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Abstract 
As of the end of 2001, an estimated 28,100,000 people in Sub-Saharan Africa (SSA) had been infected 

with the HIV virus, making up 70% of the world's population of HIV-infected people. Such an aggressive 
epidemic has not only impacted the SSA demography, but also the African economy and culture. The 
epidemic has begun to seriously damage the transport sector, where long distance truck drivers (TDs) are 
at an increased risk of infection due to their frequent contacts with commercial sex workers (CSWs). The 
spread of AIDS in the transport industry is especially significant to the SSA economy as truck drivers 
are largely responsible for transporting crops and supplies needed for daily subsistence. In this project 
we present four mathematical models that describe the interaction between the TDs and CSWs from 
various perspectives. From the analysis and simulation of these models we qualify the decrease in the 
TD population due to the HIV / AIDS epidemic and discuss its impact on the transportation industry 
and the SSA economy in general. 

1 Introduction 

HIV / AIDS is one of the leading causes of death in the world and is especially destructive in Africa. As 
of the end of 2001, an estimated 28,100,000 people in Sub-Saharan Africa (SSA) have been infected with 
the HIV virus, making up 70% of the world's population of HIV-infected people. The estimated number of 
adults and children newly infected with HIV in 2001 is a startling 3,400,000, and the number of adult and 
child deaths due to HIV / AIDS in 2001 is 2,300,000 [15J. In fact, the levels of infection are so high that the 
number of deaths in the next decades may result in population decline [24J. 

An epidemic of such magnitude has serious repercussions on the African society and economy. The AIDS 
epidemic is particularly damaging to the transportation sector, where long distance truck drivers (TDs) are 
at an increased risk of infection due to the migratory nature of their job and their prolonged absence from 
home. As a result,TDs are more likely to have sexual interactions with commercial sex workers (CSWs), 
who often provide them with affordable food and lodging during their journeys. The spread of AIDS is 
further exacerbated by the highly sexually active lifestyles of both the TDs and the prostitutes they visit. 
Many of the TDs and CSW s have multiple sexual partners (i.e. many of the TDs are involved in polygamous 
relationships), and very few of them use condoms. A number of studies show a high prevalence of AIDS 
among long-distance TDs in SSA (56%), and a corresponding high prevalence of the virus among CSWs and 
their clients (56%) [7, 8, 26, 22J. In some studies the prevalence rates in these high-risk groups were as high 
as 95% [26J. 

The spread of AIDS in the transport industry is especially significant to the SSA economy. The TDs are 
largely responsible for transporting a majority of the goods and supplies needed for daily subsistence. Badly 

*University of California, Los Angeles (melanie-IIll@yahoo.com). 
tSt. Mary's University of San Antonio (jpecys@hotmail.com). 
+University of Arkansas, Pine Bluff (sharLwiley@yahoo.com). 
§Universidad De Colima, Mexico (cmh2@cgic.ucol.mx). 
'University of Texas at Arlington (kribs@uta.edu). 
II Cornell University (roj@cam.comell.edu). 

1 

3 



4 

affected areas are losing a large percentage of these valuable skilled drivers to the AIDS epidemic. As more 
experienced drivers are lost, it may become costly to hire and train new recruits. Moreover, the prevalence 
of AIDS among experienced TDs is higher than that among the less experienced drivers since these TDs 
generally have higher wages and can afford repeated visits with CSWs, making their chances of infection 
much greater [7, 8]. Once TDs have contracted HIV, their physical health diminishes, resulting in reduced 
efficiency for the transport industry as a whole. 

In this study, we investigate the effect of the HIV / AIDS epidemic on the population of TDs and CSW s in 
SSA, and more specifically its impact on the transport industry economy. Both deterministic and stochastic 
models are used to study the evolution of HIV / AIDS in the population of TDs and CSWs. The first 
deterministic model considers a constant population of TDs; i.e., we assume that for every TD lost to the 
disease, a new susceptible TD is available to replace him. In the second model, the population of TDs 
changes as the epidemic progresses. Specifically, we assume that there exists a maximum number of men 
available to be hired as TDs. As the epidemic worsens, it is possible that the number of TDs lost due to 
HIV exceeds the number of TDs available for hiring. In the third model we consider a switch between the 
first two models. Since recovery from HIV / AIDS infection is not possible, we use SIR models to describe 
the population dynamics, where in this paper S denotes the class of susceptible individuals, I the class of 
infected inviduals, and R the class of individuals removed due to the disease. For these SIR models, we 
derive explicit formulas for the contact numbers and the disease-free and endemic equilibria. Finally, we 
consider a stochastic SIS model to project the number of TDs needed over time, to replace the removed 
TDs. Here we will assume that TDs are replaced after death, and we monitor the number of transitions 
from the I to the S compartments in order to determine the number of TDs that die from HIV / AIDS. 

2 Deterministic Models for the Spread of AIDS in High Risk 
Groups 

Deterministic models are often used to model the effects of epidemics within a population. We will use 
three deterministic models to observe the effects of HIV / AIDS in the TD population and the economic 
implications. To make analysis ofthe problem simpler, we will focus on the core group population or a small 
population of individuals who are extremely infectious and have a high probability of becoming infected. 
This concept, adopted in [21], is based on the assumption that the core group members have a significantly 
more active sexual lifestyle than the general population and are largely responsible for a disease explosion 
within the total population. Kribs-Zaleta [21] used an SIS model for transmission of sexually transmitted 
diseases from the core group population into the general population. In our models, we concentrate on the 
core groups and the transmission of HIV between them. In South Africa, AIDS is primarily transmitted 
through heterosexual activities so we will only consider male to female transmission and female to male 
transmission [24]. Thus we focus on the transmission of AIDS among the female CSW and male TD core 
populations. We must also take into consideration the removal rate due to AIDS since there is no possible 
chance of recovering and returning to the susceptible class. Therefore we will use a two-sex SIR model, 
resulting in a 6-dimensional system. In all of our models we consider constant population for CSWs. In the 
first model, we assume the population of males available for recruitment as TDs is large enough to supply 
a replacement when a TD is removed due to HIV / AIDS infection, yielding a constant population. In the 
second model, we assume the removal rate due to HIV / AIDS and other factors exceeds the recruitment rate 
and the desired population will begin to decrease, resulting in a nonconstant population. The third model 
is a hybrid model, in which the recruitment rate is a switching function designed to switch between the 
previous two models, when the population of infecteds reaches a critical value. In order to calculate the 
basic reproductive or contact number, Ro, we use a method from spectral theory called the next generation 
operator approach, which is reviewed in [9]. In order to analyze the stability of the steady states, we linearize 
the systems by determining the Jacobian and analyzing the eigenvalues. 

In summary, we investigate the following deterministic models: 

1. Core-Group Model with Constant Population: Assume there will always be enough TD recruits to 
replace the removed TDs, and that all newly recruited TDs are non-infected. This will yield a constant 
population of TDs. 



2. Core-Group Model with Constant Recruitment: Assume that the TD recruitment rate is a specified 
function A(t). This will yield a non-constant population of TDs since the rate of removal of TDs will 
exceed the rate of recruitment of TDs. 

3. Core-Group Model with Switching Function: Assume the recruitment rate is the minimum of the 
number of TDs needed and A(t). 

2 .1 Notation 
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Figure 1: This figure represents the SIR core-group deterministic model. 

Here all the parameters are nonnegative and an infected individual is considered infectious, so there is 
no latent period for the disease. Table 1 lists the notation used in this section. 

The prevalence of the disease is defined as the number of cases of AIDS at a given time t, so it corresponds 
to h(t} + I2(t). 

Let (3ij be the average number of adequate contacts to susceptibles in group j per infective from group i per 
year, i.e., the transmission or infection rate. Then the incidence, or the number of cases of AIDS transmission 
per year is (3ij fJ

i 
Sj. This is a mass action law since the proportion of new infections is proportional to the 

number of infectives in group i and the number of susceptibles in group j. The incidence (312ftS2 may be 

interpreted as the number of cases in which a portion of infectious TDs (ft) infects the class of susceptible 
CSWs (S2), at a rate (312. 

We assume that the death of infected individuals due to AIDS occurs at a rate proportional to the size 
of the infected class, Ii, with proportionality constant 8i . That is, 8i is the annual death removal rate. 

As TDs and CSWs may be removed from'the susceptible and infective classes by other causes, let /hi 
be the annual removal rate due to all non-AIDS related causes. Then the average working lifetime of an 
infected TD is +1 ~ years. 

/1-1 U1 

We suppose further that the CSWs may be screened for the disease and may subsequently be removed 
at a rate "1, proportional to the infected class 12 • Then the average active lifetime of an infected CSW is 

1 
/1-2+02+'1' years. 

Recently, several organizations have worked with the African government to implement AIDS awareness 
and prevention campaigns, and have targeted long-distance TDs as one of their main outreach groups. Such 
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Parameter Meaning 

SI(t) the population of susceptible TDs 
h(t) the population of infected TDs 
Rl (t) the population of removed TDs 
Nl (t) the population of susceptible and infected TDs 
!I (Nl ) the recruitment rate of noninfected TDs 
gl(Nl ) the recruitment rate of infected TDs 
J-Ll loss rate of TDs due to other factors besides AIDS 
81 loss rate of TDs due to AIDS 
f321 I 2/N2 the rate of infection of TDs by infected CSWs 
e the reduction factor due to effectiveness of TD-targetted AIDS awareness and prevention campaigns 
S2(t) the population of susceptible CSW s 
h(t) the population of infected CSW s 
R2(t) the population of removed CSWs 
N2(t) the population of susceptible and infected CSW s 
!2(N2) the rate of noninfected CSWs entering the truck stops 
g2(N2) the rate of infected CSWs entering the truck stops 
J-L2 loss rate of CSWs due to other factors besides AIDS 
82 loss rate of CSWs due to AIDS 

"t removal rate of CSWs due to screening 
f312 I dNl the rate of infection of CSWs by infected TDs 

Table 1: Model parameters. 

a campaign may involve the distribution of pamphlets and condoms, and the efficacy of the effort depends 
on how positively the TDs respond to the information and resources given to them. Several studies [7,8,26] 
show that despite their awareness of the threat of HIV, many TDs continue to have multiple sexual partners 
and often do not use condoms. The efficacy of the campaign is measured by the parameter e, where 0 ::::: e ::::: 1. 
When e = 1, the campaign is 0% efficient and when e = 0, the campaign is 100% efficient. 

2.2 Deterministic Core-Group Model with Constant Population 

2.2.1 Model Assumptions 

In the following model, the number of TDs recruited/hired is the same as the number needed to compensate 
for all the TDs removed due to AIDS and other factors. Thus the recruitment rate of the TDs is !1(Nl ) = 

J-LINI + 81h. The population of CSWs is constant so that the entrance rate of CSWs to the truck stops is 
!2(N2) = J-L2N2 + 82h + "th. It will also be assumed that all newly recruited TDs and all entering CSWs 
are noninfected, so that gi(Ni) = 0 for i = 1,2. 

Our model is given by the following system of equations: 

dR l _ 8 I 
dt - 1 1 

(1) 

(2) 

(3) 

(4) 



(5) 

(6) 

Since Ri is a function of Ii only, this system can be reduced to a four-dimensional system by ignoring 
equations (3) and (6). This is valid because Ri does not appear in any of the other equations, Le., they are 
uncoupled. To further reduce the system, we will show N1 = 8 1 + 11, N2 = 8 2 + 12 are constant. Observe 
that: 

and 
dN2 d82 dI2 di" = dt + dt = /-l2N2 - /-l2 82 - /-l2I2 = 0, 

since Ni = 8 i + h and using equations (1), (2), (4), and (5). Since d!iti = 0, Ni is constant. As a result, 
we can eliminate 8 i from the system by writing 8 i = Ni - Ii, and thus we can reduce our system to two 
ordinary differential equations for h, h: 

(7) 

(8) 

2.2;2 Disease-Free Equilibrium and Determination of Ro 

Let f = % and g = ddt. The disease-free equilibrium (DFE) is given by (Ii, 12) = (0,0). The following 
method for determining the first stage Ro, outlined in [9], involves the use of the next generation operator. 
We first determine that the Jacobian of the system is given by' 

where h = of joIi and Wi = ogjoh Evaluating at the DFE, we get 

As there are no susceptible or noninfectious infected populations, we can simply consider the subclass of 
infected populations, Z = (11, 12)' We have 

oZ 
7ft = (j,g), 

and 
o (OZ) 0 ot 7ft = ot (j, g) = J(O,O). 

Writing J(O, 0) as M - D, where M is a matrix with entries mij ;:::: ° and D is a diagonal matrix with entries 
dii > 0, we get 

and 
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After solving the characteristic equation associated with M D-l, 

for the maximum eigenvalue, we get 

Ro = 

This represents the average number of people infected by one infective after the first stage of infection. As 
shown, Ro is the square root of the product of the infection rates B(321, (312 and the average lifetimes of 
the infected TDs and CSWs: 1'1 ~81' JL2+~2+'Y • As 0 ::; B ::; 1, then if Ra represents the average number 
of infectious contacts without an AIDS prevention campaign (Le. B = 1) and Ro is the average number of 
contacts with an AIDS campaign, then we see that Ro = veRa, so that if the campaign is effective, it will 
reduce the contact number, and thereby reduce the chance that the disease will become endemic. 

Next we determine the conditions under which the DFE is stable. The trace tr J(O,O) = -(J-ll + (h) -
(J.l2 +82 +1') is always negative, and the determinant is given by det J(O, 0) = (J.l1 +81)(J.l2 +82 +1') - B(312(321. 
As the determinant must be positive in order for the DFE to be stable, the condition for stability is 

or 

(10) 

The left-hand side of (10) represents the average number of secondary infections caused by one infective at 
the second stage of infection, or the second-stage basic reproductive/contact number, R5. Effectively, this 
value is the average number of TDs infected, via sexual interaction with CSWs, by an infected TD. We 
can observe that the left-hand side of the equation (1'1 +~Y(~~~82+'Y) = R5. From this we deduce that the 
condition for stability is R5 < 1. 

2.2.3 Endemic Equilibrium and Stability Analysis 

Solving the the system f = 0, g = 0 for hand h we find (in addition to the DFE) the endemic equilibrium 
(EE), which is given by 

(1* 1*) - ( _ N1(JL1JL2+JL182+JL1'Y+81JL2+8182+81'Y-8{321{312) _ N2 (1'1 1'2 +JL182+JLl'Y+81JL2+8182+81'Y-8{321(312) ) 
l' 2 - (8{321+JL1+81){312 ' 8{321 (JL2+82+'Y+{312) • 

(ll) 

Substituting the EE into the Jacobian, we find that the trace is 

tr J(EE) - _ (B(321 + J.l1 + 81)(312 _ B(321(J.l2 + 82 -+- l' + (3d 
- J.l2 + 82 + l' + (312 B(321 + J.l1 + 81 ' 

which is always negative. When we calculate the determinant, we find 

which is positive when R5 > 1. 
Thus the basic reproductive number Ro, is a threshold indicator of whether or not the AIDS epidemic 

will become endemic. If Ro < 1, the disease will eventually stabilize and die off, and if Ro > 1, the epidemic 
will become endemic. 



2.2.4 Global Stability of the DFE and EE 

We next show that the local stability of both the DFE and the EE extend to global stability. The Poincare
Bendixson Theorem (p. 155ff. in [4]) states that for a two-dimensional system of ODE's1 any solution will 
either: 

1. approach an equilibrium, 

2. grow without bound, or 

3. approach a periodic solution/orbit. 

We first show that in our system, cases 2 and 3 do not occur. We are then left with case 1, which means that 
any solution will approach an equilibrium. However, since at any given time there is only one equilibrium 
that is locally stable (DFE if Ro < lor EE if Ro > 1), all solutions which fail 2 and 3 at a given time will 
approach the same equilibrium; thus the DFE andEE are globally stable in this case. 

First we check that our system is well-posed 2 in the state space D = {(h,I2)1 ° s Ii S Ni}. D is 
a rectangular region with vertices (0,0), (N1' 0), (0, N2), (N1' N2)' In order to check for well-posedness, we 
analyze the points along the edges of the rectangle, which leads us to four cases: 

CASE 1: POINTS LYING ON THE TOP OF THE RECTANGLE. Consider the points along the top horizontal 
edge of D. These points are of the form Ptop = (h, N2 ), where ° S h S N 1• In order to be well
posed, the solution must decrease in the vertical direction (in the direction of 12 ), But we have that 
I~ = -({L2 + 52 + 'Y)N2 < 0, so 12 decreases as needed. Physically, this means that when the number 
of infected CSWs is equal to the total population of CSWs, the infected CSW population will inevitably 
decrease because it cannot grow and exceed the total number of CSWs (N2)' 

CASE 2: POINTS LYING ON THE RIGHT EDGE OF D. These points are of the form Pright = (N1,I2) , 
where 12 lies between ° and N2. We have that Ii = -({L1 + 51)N1 < 0, so that 11 decreases back into the 
state space. This means that when the number of infected TDs equals the total number of TDs, the infected 
TD population will decrease back into the state space. 

CASE 3: POINTS LYING ON THE BOTTOM OF D. These points are of the form Pbot = (h, 0). We have 
that I~ = f312hN2/N1 > 0, so that if there are no infected CSWs, the population of infected CSWs will 
increase due to AIDS transmission from the infected TDs. 

CASE 4: POINTS LYING ON THE LEFT EDGE OF D. Here the points have the form F'te!t = (0,12 ), We 
have that Ii = Bf321I2NdN2 > 0. Thus, if there are no infected TDs, the population of infected TDs can 
only increase. These results make biological sense, and they confirm that the system is well-posed. The 
well-posedness of the model further implies that the solutions are bounded. 

Next we show that there are no periodic solutions in our system. Let f = 4ft and g = 1ft. Taking partial 

derivatives, we obtain gl = -Bf321h/N2 and ** = -f312h/N1 - ({L2 + 52 +'Y), so that the sum gl + ** is 
strictly negative. By the Bendixson-Dulac Criterion (p. 159 in [4]), this shows there are no periodic orbits. 
It can be concluded that because the model is well-posed and has no periodic solutions, it must approach 
an equilibrium, and therefore the DFE and EE are globally asymptotically stable. 

2.2.5 Numerical Analysis 

Here we check numerically the above result that the solution starting from any arbitrary point will tend 
toward either the DFE or the EE depending on the choice of parameters. Using the parameter values 
f312 = f321 = 0.2, {Li = 5i = 0.125, N1 = N2 = 100 yields an Ro < 1, so we would expect the solutions to 
approach the stable DFE. As shown in Figure 2 (left), the solutions of the system starting from initial points 
indeed go to the DFE (0,0). 

When the parameters are adjusted so that Ro > 1, we see that the solutions which begin from initial points 
will tend toward the EE (Figure 2, right). Here, the parameters used are f312 = f321 = 0.7, {Li = 5i = 0.3, 
N1 = N2 = 100, and the EE is approximately (14.28,14.28) as calculated from equation (11). 

IThe Poincare-Bendixson Theorem also requires that the system be autonomous and that it satisfies additional continuity 
conditions, which we do not explicitly show here. 

2We call a system well-posed if it has the following properties: (1) if a solution exists, it is unique; (2) Under suitable 
restrictions on the data, there is a solution; (3) The solution depends continuously on data [16]. 

9 



10 

0 .• 

0.8 

0.7 

0.6 

0.' 
12(1) 

0.4 

0.3 

0.2 

0.1 

°0~70.0~'~0.~,-70.'~'~0.~2-702~'~03~70~~~0.4~~04~5-70.'· 
11(1) 

20 

18 

1. 

14 

12 

12(I~O 

°0~~--~----'~0----~1~'----~2~0----~2' 

Figure 2: Left: Stability of the DFE. The dots denote the initial points that are used in calculating the 
solutions to the model system. As shown, all the solution curves converge to the DFE. Right: Stability of 
the EE. The EE is located at approximately (14.28,14.28). 

2.3 Deterministic Core-Group Model with Constant Recruitment 

2.3.1 Model Assumptions 

Suppose now, the number of TDs removed due to AIDS and other factors exceeds the number of TDs 
recruited for each unit of time. We would like to observe the changes in the TD population when the 
availability of TDs is limited. In particular, suppose the recruitment rate h (Nd is a constant, A. As in the 
.previous model, we assume that the population of CSWs is constant, and that all incoming TDs and CSWs 
are noninfected. Thus h(N2) = J..L2N2 + 62h + "(12 and gi(Ni ) = 0 for i = 1,2. 

Now we are ready to formulate our model, which is described by the following system of equations: 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

Since Ri is a function of Ii, this system can be reduced to a four-dimensional system. To further reduce 
the system, we set N2 = 8 2 + 12 which is constant: 



Writing N1 = Sl + It and S2 = N2 - 12, the system ,can be reduced to a three-dimensional system: 

dS1 h 
- = /L1 S0 - /L1 S1 - 8(321- S1 dt N2 

(18) 

(19) 

dI2 It (N2 - 12) 
dt = (312 (Sl + It) - (/L2 + (h + 'Y)I2 (20) 

where So = A/ /Ll. 

2.3.2 Disease-Free Equilibrium and Determination of Ro 

Let F = 4ft, G = dftl, and H = dft2. The DFE is given by (Si, Ii, Ii) = (So, 0, 0). 
By applying the next generation operator approach outlined in the previous section, we determine Ro. 

Because there are no noninfectious infected populations, we consider the subclasses of susceptible populations, 
X = (Sl), and infected populations, Z = (It, h). We have 

az at = (G,H), 

and 
a (az) a at at = at(G,H) = A. 

where A is a 2 x 2 matrix given by: 

Evaluating at the DFE, we obtain 

( 
-01 - /L1 

A(So, 0,0) = (312/ S0 

Writing A(So, 0, 0) as M - D, we obtain 

After solving the characteristic equation of M D-1 , 

for the maximum eigenvalue, we obtain 

Ro = 

Note that the contact number Ro is the same as that of the constant population model in the previous 
section. A possible explanation for this similarity is that HIV's ability to inv~de the population depends 
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only on conditions affecting the relative growth and loss of infective classes, and not the size the of susceptible 
pool (81 = N1 or 80), which is the only difference between the two models. 

Now we can determine the stability of the DFE by analyzing the Jacobian of the three-dimensional system 
(18), (19), and (20). 

° 
-(/J1 +51) 

!312(N2-12) !312Il !312h(N2-h) 
Sl+h - Sl+h - (Sl+h)2 

Evaluating the Jacobian at the DFE, we obtain 

The associated characteristic polynomial is given by 

.x3 + .x2(/J2 + 52 + ')' + 2/J1 + 51) + .x((/J1 + 51)(/J2 + 52 + ')') - ()(3121321 + /J1(/J2 + 52 + ')' + /J1 + 51)) 

+ M((/J1 + 51)(/J2 + 52 + ')') - ()(312(321). 

Let us denote the coefficients of the characteristic polynomial as 

a1 

a2 

a3 

.-

.-

.-

/J2 + 52 + ')' + 2/J1 + 51; 

(/J1 + 51)(/J2 + 52 + ')') - ()(312(321 + M (fJ2 + 52 + ')' + M + 51); 

/J1((/J1 + 51)(/J2 + 52 + ')') - ()(312(321). 

To check for the stability of the DFE, we apply the Routh-Hurwitz criterion (p. 216 in [4]), which requires 
that a1 > 0, a3 > 0, and a1a2 > a3. By inspection, a1 is clearly positive. a3 is positive exactly when 
(/J1 + 51)(fJ2 + 52 + ')') - ()(312(321 > 0, or when R5 < 1. Finally, a1a2 > a3 if and only if 

(23) 

However, if R5 < 1, then (23) holds since (23) is less restrictive than requiring R5 < 1. Thus we see that the 
DFE is locally stable by the Routh-Hurwitz criterion when R5 < 1. 

2.3.3 Endemic Equilibrium and Stability Analysis 

Substituting equations (18) and (19) into Ni = 8~ + 1L we get 

dh 12 dt = ()(321 N2 (N1 - h) - (/J1 + 51)h (24) 

(25) 

In order to simplify our calculations, we rescale the system (24)-(25) by letting Xl = 1dNl and X2 = 12/N2. 
Then 

(26) 

(27) 



By the quotient rule, 

I N1I~ - I1Ni . J.L1 S0 
xl = Nt = Brh1(1- XdX2 - (J.L1 + 8dx1 - X1( N1 - (J.L1 + 81xd) (28) 

and since N2 is a constant, we use equation (20) to obtain 

(29) 

Our system has now been rewritten as: 

(30) 

(31) 

(32) 

Solving the system xi = 0, x~ = 0, and Ni = ° for the EE, we get . 

Observe that x2 E (0,1) and xi E (0,1). Since xi > 0, the EE exists only when R~ > 1. 
The Jacobian of the system is given by 

After evaluating the Jacobian at the EE, we get that the characteristic polynomial is: 

where 
-J.L1f312(Bf321 + J.L1 + (1) - 81Bf312f321 + (81J.L1 + 8r)(J.L2 + 82 + "I) 

a= . 
f312(Bf321 + J.L1 + 8d 

As for the DFE, we apply the Routh-Hurwitz criterion to determine the stability of the EE. Letting a1, a2, 
and a3 be the coefficients of >,2, >', and the constant coefficient respectively, we require that a1 > 0, a3 > 0, 
and a1a2 > a3. By observation, a1 > ° when a < 0, or 

(33) 

which is guaranteed to be true when Ro > 1 since then the left hand side of (33) is negative and the right 
hand side of (33) is positive. Similarly, a3 > ° when a < ° and when 

Bf312f321 - (J.L1 + (1)(J.L2 + 82 + "I) > ° {:} R~ > 1. 

It is clear that a1a2 > a3. Hence, the EE is stable when Ro > 1. 
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Figure 3: A neighborhood of the EE contained in the basin of attraction. Using the parameters /3ij = 0.7, 
/Li = c5i = 0.3, So = 50, N2 = 100, the coordinates of the EE are (Ii, Ii, Si) = (6.25,14.2857,37.50) . These 
parameters yield an Ro = 1.3611. In the figure, a cube of 120 uniformly distributed points (10 points on 
each edge of the cube) are used as initial values for the model, and the model system is numerically solved. 
The faces of the cube are a distance 7 away from the EE. The solutions starting from these initial points all 
converge to the EE. 

2.3.4 Towards the Global Stability of the DFE and EE 

Since this model is a three-dimensional system, we cannot apply the Poincan!l-Bendixson criterion as we did 
in the previous model. Instead, we use a numerical approach in which we generate uniformly distributed 
points on the edges of a cube surrounding the equilibrium point, and use those points as initial values in order 
to obtain numerical solutions to the model system of differential equations. After running several numerical 
computations with increasing sizes of the cube, we found that all the solutions approach the equilibrium 
point. Moreover, we observed that the solutions tend toward a surface, as shown in Figure 3. In order to 
determine global stability, we would require that the solutions all approach the equilibrium point as the 
box expands to infinity. This procedure is computationally impossible, however, with sufficient time, it is 
possible to strongly support numerically the global stability and, even find the basins of attraction for the 
equilibria (i.e. the regions in which the equilibria are stable). From our numerical computations, it appears 
that the DFE and EE are globally stable. 

It is also possible to determine if the DFE and EE are globally stable using an analytical approach such 
as finding a Lyapunov function, however, we do not attempt to find such a function in this study. The reader 
is directed to p. 224 in [5] for more about this method. 

2.3.5 Numerical Analysis 

The DFE is given by (So, 0, 0). Figure 4 (left) shows the projection of the solutions to the system onto the 
hh- plane. It is clear from the graph that all the solutions which start from the initial points shown approach 
the DFE (Ii, Ii) = (0,0). The parameters used in this computation are: /312 = /321 = 0.2, /Li = c5i = 0.125" 
So = 50, N1 = N2 = 100, which yields an Ro < 1. ' 

For the endemic equilibrium, we use the following parameters in order to satisfy the condition that 
Ro > 1: /312 = /321 = 0.7, /Li = c5i = 0.3, So = 50, N1 = N2 = 100. As shown in Figure 4 (right), all the 
solutions which start at the randomly selected initial points approach the EE = (6.25, 14.2857, 37.5), from 
this set of parameters, as we would expect. 

The information we obtain from this analysis allows us to generate bifurcation diagrams for the model. 
Figure 5 is the set of bifurcation diagrams depicting a transcritical bifurcation at Ro = 1 (or at the critical 
bifurcation parameter /321 = (/L1 + c51)(/L2 + 152 +')') jB(312). When Ro < 1 {::} /321 > (/L1 + c5d(/L2 + 152 +')') /B/312, 
the DFE is stable and the EE is unstable, but when Ro > 1, the stability of the equilibria switches. 
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Figure 4: Left: Stability of the DFE. Right: Stability of the EE. 
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Figure 5: Transcritical Bifurcation: the two equilibria collide at the bifurcation point (f321 ~ 0.514) and 
exchange stability. That is, the stable DFE becomes unstable, and the unstable EE becomes stable. The 
figures, from left to right, are graphs of h, h, and 8 1 as functions of the bifurcation parameter f321 respec
tively. 

2.4 Parameter Estimation 

Here we review studies and data on the parameters for the deterministic models. 
Contact rates. The rate of infectious contact, f3ij, depends on the total number of contacts per person 

per year, and the probability of transmission per contact. We assume that the rate of infectious contact from 
CSWs to TDs, f321, is equal to the rate of infectious contact from the TDs to the CSWs, f312. According 
to [29], the per-contact probability of female to male transmission ranges from 0.0003 - 0.0060, and the 
per-contact probability of male to female transmission ranges from 0.0005 - 0.0080. Here W'9 assume that 
TDs and CSWs are both considered high risk groups of equal degree of risk; thus we take the probabilities of 
transmission to be the upper bound of these ranges, 0.008.0. Now, since TDs make about 2 trips per month 
[7, 8], they have a total of 24 trips per year. Again, suppose that the TDs contact the CSWs the same number 
of times the CSWs contact the TDs so that their contact rates are equal: f312 = f321 = 24 * 0.008 = 0.192. 

Natural loss rates. We let the natural loss rate be the reciprocal of the average remaining lifetime 
of a healthy TD or CSW (without AIDS). Assuming that the life expectancy of a healthy South African 
individual is 62 years (CITE), the average age of a TD is 37 [26], and the average age of a CSW is 25 [26], 
we deduce that the average remaining lifetimes of a healthy TD and CSW are I-lI1 = 62 - 37 = 25 and 
1-l'i1 = 62 - 25 = 37 respectively. This means their natural loss rates (Le. loss/death due to other causes 
besides HIV /AIDS) are given by 1-l1 = 1/25 = 0.04 and 1-l2 = 1/37 = 0.0276. 
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AIDS-related death rates. Once an individual is infected with HIV, it is reported that the mean duration 
of infection ranges from 8.6 -19 years, although several studies offer inconsistent results about this parameter 
[18]. Here we assume that since health care in South Africa is often poor or lacking in quality, the average 
remaining working life of an infected TD or CSW is relatively short. So we take 8;1 = 8.6 years, which 
translates to an AIDS-related death rate of 8i = 1/8.6 = 0.116 years- 1 for i = 1,2. 

Initial population of TDs. We take the total initial population of TDs to be the size of the workforce 
in the transport industry as reported in [12], or N1 (0) = N1 = 239,000. Note that often an assistant will 
accompany a TD on a long-distance trip, and the assistant is very likely to be involved in sexual relationships 
with CSWs. For simplicity, we take the number of workers in the transport industry (which consists of TDs, 
assistants and packers) to be the total number of TDs. 

Initial population of CSWs. According to [10], at a typical South African truck stop, approximately 
300 prostitutes service about 1000 men. So we take the initial population of the CSWs to be N2 (0) 
(300/1000) * N1(0) = 0.3 * 239,000 = 71,700. 

Table 2 summarizes the parameters used in the model simulations. 

I Parameter Value 

contact rate from CSWs to TDs, (321 0.192 
contact rate from TDs to CSWs, (312 0.192 
natural loss rate of TDs, J.L1 0.04 
natural loss rate of CSWs, J.L2 0.0276 
loss rate of TDs due to AIDS, 81 0.116 
loss rate of CSWs due to AIDS, 82 0.116 
max number of TDs available for recruitment, A 15000 
initial population of infected TDs, h(O) 2500 
initial population of susceptible TDs, Sl(O) 236500 
initial total population of TDs, N1(0) = N1 239000 
initial population of infected CSWs, h(O) 1000 
initial total population of CSWs, N2(0) 71700 

Table 2: Parameters used in the switching model simulation. 

2.5 Deterministic Core-Group Model with Switching Function 

Assume that at some point in time, the recruitment of TDs will reach a maximum value. Let h(N1 ) = 
min{ A, J.L1N1 + 81Id. We will henceforth call the model" Model I" when h = J.llN1 + 8111, and call the 
model" Model 2" when h = A. 

Suppose A, J.L1, N 1, and 81 are constants. We define A to be the maximum number of males willing to 
work as TDs per year, N1 to be the initial (desired) number of TDs before the introduction of the disease, 
N1 (t) to be the number of TDs at time t, and J.L1, 81 as before. Notice that in the presence of the disease, 
the number of TDs at time t, N 1(t), will never exceed N1 so that N1(t) ~ N 1. The switch is continuous (Le. 
there are no jumps) because h switches exactly when the two values A and J.L1N1 + 81h are equal. 

In Model~l, we have Nf = J.L1N1 - J.llN1(t) = J.L1(N1 - N1). So if N1 < N1, then Nf > 0, or the total 
population of TDS, N 1, will increase. N1 will increase until is approaches N 1. 

In Model 2, Nf = A - (J.ll + 81X1)N1, which has a unique equilibrium value: +~ . The more infected 
ILl lXl 

TDs there are, the lower the equilibrium value becomes. 
In a broader sense, Model 1 can be interpreted as the model when the supply of TDs equals the demand 

of TDs. In Model 2, the presence of the HIV virus causes a decrease in the number of TDs, since the 
recruitment rate remains constant while the rate at which TDs are lost increases. 

2.6 Model Simulations 

Note: R5 = 2.44 
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Figure 6: In this simulation, we assume that the maximum number of men available,A, is 15,000. 

Simulation 1 
In Figure 6, the graph of h (t) vs. t depicts the evolution of the population of infected TDs as a function 

oftime. The switch from Modell to Model 2 occurs when II (t) = 46,900, then h (t) stablizes at the endemic 
equilibrium (EE) Ii = 49,732 after appoximately 150 years. The graph of IVI vs. t represents the total 
desired population of TDs over time t. This graph illustrates the switch from Model 1 to Model 2 more 
clearly. The desired population of truck drivers IV1, remains constant for approximately 120 years and then 
begins to decrease towards the EE Ni = 230,000. The third figure depicts the switching function. When 
the recruitment rate reaches its threshold of 15,000 people, it switches to Model 2. 

Simulation 2 
In Figure 7, h(t) reaches the EE about 30 years earlier than in the previous simulation at Ii = 33,155. 

After 3,790 TDs are infected, which takes place after 7.2 years, the switch from Modell to Model 2 occurs. 
The graph IV1 vs. t displays IVI decreasing to the EE at Ni = 153,857 faster than in the previous simulation, 
which is a difference of approximately 75,000 individuals. The switch also occurs much earlier, as shown in 
the third figure. 

3 Stochastic Model 

We attempt to analyze the future impact of the HIV epidemic in the transportation sector mainly through 
its effect on TDs. First we need a model for the progression of the disease in this group. The underlying 
mode of transmission is complex since it involves a specific pattern of AIDS transmission that is dependent 
on the road structure and the availability of sex workers along the routes. These factors are neglected in 
the model, which assumes random mixing. Although we previously considered two-sex models, we will now 
make some simplifications that will allow us to keep track of infected TDs alone. That is, we consider that 
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Figure 7: In this simulation, we assume that the maximum number of men available, A, is 10,000. 

the source of an infection of a TD is another TD, although in reality the infection occurs trough the CSWs. 
In order to do this, we approximate the contact number to be equal to the value of R5. R5 represents the 
average number of secondary infections caused by an infected TD on other TDs. 

The simplest model to use would be an SIR model with recruitment, and the effect of the AIDS epidemic 
on the TDs at some time t would be the number of TDs who died from the disease at that time R(t), but 
we now take a slightly different approach, and concentrate our efforts in analyzing the potential difficulties 
in the recruitment of new TDs. That is, in our model, every TD who died from the disease is immediately 
replaced bya new, susceptible TD, and the disease continues to evolve. The total number of replacements 
accumulated at an arbitrary time t corresponds to R(t), but then our model has the same properties as an 
SIS model since every removal is an instantaneous addition to the number of susceptibles. By keeping track 
of the number of transitions (deaths) from state I to S we are then able to account for the total number of 
removals at a particular time t, and avoid the complications of higher dimensional systems. 

3.1 Results of the Stochastic Model 

Figure 8 is a schematic representation of the stochastic model. As before, let S(t), I(t) denote the classes 
of susceptible and infected TDs respectively. Let (3 be the number of contacts per year, 8 be the mortality 
rate due to AIDS, and N(t) be the total number of TDs. Then the equations which describe the model are: 

dS I 
dt'=-(3N S + 81 (34) 

~! = (3 ~S - 81. (35) 
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Figure 8: This figure depicts the SIS stochastic model. 

Assuming a constant total population of TDs, N, we can rewrite the system as 

dI = j3I(N - 1) _ OJ 
dt N ' 

(36) 

that is, we get a form of the logistic equation. Unfortunately, the expected or average value of the number 
of infectives at time t is not given by a logistic expression. However, in order to illustrate our approach we 
will assume that 

IoN(j3 - 5) 
I(t) = 1310 + ((13 + 5)N - j3Io)e-((3-8)t' 

(37) 

where 1(0) = 10 , This sufficiently approximates the expected number of infectives at time t. An equilibrium 
is achieved when the number of susceptibles becoming infected equals the number of infecteds recovering, or 
when j3ISjN = OJ =}- I = N - 5Njj3. 

Our goal is to illustrate a method for answering the following question: given a fixed time horizon t*, 
how many TDs had died by time t* (when there will be an expected number of infecteds equal to I(t*))? 
This is equivalent in our model formulation to counting the number of recoveries, or 1 to S transitions. In 
this way, we wil be able to find the expected number of TD deaths at time t* necessary to achieve I(t*) 
infecteds. 

In order to elucidate the problem, consider an example of a person walking up a flight of stairs. At each 
step, the person can either go up or step down. Let Pd be the probability of going down one step and 1 - Pd 
be the probability of going up one step. The question we wish to address is: how many backward steps 
will the person make before going up? To answer this question, suppose the person is at step k. There is 
a random variable, defined as the total number of backward steps the person must make before ascending 
to step k + 1. Then associated with this random variable is Tk, which we define to be the expected number 
of backward steps necessary to get to step k + 1. Using first step analysis [28], we obtain the following 
expression for Tk: 

(38) 

where Tl = 0, Le. we assume that at the first step, the person can only go forward. In equation (38), we see 
that the person can either go forward with probability (1 - Pd) (which corresponds to the first term on the 
right-hand side), or he can go backward to step k -1, in which case the expected number of backward steps 
Tk, is increased by 1 plus the expected numbers of backward steps he needs to get to steps k and k + 1. 

Using recursion, we obtain the following expression for Tk: 

(39) 

This expression is valid when Pd is a constant. However, in dealing with AIDS infections, the probability of 
a person dying is not necessarily constant. In fact, we have that the probability of becoming infected and of 
being removed are, respectively, 

j3I(N - I)jN 
Pin! = j3I(N - 1)jN + OJ (40) 
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SI M 
Prem = f3I(N - I)/N + H = f3(N - I)/N + S' 

( 41) 

As shown above, the probability of being removed is dependent on the number of infecteds I. We can view 
the problem in terms of the stair-walking problem, but with Pin! corresponding to the probability of a person 
going up a step, and Prem corresponding to the probability of the person descends a step. Now we can see 
that the expected number of deaths that must occur before one new infected is added to the TD population 
is 

(42) 

where 
S SN 1 

Pk = f3(N - I)/N + S = /3 (N - I)' 

Substituting the above expression into equation (42), we get 

k-1 (SN) i i-1 1 

Tk= L /3 n (N-(k- '))" 
t=1 J=O J 

(43) 

3.2 Parameter Estimation 

Here we analyze studies and data on the parameters for the stochastic model. 
Contact rate and average lifetime of a TD. The rate of infectious contact, f3, depends on the total number 

of contacts per TD and CSW per unit of time, and the probability of female-male as well as male-female 
transmission per contact. We found that on average, the number of contacts per TDs per month is 2 [7], and 
that for every ten TDs there are three CSWs available per month [12]. This implies that the contact per 
CSW is ten thirds that of a TD. As mentioned in section 2.4, the per-contact probability of female to male 
transmission range is from 0.0003-0.0050, and the per-contact probability of male to female transmission 
range is from 0.0005-0.007. We also assume that TDs and CSWs are groups at high risk of infection, thus 
we take the probability of infection to be the upper bound of these ranges. The total number of contacts 
per TD per year is estimated to be 24. It has been estimated that the average duration of an infection, S-1, 
is 8.6 years [18]. Thus each infectious TD has a total of 24 x 8.6=206.4 infectious contacts in a lifetime. 
On the other hand, the total number of contacts per CSW per year is estimated to be ten thirds that of a 
TD, that is, (10 x 206.4)/3=688. As the female-male and the male-female transmissions are .005 and .007 
respectively, the total number of effective contacts during an infectious life is 206. 4 x 0.007 x 688 x 0.005 = 
4.97. Consequently, the effective number of contacts per TD per year is f3=4.97/8.6. 

Population of TDs. We have an estimated initial population of TDs, N, of 239,000 [12], but for modeling 
purposes we rounded it up to 250,000. We suppose that the initial number of infective TDs is 10% of the 
total population of truck drivers, that is, 10 = 25,000. 

3.3 Results of the Stochastic Model 

Figure 9 shows the average behavior of the stochastic model using the parameters discussed in the previous 
section for the next five years3. The continuous line represents the average number of TDs infected, given 
by the logistic equation (37). The dotted line represents the accumulated expected number of deaths among 
TDs, which is given by our expression (43). At time zero we observe there are 25,000 TDs infected and no 
accumulated deaths. Within five years the expected number of infected TDs increases to 117,830 whereas 
the total accumulated deaths reaches 68,980. Forty-two percent of those deaths occurred after the fourth 
year and approximately fifty percent occurred after 3.3 years. 

3Equation (43) is cumbersome and requires a large amount of computational resources for N = 250,000 and a forecast 
exceeding five years. 
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Figure 9: This figure illustrates a forecast of the behavior of the stochastic model. 

4 Conclusion 

4.1 Analysis of Economic Implications: Switching Model 

Our main concern is with the spread of AIDS in the tranport industry and the resulting economic implica
tions. We assume that in South Africa, economic health is directly related to the TD population in that 
a stable non-zero TD population implies a healthy economy. During our simulations, we analyzed different 
values for A and observed the impact of Ni. The more men available for recruitment yields a relatively high 
equilibrium value for Ni, and a large enough A results in Ni > N1 , indicating a sufficient population of TDs. 
On the other hand, a low A value results in a considerably lower equilibrium value and a crucial decrease 
in the TD population. This suggests that the value of A is significant to the stability of the TD population 
and the fortitude of the economy. It is predicted that 432,000,000 goods and supplies were transported by 
the trucking industry in 1999 [29]. When Nl =: 239,000, approximately 1,812 metric tons of goods and sup
plies are transported per TD. As Nl decreases, the amount of goods transported decreases, posing a major 
threat on the economic status of the continent. Sufficient food and medical supplies may not be effectively 
distributed throughout SSA, which may result in starvation and a decrease in adequate medical attention in 
many small towns and communities, as well as bring about financial hardship in the transport industry. 

4.2 Analysis of Economic Implications: Stochastic Model' 

We observe that in five years approximately 68,980 new TDs will be needed to replace the deceased TDs. 
This required level of replacement seems unattainable. It is often difficult to quantify the economic cost of 
the loss of skilled professionals such as doctors, teachers, nurses, etc. However, in the case of TDs we can 
assume that if a fraction f of TDs can be replaced, the economic cost would be (1 - f) * C, where C is 
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the total value of goods transported by TDs. South African authorities should be aware of this potential 
problem developing within a short period of time. It may be advisable to increase the current efforts of 
prevention among TDs and CSWs so that economic losses are less harmful. This would be the most likely 
scenario if the epidemic maintains its current development. 
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6 Appendix 

6.1 Switching Model 

Below is the MATLAB code for the switching model. As shown below, we use the Runge-Kutta method to 
numerically integrate the system of equations. 
function [tvals,xvals]=rkm(tO,tf,xO) 
% 
% rkm.m 
% 
% RUNGA-KUTTA METHOD FOR NUMERICALLY INTEGRATING ODES 
% 
% [t,x]=rkm(ti,tf,[I10;I20;N10]); 
% 
% ti = initial time 
% tf = final time 
% 110 = initial pop of infected TDs 
% 120 = initial pop of infected CSWs 
% S10 = initial pop of susceptible TDs 
% 
% SAMPLE RUN ON COMMAND PROMPT 
% [t,x]=rkm(0,150, [2500;1000;236500]); 
% plot Ii vs. t 
% plot(t,x(1,:)); 
% plot N1 vs. t 
% plot(t, x(1,:)+x(3,:)); 
% plot the switching function 
% f = min (L, u1*N1+d1*I1) 
% f=min(15000,.04*239000+.116*x(1,:)); 
% plot(x(1,:),f); 

global b21 b12 n2 u1 u2 d1 d2 L n1 
b21=.192; % contact rate from CSWs to TDs 24*.008 
b12=.192; % contact rate from TDs to CSWs 
n2=71700; % total pop of CSWs = .3*n1 
u1=.04; % loss rate of TDs due to causes other than AIDS = 1/(62-37) 
u2=.0276; % loss rate of CSWs due to causes other than AIDS = 1/(62-25) 
d1=.116; % death rate of TDs due to AIDS = 1/8.6 
d2=.116; % death rate of CSWs due to AIDS = 1/8.6 
L=20000; % max # of males available to be hired as TDs 
n1=239000; % total pop of TDs 

h=.01; 
n=round((tf-tO)/h); 
x=xO; 
t=tO; 

tvals=tO; 
xvals=xO; 

fc=feval('derivs1',t,x); 

for j=1:n 
if x(1) «L-u1*n1)/d1 

% integrate 
% model 1 



else 

end 

(L-u1*n1)/d1 
[t,x,fc]=RKstep('derivs1' ,t,x,fc,h); 
xvals=[xvals x] ; 
tvals=[tvals t]; 
t 

% model 2 
[t,x,fc]=RKstep('derivs2' ,t,x,fc,h); 
xvals=[xvals x] ; 
tvals=[tvals t] ; 

end 
%****************************************************************************** 
function [tnew,ynew,fnew]=RKstep(fname,tc,yc,fc,h) 
%yc=ic; 

k1 h*fc; 
k2 h*feval(fname,tc+(h/2),yc+(k1/2)); 
k3 h*feval(fname,tc+(h/2),yc+(k2/2)); 
k4 h*feval(fname,tc+h,yc+k3); 
ynew yc +(k1 + 2*k2 + 2*k3 +k4)/6; 

tnew tc+h; 
fnew feval(fname,tnew,ynew); 
%******************************************************************************* 
% MODEL 1 
function dx=derivs1(t,x) 

global b21 b12 n2 u1 u2 d1 d2 L n1 

dx=[b21*x(2)*(n1-x(1))/n2-u1*x(1)-d1*x(1); b12*x(1)*(n2-x(2))/n1-(u2+d2)*x(2);u1*n1+d1*x(1)-u1*(n1-x(1 
%******************************************************************************* 
% MODEL 2 
function dx=derivs2(t,x) 

global b21 b12 n2 u1 u2 d1 a2 L 

%***~*************************************************************************** 
%Code for Simulations 

[t,x]=rkm(O,200,[2500;1000;236500]); 
subplot(221),plot(t,x(1,:),'b'); 
hold on 
xlabel('time (years)'); 
ylabel('infected TDs'); 
hold off 
subplot(222),plot(t,x(1,:)+x(3,:),'m'); 
hold on 
xlabel('time (years)'); 
ylabel('total pop of TDs'); 
hold off 
f=min(15000, .04*239000+.116*x(1,:)); 
subplot(212),plot(x(1,:),f); 
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hold on 
title('Switching Function'); 
xlabel('I_1(t)'); 
ylabel('recruitment rate f_1'); 
hold off 

6.2 Stochastic Model 

Below is the MATLAB code for the stochastic simulation. 

function A = m41(N,beta,delta,T,iO,howmany) 
% N = TOTAL POP. SIZE 
% beta = CONTACT RATE 
% delta = recovery rate (death rate) 
% T = stopping time 
% iO = initial number of infected 
% howmany = number of simulations 
% m4(250000,4.97/8.6,1/(8.6),1*5,2500,1) 
hold on 
for h = 1 : howmany 
infected = 0; 
A = zeros(10000,3); 
% for i = 1 : howmany 

% allocating memory (runs faster!!!) 
% keeping track of the simulation 

row = 1; 
I = iO; 
current_time = 0; 
current state = [0 I 0]; % [time 
dead = 0; 
pack 
integral = 0; 
while current_time < T & I > 0 

A(row,:) = current_state; 
infrate beta*I*(N-I)/N; 
remrate = delta*I; 
totrate = infrate+remrate; 
pinf = infrate/totrate; 
next_ev = -log(rand)/totrate; 
integral = integral + next_ev*I; 
if rand < pinf 

I I + 1; 
else 

I I - 1; 
dead = dead +1; 

end; 
row = row + 1; 

0, iO initial infected] 

% time to next event 

current_time = current_time + next_ev; 
if row > 950 
A = [A; zeros(1000,3)]; % adding more rows 

end; 
current state = [current_time I dead]; 

% pause 
end % {of while} 

A=A(i:row-1,:) ; 
result(h)=A(end,2); 



deaths(h)=A(end,3); 
%plot'ting starts here 
xa = A(~,1);ya = A(:,2); 
za = A(: ,3); 
%subplot(2,1,1) 
%plot(t,f,'k--') 
%hold off 
integra12(h)=integral; 
h 
end; 
%result 
%subplot(2,1,2) 
%hist(result) 
%This part calculates the expected number of dead people 
Tk(1)=O; 
proye (1, : ) = [1 0] ; 
for k = 2 : N 

end; 
clc 

pd = N*delta/(delta+beta*(N-k»; 
Tk(k) = pd*(1+Tk(k-1»/(1-pd); 
proye(k,:)=[k Tk(k)]; 

proye=[proye cumsum(proye(:,2»]; 
% logistic growth 
%f = N*(beta-delta)*exp(t*beta)./(beta*exp(t*beta)-exp(t*delta)*(beta-N*beta+N*delta»; 
g=(beta-delta); 
t = .01: .01:T; 
f = ((beta-delta)*iO*N*exp(beta*t»./(exp(beta*t)*iO*beta-exp(delta*t)*(iO*beta+N*(delta-beta»); 

. f2 = ceil (f) ; 
f=f' ;f2=f2'; 
est = proye(f2-1,3); 
plot(xa,ya, 'k-' ,t,f, 'k-.' ,xa,za, 'b--' ,t,est, 'r:') 
legend('infectious','forecast','dead','forecast') 
hold off 
[infected/howmany f2(end)] 
mean (integra12) 
mean (deaths) 
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