
ceptible farm is one in which all livestock do not have the virus but can potentially
become infected. A latent farm contains asymptomatic livestock that carry the virus
but cannot transmit it. Infectious farms contain animals that passed through the
latent state and are now infected. Quarantined farms are farms that have restricted
contact with other farms, and are thus less prone to becoming infected. In our model,
quarantined farms have a reduced contact rate with infectious farms by a fraction f,
and we assume that an infectious quarantined farm cannot infect other farms. Re-
moved farms are farms where all livestock were found in the infectious state and were
subsequently slaughtered. Quarantining starts to take place in both susceptible and
latent farms because in the latter, farmers are not aware of the disease presence.
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The parameters in our model are presented in Table 2 below. All rates are taken to
be parameters of exponentially distributed times for state transitions, and the model
assumes random mixing:

Table 2: List of Parameters

Parameters Description
λ contact rate, i.e, the rate at which a farm sends biological, active material

to other farms
θ quarantine rate, i.e., the rate at which farmers become aware of the dis-

ease and start applying restrictions to traffic in and out their farms
γ−1 average duration of the latent state
α removal rate, i.e., the rate at which a farm is removed once it is found to

be infectious
f fraction in which the contact rate is reduced for quarantined farms, 0 ≤

f ≤ 1

We concentrate the mathematical analysis on the calculation of Ro and its depen-
dence on measures that can be controlled, specifically the quarantine rate. We notice
that as soon as the epidemic starts, farmers begin to apply quarantine measures, and
thus the average number of secondary infections produced by an infected farm will
begin to change. We first derive an expression for the average number of infections
caused by an infected farm as a function of the current number of infected farms,
maximize its value and use this as R0. We apply the method of Hernández [2] for the
calculation of R0.

2.1.6 Calculation of R0

According to Hernández [2] we have to divide the possible states of farms into active
infectious, passive infectious and all other states. Hernández’s definition implies that
farms are in an active infectious state if they can produce new infections through
direct contact, and in a passive infectious state if they can reach an active infectious
state without secondary infection. In our model, the only active infectious farms are
those in state I, whereas the passive infectious farms are those in state L. All other
states are in the class ∆. The state-depent matrix of transition probabilities between
the three states is:
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Figure 2: SLI FMD Model (Owners of Farms Quarentine Practice)

F (I) =




I L ∆

0 0 1
γ

γ+θ
0 θ

γ+θ

0 1 − θ
θ+ λI

N

θ
θ+ λI

N




The last row of the above matrix requires an explanation: a susceptible farm can
enter the state of infection through state L, but due to quarantine it may enter state
∆ before it is infected. Thus, we are taking the effect of quarantine into account.
However, the strength of this effect also depends on the number of infectious farms,
which are “pulling” susceptible farms to the latent state. Since the individual quar-
antine rate is θ, and the rate of farm removal is λ I

N
, the probabilities in the last row

of F (I) follows directly. The expected average time a farm spends in the infectious
state when there are exactly I infected farms is denoted by E(Ti), and is computed
as follows by applying the technique from Hernández. [2]:

E(Ti) =
λγI

α(γ + θ)(Nθ + λI)
(21)
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Hence, the matrix of transition probabilities depends on the actual number of infec-
tious farms. The reproductive number R as a function of I is the contact rate, λ,
multiplied by the probability that a contact is with a susceptible farm. Under the
worst-case scenario, this probability is maximized when the number of susceptible is
N − I. Therefore, the effective contact rate is λN−I

N
. It follows that the reproductive

number as a function of I is:

R(I) =
λ2γI(N − I)

[α(γ + θ)(Nθ + λI)]N
(22)

We clearly see that this R(I) is monotonically decreasing with the quarantine rate.
As can be shown with elementary calculus, the value of I that maximizes R(I) is:

Max(I) =
N
√

θ(θ + λ)

θ
(23)

and the value of R at this point is:

R(I∗) =
γ(2θ + λ − 2θ3/2+2λ

√
θ√

θ+λ)
)

α(γ + θ)
(24)

Thus, a lower bound for the probability of extinction is min(1, R(I∗)). By setting the
above expression for the maximum equal to one and solving for the quarantine rate,
we find the minimum value of θ, which is given by

θ =
γ(α − 2γ − λ + 2

√
γ(α(γ−δ)+λ2)

α
)

4γ − α
(25)

We consequently have used the stochastic model to derive an expression for the
minimal quarantine rate that keeps the maximum value of R below one. This value
of θ is extremely important because it gives policy decision makers an effective but
not overly intrusive quarantine rate.

2.2 Stochastic Computer Simulation Model

The problem with the two previous formulations is that by assuming random mix-
ing, they fail to realistically model the spread of FMD across an entire country such
as Uruguay. In our third approach we assume non-random mixing, and we hope to
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formulate a realistic model with more practical policy implications. When an FMD
epidemic begins in Uruguay, the first response is to try to eliminate it with a “stamp-
ing out” policy in which quarantine and slaughter are localized around infected farms
[1]. If this first response fails, an expensive national vaccination program is imple-
mented. It is known that outbreaks starting from certain areas can be contained
fairly easily through stamping out, but that index cases in other regions can create
epidemics that are much harder to control The goal of our simulation model is to
partition the counties of Uruguay into those for which stamping out would be an
effective response to an index case, and those where vaccination might be necessary.
Clearly, such a partition would not be possible in a random-mixing model as the
expected epidemic size would be independent of the index case location.

The basic epidemiological unit in the stochastic simulation model is not a cow or
a farm, but now an entire county. That is, we require that entire counties must be
in susceptible, latent, infected, quarantined, or slaughter states and we assume all
cows in a county are always in the same state. The model can incorporate parts of an
FMD epidemic that are not possible in the previous two models, such as the distances
between counties (measured from the centroids), the traffic between counties, the size
of each different county (number of cows), and the breakdown of cows in each county
(dairy or beef). We also change the model from continuous time to discrete time,
with the unit time interval being one day. We justify this change because we assume
that for a quickly spreading epidemic such as FMD, policymakers must often decide
what actions are needed for the next day.

Each of the counties in Uruguay can produce a random number of infectious
“agents” each day in our model. An agent is a truck, airplane, person, or anything
that can potentially leave the county and infect another county. Each agent from
an infected county can reach any of the counties with a “connection” to the infected
county with a certain probability during the day that it is produced, but no later. A
“connection set” is the set of counties that it can potentially infect. The number of
agents produced by an infected county is independent of what happens that day on
any other county, or of any events in the past. Likewise, whether an agent produced
from an infected farm reaches a certain farm in its connection set is independent of
all other events. Once a county is infected, it is latent for a fixed number of days, and
cannot transmit infection. After the latent period it can transmit infection, but is
not noticed by public health authorities in our model for a fixed number days. Once
the infection is noticed, all cows in a county are immediately slaughtered, and from
that point forward the county is removed from the model. After the first infected
farm is recorded, a quarantine policy begins so that each farm can no longer trans-
mit infection because it is removed from the model. This independent quarantining
deviates from the actual practice of localizing control measures around a source case,
but permits the study of more severe outbreaks as in the random-mixing models. We
assume that only cattle, and not swine, sheep, or other animals are responsible for
the spread of FMD.
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2.2.1 Model Formulation

Our simulations model uses a large number of parameters and assumptions which are
defined below:
n = Number of counties in Uruguay
Dij = Distance between the ith and jth counties. i, j = 1, , n
BEi = Number of beef cows in the ith county. i = 1, , n
DAi = Number of dairy cows in the ith county. i = 1, , n
β1 = Rate of infectious agents per beef cow, per day produced in an infected county
β2 = Rate of infectious agents per dairy cow, per day produced in an infected county
θi = Average number of infectious agents per day from the ith farm. i = 1, , n

θi = β1BEi + β2DAi

γ = length of the latent period, where the infected cows cannot transmit the infection
d = length of time between a county becoming infected and being noticed as infected
α = rate at which farms are quarantined after the first infected farm is noticed
Z = Number of days after the first noticed infection for a given farm to be quaranti-
ned
Z ∼ Geometric(α) (Modeling assumption, consistent with the previous stochastic
model) Prob(Z = k) = α(1 − α)k−1, k = 1, 2, ...
λ = Rate (1/distance) at which an infectious agent can infect a county in the con-
nection set of the infected county. For i, j = 1, , n we have the following
Yij = Distance that an agent travels from ith farm in the direction of the jth farm
per day.
Yij ∼ exponential(λ) (Modeling assumption)
Qij = Probability(Agent from ith county reaches jth county in a day — ith county
infected)
Qij = Prob(Yij > Dij) = e−λDij

Xi = Number of agents produced on the ith county per day. i = 1, , n
Xi ∼ Poisson(θi) (Modeling assumption, as the Poisson distribution is often used

for counts) Prob(Xi = k) = 1
k!

e−θiθk
i

Pij = Probability(An agent from the ith county reaches jth county in a day — ith
infected). i, j = 1, , n

Pij = 1 − P (All Xi agents independently fail to reach the jth county)
= 1 - Prob(A Poisson(θiQij) random variable is zero)

Using well-known properties of the Poisson process, = 1−e−θiQij = 1−e−β1BEi+β2DAie
−λDij

In estimating parameters for the model formulated above, we were unable to find
referenced values for all quantities. Thus, we made several aproximations, as ex-
plained below. However, the point of the simulation model is to provide a tool to
policymakers who have data for values that we approximate, such as the distribution
of beef and dairy cattle across the different counties. When assigning county-specific
attributes such as a connection set or beef/dairy breakdown, we make assignments
such that the expected number is the same for all counties. Our assumptions are
conservative because they assume regional homogeneity. This is a conservative as-
sumption as the simulations are designed to find regional differences in quarantining
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effectiveness.

2.2.2 Model Parameters

We use the following values for the respective parameters to run the simulations:

n = 274
β1 = 5 × 10−4, β2 = 7βbe

It is assumed that trucks can enter a county to pick up milk every day, but esti-
mate that beef cows are taken to meat packing once a week, so the agent production
rate should be higher for dairy cows. This discrepancy is confirmed by empirical
evidence from Ariel Rivas.
γ = 4

This is within the range for the latent period.[3]
d = 9

This is within the range for the infectious period.[4]
α = 0.0488 This is a modeling assumsption.
λ = 5.8079 × 10−5

This is a modeling assumption. We here assume that 1/lambda is the average dis-
tance between neighboring counties, so that on average an infected agent can reach
the closest county, roughly half of the time.
Dij = Coordinates of the centroids of each county are known (Ariel Rivas). Using Dij ,
we calculate the Euclidean distance matrix between counties. However, we assume
that each county can only pass infectious agents to the counties in its infection set.
Using the explicit road system in Uruguay would improve our simulations. Here, we
only implement a Monte Carlo approximation (see the Matlab code in appendix B
for details).
For parameters BEi, DAi, We know that Uruguay has approximately 10.7 million
beef cattle and 403000 dairy cattle [5, 6]. We do not know how these are distributed
among the counties, so we randomly assign them. Hence each county has the same
expected number of beef and dairy cattle. (See the Matlab code in Appendix A for
details).

2.2.3 Results

From this formulation we can now simulate the epidemic by placing the index case
in one of the n counties. A county can infect other counties in its connection set if it
is not latent, quarantined, or slaughtered. The counties in the connection set of an
infected county are infected each day with probability Pij unless they are quaranti-
ned, and quarantining begins after the first infected farm is recorded. We simulate
the epidemic for only 31 days because FMD is a quickly spreading epidemic.After
many simulated epidemics, the output is an n × 31 matrix where the (i, j) entry is
the estimated probability that the ith county is contaminated with FMD by the jth
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day. Estimated probabilities are obtained by averaging over many simulations.

We run the simulation with the index cases in county 1 and in county 265, each
for 250 simulations. Some of the output is given graphically on the following pages,
where we have assigned an indexing number to each county of Uruguay. The outbreak
is fairly well contained when it starts from county 1, as we can see from the attached
plots that most of the counties have an extremely low probability of infection after
the first month. However, when the source is in county 265 then mass vaccination
would be a preferable option to quarantining, because the quarantining clearly fails to
control the epidemic. For both sources we can see that from roughly halfway through
the month (day 16) the disease has already spread to counties with close indices, but
has not yet infected many of the other counties that it reaches by day 31.

We also define Wi as the probability that a randomly chosen county in Uruguay
is infected after 31 days, conditioning on the index case being from the ith county.
The quantity Wi is a measure of how effective the quarantine policy is for the ith
possible index case location, and it is calculated by averaging the final row of the out-
put matrix described above. We iterate through each of the 274 counties of Uruguay
and estimate Wi, i = 1, 2, ..., 274. From the histogram of these estimates we see that
quarantining does not appear to be a generally effective policy option for FMD. This
is because most counties have a better than even chance of becoming infected after
a month, from well over half of the source counties. However, we see from the plot
of (i vs. Wi) that Wi remains small for i ≤ 50, so the simulations discover regions of
Uruguay where a stamping out policy might be effective.

3 Discussion

When creating a national control policy for a rapidly spreading epidemic such as FMD
disease, policymakers in Uruguay must rely on mathematical modeling of proposed
disease responses. Formulating models to inform policy decision makers necessitates
making tradeoffs between mathematical tractability and realistic epidemiological as-
sumptions. In this work, we illustrate the usefulness of three models with various
degree of mathematical simplification. In doing so, we demonstrate how different
problems related to FMD disease control can be based on epidemiological analysis
with varying degrees of realistic biological assumptions.

Our first model is mathematically tractable, as it models the cattle populations
in Uruguay using two patches that differentiate between the types of cows (beef and
dairy). The basic epidemiological unit is the cow. The model is a system of nonlinear
ordinary differential equations. From this model, we give conditions for disease inva-
sion via the basic reproductive number. The model assumes random mixing, and is
hence, may be useful in the study the worst-case scenarios. We use analytical results
to suggest that faster screening methods for FMD may be useful in the FMD outbreak.
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The second model is a stochastic continuous time Markov chain model, where the
basic epidemiological unit is the farm. This model still assumes random mixing, and
allows random effects. We compute the reproduction number R0 as a function of the
number infected, and we capture dynamics of an index case not necessarily spreading
the most infections. The model remains somewhat mathematically tractable. We can
obtain an explicit expression for the minimum necessary rate of quarantining farms to
control the outbreak in some cases. This expression may be useful, because excessive
quarantining and restriction on travel can cause economic harm.

The third model is an explicit stochastic simulation that incorporates more real-
istic biological dynamics, but models FMD with a complex mathematical structure
that cannot be studied analytically. The basic epidemiological unit is now the county,
time is measured in days and the simulation is updated every day. We model infected
counties spreading the disease to other counties such that transmission depends on
intra-county distance, traffic between counties, county size, and the beef/dairy break-
down in counties. The model also allows us to address the real problem of partitioning
the counties of Uruguay into those for which quarantining would be an effective re-
sponse to an index case. This is a practical solution because an expensive massive
national vaccination is necessary when stamping out policies fail to contain the epi-
demic. Simulation allows us to control costs by identifying Uruguayan regions where
stamping out is likely to succeed.

The three models in this work have their respective merits and disadvantages.
FMD causes severe economic devastation for Uruguay, and as such poses a variety of
modeling challenges. Our models theoretically suggest that faster individual screening
may be useful in FMD control, give an expression for an optimal quarantine policy,
and offer practical advice as to where stamping out is an effective response. Our
modeling results illustrate how different problems related to FMD can be solved with
models that try to reach a compromise between analytic tractability and reality.
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5 Appendix A
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Figure 3: Stochastic FMD Model
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Figure 4: Stochastic FMD Model
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Figure 5: Stochastic FMD Model
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Figure 6: Stochastic FMD Model
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Figure 7: Stochastic FMD Model
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Figure 8: Stochastic FMD Model

In the following we present the MatLab code used for the computer sumulation
model. Our comments explain the input and output of each function.

function [out1, out2] = RunSimulations(n, totalDairy, totalBeef,

dairyRate, beefRate, D, lambda, source, steps, l, d, numQuar, numSim)

[T, S] = InitializeTraffic(totalDairy, totalBeef, dairyRate,

beefRate, lambda, D, n);

[out1, out2] = Simulations(T, n, source, steps, l, d,

numSim, numQuar, S, D, Qind);

% Arguments: ______________________________________________

% n = Number of counties

% totalDairy = Total number of dairy cattle in Uruguay

% totalBeef = Total number of beef cattle in Uruguay

% dairyRate = Average number of infectious agents per dairy

% cow, per day from an infected county

% beefRate = Average number of infectious agents per beef

% cow, per day from an infected county

% D = Distance matrix where D(i,j) is the distance between
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% county i and county j

% lambda = parameter of the exponential distribution that

% governs how far an infectious agent can travel

% in a day

% source = index of the first infected county in the

% FMD epidemic

% steps = Number of days for which to simulate an epidemic

% l = length of the latent period

% d = length of time between a county encountering the virus

% and being noticed and slaughtered by national

% public health authorities

% numQuar: 1-exp(-numQuar) is the parameter of the geometric

% distribution governing how long it takes after for

% a county to be quarantined after the FMD epidemic

% is noticed in Uruguay.

% numSim = Number of simulations of an epidemic to run.

% Output: ___________________________________________________

% out1 = A nxsteps matrix where out1(i,j) is the estimated

% probability that the ith county is infected by the

% jth day of the FMD epidemic.

% out2 = A 1xnumSim vector where out2(i) is the number of

% infected counties after steps days in the ith

% simulated epidemic.

function [out1, out2] = Simulations(T, n, source, steps, l, d,

numSim, numQuar, S, D)

out1 = zeros(n, steps);

out2 = zeros(1, numSim);

for i=1:numSim,

[result1, result2] = Epidemic(T, n, source, steps, l,

d, numQuar, S, D);

out1 = out1 + result1;

out2(i) = result2;

end

out1 = out1/numSim;

% Arguments: __________________________________________________

% T, S: As defined in InitializeTraffic

% All others: As defined in RunSimulations

% Output: As defined in RunSimulations

function [out, deadCattle] = Epidemic(T, n, source,
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steps, l, d, numQuar, S, D)

out = zeros(n, steps);

I = zeros(1, n);

I(source) = 1;

DI = zeros(1, n);

Q = zeros(1, n);

for i=1:steps,

[I, DI, Q] = NextDay(I, DI, Q, T, n, l, d, numQuar, D);

out(:,i) = I’;

end

deadCattle = sum(I);

% Arguments: ____________________________________________________

% T,S: As defined in InitializeTraffic

% All others: As defined in RunSimulations

% Output: _______________________________________________________

% out = An nxsteps matrix where out(i,j) is an indicator of

% whether the ith county is infected on the jth day

% of the simulated epidemic.

% deadCattle = The number of farms that have been infected

% after steps days of the epidemic.

function [Inew, DInew, Qnew] = NextDay(I, DI, Q, T, n,

l, d, numQuar, D)

Qnew = UpdateQ(I, DI, Q, T, n, l, d, numQuar, D);

potentialInfectious = zeros(1, n);

potentialInfectious = I == 1 & DI >= l & DI < d & Qnew == 0;

Inew = I;

DInew = DI;

for i=1:n,

if (Inew(i) == 0 & Q(i) == 0),

Ri = potentialInfectious*T(:,i);

Inew(i) = binornd(1, 1-exp(-Ri));

end

if (Inew(i) ~= 0)

DInew(i) = DI(i) + 1;

end

end

% Arguments: ______________________________________________

% I = A 1xn vector where I(i) is an indicator of whether the

% ith county is currently infected in the epidemic.
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% DI = A 1xn vector where DI(i) gives the number of days for

% which the ith county has been infected at the current

% point in the epidemic.

% Q = A 1xn vector where Q(i) is an indicator of whether the

% ith county is currently quarantined in the epidemic.

% All others: As defined in RunSimulations

% Output: Inew, DInew, Qnew are the updated versions of

% I, DI, and Q after the next day in the epidemic.

function Qnew = UpdateQ(I, DI, Q, T, n, l, d, numQuar, D)

Qnew = Q;

if (max(DI) >= d),

Qnew = binornd(1, 1-exp(-numQuar), 1, n);

Qnew = Q == 1 | Qnew == 1;

end

% Arguments: I, DI, Q are as defined in NextDay.

% All other arguments are as defined

% in RunSimulations.

% Output: Qnew is as defined in NextDay.

function [Dnew, lambda] = MakeDnew(D, n, numCon)

for i=1:n,

for j=1:i,

D(i, j) = D(j, i);

end;

end

numConnections = poissrnd(numCon, 1, n) + 1;

Dnew = zeros(n, n);

for i=1:n,

[dummy, newRow] = sort(D(i,:));

for j=1:numConnections(i),

nextIndex = geornd(1/numConnections(i)) + 2;

Dnew(i, newRow(nextIndex)) = D(i, newRow(nextIndex));

Dnew(newRow(nextIndex), i) = D(i, newRow(nextIndex));

end

end

for i=1:n,

for j=1:n,

if (i ~= j & Dnew(i,j) == 0),

24



Dnew(i,j) = inf;

end;

end;

end;

DnewSorted = sort(Dnew);

lambda = 1/mean(DnewSorted(2,:));

% Arguments: ________________________________________________

% D = A lower triangular distance matrix where if i <= j then

% D(i,j) is the geographic distance between the centroids

% of the ith and the jth counties.

% n = The total number of counties in Uruguay.

% numCon = One less than the average number of counties in the

% connection set of a randomly chosen county.

% Output: As defined in RunSimulations

function [out1, out2] = CowAssignments(numDairy, numBeef, n)

X = sort(unifrnd(0, numDairy, 1, n));

X = [0 X numDairy];

Y = sort(unifrnd(0, numBeef, 1, n));

Y = [0 Y numBeef];

out1 = zeros(1, n);

out2 = zeros(1, n);

for i=2:(n+1),

out1(i-1) = X(i) - X(i-1);

out2(i-1) = Y(i) - Y(i-1);

end

% Arguments: ___________________________________________

% numDairy = Total number of dairy cows in Uruguay

% numBeef = Total number of beef cows in Uruguay

% n = Total number of counties in Uruguay

% Output: ______________________________________________

% out1 = A 1xn vector where out1(i) is the number of

% dairy cows in the ith county.

% out2 = A 1xn vector where out2(i) is the number of

% beef cows in the ith county.

function [T, S] = InitializeTraffic(totalDairy, totalBeef,

dairyRate, beefRate, lambda, D, n)
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alpha = zeros(1, n);

S = zeros(1, n);

[numDairy, numBeef] = CowAssignments(totalDairy, totalBeef, n);

for i=1:n,

alpha(i) = numDairy(i)*dairyRate + numBeef(i)*beefRate;

S(i) = numDairy(i) + numBeef(i);

end

T = zeros(n, n);

for i=1:n,

for j=1:n,

T(i,j) = alpha(i)*exp(-lambda*D(i,j));

if (D(i,j) == inf),

T(i,j) = 0;

end

if (i == j)

T(i, j) = 0;

end;

end

end

% Arguments: As defined in RunSimulation

% Output: ______________________________________________

% T = An nxn matrix where 1-exp(-T(i,j)) is the probability

% that an infectious agent from county i will reach county

% j in a day, conditioned on the event that county i

% is infected.

% S = A 1xn matrix where S(i) is the total number of cattle

% in the ith county.

function probs = PartitionCountry(n, totalDairy, totalBeef,

dairyRate, beefRate, D, lambda, steps, l, d, numQuar, numSim)

probs = zeros(1, n);

for i=1:n,

source = i;

[out, dummy] = RunSimulations(n, totalDairy, totalBeef,

dairyRate, beefRate, D, lambda, source, steps, l, d, numQuar, numSim);

probs(i) = sum(out(:,steps)/n)

end;

% Arguments: As defined in RunSimulations.

% Output: probs is a 1xn vector where probs(i) is the estimated
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% probability that a randomly chosen county is infected

% after steps days of the epidemic, conditioning on the

% event that the index case is from source.
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