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Abstract 

The joint evolutionary dynamics of dengue strains are poorly understood despite 
its high prevalence around the world. Two dengue strains are put in competition in 
a population where behavioral changes can affect the probability of infection. The 
destabilizing dynamic effect of even "minor" behavioral changes is discussed and their 
role in dengue control is explained. 
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1 Introduction 

Dengue, a mosquito-transmitted disease native to tropical and subtropical climates, was 
first clinically diagnosed over 200 years ago. However, only recently have scientists begun 
systematic explorations of dengue, discovering that there are four coexisting strains of the 
virus around the world. Each strain of dengue is antigenically distinct, meaning that infection 
caused by one strain of dengue does not confer immunity to infection from another strain. 
Dengue infection is characterized by the sudden onset of fever, severe headaches, myalgias 
and arthralgias, leukopenia, thrombocytopenia and on rare occasions infections can lead to 
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the fatal Dengue Haemorrhagic Fever (DHF). There are betweep. 50 and 100 million cases 
of dengue reported every year [8]. In this paper we expand upon the work of Esteva and 
Vargas [9] by including a latent (infected but not infectious) stage for the mosquitoes and 
the possibility of behavioral change in the host (human) after a first infection (i.e. previous 
infection with a dengue strain may cause the host to take precautions to avoid further 
infections). There is a theory that D HF is caused by the interaction of two different strains of 
dengue. The work in this paper is motivated by a desire to increase the understanding of the 
mechanisms behind the transmission dynamics of dengue and analyze regions of coexistence 
of the strains. The article is organized as follows: Section 2 briefly reviews the life-history 
and ecology of the mosquito as well as the epidemiology of dengue; Section 3 introduces 
the model for the transmission dynamics of dengue that includes two strains of the virus 
and a behavior change class; Section 4 includes the computation of the basic reproductive 
number; Section 5 discusses the existence of all equilibria; Section 6 shows the local stability 
of the disease-free equilibria and necessary conditions for the local stability of the endemic 
equilibria; Section 7 includes the global stability of the disease-free equilibria; Section 8 
introduces the effects of seasonal variations of the mosquito population on dengue infections; 
Section 9 is a statistical analysis of global dengue data; Section 10 uses parameters estimated 
from global data to numerically simulate dengue infection; Section 11 combines numerical 
simulations with seasonal variability; and Section 12 summarizes our results and conclusions 
of this work. 

2 Ecology of Aedes aegypti and the Epidemiology of 
Dengue 

Dengue, an arbovirus within the family Flaviviridae is transmitted by at least two species of 
mosquitoes: Aedes aegypti (the main vector) and Aedes albopictus. These mosquitoes have 
a four stage life cycle that consists of: egg, larva, pupa and adult stage. We will focus our 
discussion of the mosquito dynamics on Aedes aegypti because they feed mostly on humans 
while Aedes albopictus feed mostly on animals [12]. During the first stage eggs are laid just 
above the water line in both natural and artificial reservoirs of water. Ae. aegypti can lay 
150 eggs at once and about 1,400 eggs over her lifetime and these eggs can survive for up 
to one year in a dry state. Females feed on human blood approximately every 2 to 3 days 
and may lay eggs after feeding depending on the ambient temperature and environmental 
factors. After one or two days in favorable conditions, the eggs hatch and the mosquito 
enters the second stage of its life cycle, the larva. In preparation for the adult stage, seven 
to ten day old larva undergo metamorphosis in the pupa stage and emerge as an adult after 
a few days. Male mosquitoes only feed on plants and flowers. The average duration of the 
adult stage lasts between 15 to 20 days. 

Dengue outbreaks were first reported in Asia, Africa and North America between 
1779 - 1780. The exact number of dengue cases is unknown due to the large number of 
asymptomatic [18] and un-diagnosed infections. Four distinct serotypes coexist (DEN-I, 
DEN-2, DEN-3, and DEN-4) in various parts of the world [9]. Once infected by a certain 
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Vector System 
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Figure 1: The Model 

serotype, individuals acquire permanent immunity to that serotype, however there is no 
evidence of cross-immunity (reduced susceptibility to new strains conferred by past infec­
tions). The areas at greatest risk of dengue outbreaks are tropical and subtropical regions 
experiencing high levels of urbanization and increased deforestation [16]. 

Dengue transmission in humans occurs when an infectious mosquito bites an un-infected 
human. While there is some evidence of vertical transmission of dengue virus by Ae. aegypti, 
most dengue transmissions in mosquitoes are the result of un-infected mosquitoes biting 
infected humans. Once the mosquito is infected, the mosquito remains infected for the rest 
of its life, which is typically 8 to 12 days [12]. The virus produces symptoms that can last up 
to 14 days in humans. The most deadly form of dengue fever, Dengue Haemorrhagic Fever 
(DHF), is thought to be caused by the interaction of two or more serotypes [19]. 

3 The Initial Model' 

Let Nand M be the host and mosquito populations, respectively. For the hosts, a constant 
population with birth and death rate M is assumed. Due to the relatively low mortality rate 
associated with dengue [6], there is no disease induced mortality. The mosquito population 
is also assumed to be constant with birth and death rate Mm. 

The subscripts i, k = 1,2 where i =1= k is used to distinguish between the two strains. 
The host system is composed as follows: 5, represents susceptible hosts; Di , represents hosts 
initially infected with,strain i; Fi , represents hosts with secondary infection of strain i; Bi , 

represents hosts which change behavior after infection with strain i; R, represents hosts 
which recover from strain i; R, represents hosts that recover from both strains. 

{3i, represents the transmission rate of strain i from mosquito to host; "Ii represents the 
recovery rate of hosts infected with strain i, p, represents the proportion of individuals 
which change behavior; and Pk represents the transmission rate of strain opposite of i after 
changing behavior. Notice that {3i = Pi for simplicity in the analysis but also is a reasonable 
assumption since transmission to a particular strain is approximately equal. In the numerical 
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results we may vary Pj. 
The mosquito system is composed as follows: susceptible (adults) mosquitoes, V; mos­

quitoes infected with strain i but not infectious (latent), L i ; mosquitoes infectious with strain 
i, k ai, represents the transmission rate of strain i from host to mosquito; and <Pi repre­
sents the rate at which mosquitoes become infective after infection with strain i. Finally, 'ljJ 
represents the effectiveness of the behavior change in the human population. The following 
nonlinear ODE's are the model equations, represented by the mosquito and host (human) 
equations, respectively. 

dV 
-

dt 
dLl - -
dt 

dL2 - -
dt 
dJl - -
dt 
dJ2 - -
dt 

Dl + Fl D2 + F2 
ftm M - al V N _ 'ljJ(Bl + B2) - a2 V N _ 'ljJ(Bl + B2) - f-tmV 

Dl +Fl 
al V N _ 'ljJ(Bl + B2) - (f-tm + <PJLl 

D2+F2 
a2 V N _ 'ljJ(Bl + B2) - (f-tm + <p2)L2 

<PILI - f-tmJl 

<p2L2 - ftmJ2 

dS Jl J2 
- ftN - i3l S M - i32S M - ftS 

dt 
dDl 

dt 
dD2 

dt 
dBl 
dt 

dB2 

dt 
dFl 

dt 
dF2 

dt 
dRl 

dt 
dR2 

dt 
dR 
dt 

Jl 
- i3l S M - (f-t + IJDl 

J2 
- i32S M - (f-t + 12)D2 

J2 
pRl - PlBl M - f-tB l 

Jl 
- pR2 - P2 B2 M - ftB2 

Jl Jl 
i3l R2 M + P2 B2 M - (ft + Il)Fl 

J2 J2 
- i32 Rl M + PlBl M - (f-t + 12)F2 

J2 
- IlDl - i32 Rl M - (f-t + P)Rl 

Jl 
- 12D2 - i3l R2 M - (f-t + P)R2 
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where N = S + 2:Z=1(Di + Bi + Fi + ~ + R). 

To further simplify the analysis of the system we introduce the following variables to 
re-scale the model: x = -iT, Yi = IJf, Ui = !Jf, Zi = ~, Vi = Iff and w = ~ (host system). For 
the mosquito system we have the following: a = ~, li = fl and ji = fJ where i, k = 1,2. 
Since both the host and mosquito populations are assumed to be constant the system can 
be reduced by eliminating the R equation in the host system and the V equation in the 
mosquito system. The following is the re-scaled model: 

x, - p, - f3i Xji - f3kxjk - p,x, 

Yi' - f3i Xji - (p, + 'Yi)Yi, 

Ui' - PVi - Piudk - P,Ui, 

Zi' - f3iVkJi + PkUkJi - (p, + 'Yi)Zi, 

Vi' 'YiYi - f3k vdk - (p, + P)Vi' 

4 Basic reproductive number 

(1) 

(2) 

(3) 
(4) 
(5) 
(6) 
(7) 

The basic reproductive number represents the number of s.econdary infections caused by a 
"typical" infectious individual in a mostly susceptible population when the disease is rare. 

Using the next generation operator approach of [3J to calculate Ro, the Jacobian of the 
infectious classes (Yi,Zi,ji where i =1,2) is as follows: 

-("(1 + p,) 0 0 0 f31! 0 
0 -("(2 + p,) 0 0 0 f32! 
0 0 -("(1 + p,) 0 f3fu 0 1M 

A= 0 0 0 -("(2 + p,) 0 13& (8) 2M 
aliP1 * 0 a1<l>1* 0 -P,m 0 
¢1+J.Lm ¢1+J.Lm 

0 a2¢2* 0 a2¢2* 0 -P,m ¢2+J.Lm ¢2+J.Lm 
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The basic reproductive number, R o, for each strain is calculated from the eigenvalues of 
the matrix M . V-I where M and V are the decomposition of A such that V consists of the 
diagonal elements of A where 

A=M-V 
with M and V > O. 

Then the, basic reproductive number, Ro of the system is defined as: 

(9) 

where 
CI!-i¢)i (3i 

P,m (P,m + ¢i) (p, + "Ii) . 

In this case the Ro can be interpreted as follows: First, 1/ P,m, is the average lifespan of the 
mosquito; ¢i/(P,m + ¢i), average time spent in the latent stage by mosquitoes; 1/(p, + "Ii), 
average infectious period of the host (human); and (Xi, (3i are the transmission rates of 
mosquito and host respectively. 

For simplicity it is assumed that both strains are as likely to infect individuals at risk. 
Also, note that dengue virus strains are antigenically distinct and therefore one could be 
more infectious or result in worse illness, but our purpose lies on studying the dynamics of 
two arbitrary strains and find the regions of existence and co-existence when social dynamics 
are incorporated. 

Next, a local sensitivity analysis is performed on the parameters relevant to the basic 
reproductive number, that is, ¢i, (Xi, "Ii, p" and P,m. And, the parameter with the greatest 
value is the most sensitive in reducing Ro when parameters are varied locally. Next, using 
[5J we have the following table: 

Table 1: Sensitivity Analysis, i E (1,2). 

A #-r, BAQ Value 

¢i ~ <1 /-lm+<Pi 
Qi 1 =1 
{3i 1 =1 
'Yi ......l:!:- < 1 

/H'Yi 

/l- ~ <1 
'Yi+/-l 

/l-m 
2/-lm+<Pi >1 J.Lm+?ii." 

Where the greatest value is obtained by the parameter p,m (Table 1). In biological terms, 
this implies that by reducing the natural mortality rate of the mosquitoes using insecticide 
or other control method, the basic reproductive number can be reduced. The questions ad­
dressed in this paper are most relevant to social behavior when exposed to multiple infections 
of dengue fever and possibly the worst case of infection, dengue haemorrhagic fever. 
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5 Existence of disease-free and endemic equilibria 

The system has a disease-free equilibrium, ~o, when neither strain is present and two nonzero 
equilibria, ~r and ~;, where one of the strains is present but not both. 

~~ - (1,0,0,0,0,0,0,0,0,0,0,0,0), 

~~ = (x, Yl, 0, 0, 0, Vl, 0, Ul, 0, h, 0, jl, 0), 
~; (x, 0, Y2, 0, 0, 0, V2, 0, U2, 0, l2' 0, j2). 

(10) 
(11) 
(12) 

Based on the symmetry of the system we have the following solutions for the solutions for 
the endemic state. 

l~ 
J-lJ-lmCRi - 1) 

(13) t (3i¢i(1 - Oi + Vi) , 

.* J-l(ni - 1) 
(14) Ji -

(3i(1 - Oi + Vi)· 

x* 
Vi + 1 - Oi 

(15) -
Vi + n i - Oi' 

Y; J-l(ni - 1) 
(16) -

(J-l + Ii) (ni - Oi + Vi) , 

U~ 
Oi(ni - 1) 

(17) t -
'lj;(ni - Oi + Vi) , 

v~ 
J-lli(ni - 1) 

(18) t -
(J-l + Ii) (J-l + p) (ni - Oi + Vi) , 

Where 

o. - P'lj;'i 
t - (J-l+P)(J-l+,i)' 

and 
ai J-l 

Vi = ---. 
J-lm J-l + Ii 

Two quantities show up frequently in the analysis of our equilibria and have the following bi­
ological meaning: Oi, represents the risk of being infected with a second strain after changing 
behavior and Vi represents the efficacy of human transmission of dengue to mosquitoes. For 
Oi, 'lj; is the effectiveness of behavior change, P is the proportion of individuals that change 
behavior, Ii is the recovery rate from strain i, Id(J-l+,i) is the proportion of individuals that 
survive from infection to the recovered class; and p/(J-l + p) is the proportion of individuals 
that survive to the behavior change class, Ui from the recovered class. For Vi, J-l/(J-l + Ii) 
is the proportion of humans that die in the infected class, ai is the transmission rate of 
infection from humans to mosquitoes, and 1/ J-lm is the average life span of mosquitoes. 
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Lemma 5.1. It is a necessary condition for the existence of the endemic equilibria that 
no > 1 and 6i < 1 J for i = 1, 2. 

Proof. From equation jt it is clear that no must be greater than one in order for the equilibria 
to exist. We are left to evaluate the inequality 6i < I, which is equivalent to 

Pli'lj; < (pas.terms) + liP. 

where 'lj; E [0,1). Hence, the inequality holds. This result also'implies the fact that when 
P = 0, 'lj; no longer affects the dynamics. 0 

6 Local stability of disease-free equilibria and neces­
sary conditions for the stability of endemic equilibria 

Next, the local stability of the disease-free equilibrium is determined. 

Theorem 6.1. Let ~ = (1,0,0,0,0,0,0,0,0,0,0,0,0) be a positive disease-free equilibrium 
of (1) - (7) then the disease-free equilibrium is locally asymptotically stable if and only if 

no < 1. 

Proof. The analysis results in the eigenvalues of the Jacobian1 matrix evaluated at the the 
disease-free equilibrium where, -1( of multiplicity two ), -f.L( of multiplicity three ), -(f.L + 
11), and -(f.L+'2). It remains only to verify that all the zeros of the cubic factors of (19)-(20) 
contain negative real parts. 

).3 + (2f.Lm + 11 + ¢h + f.L).2 + (f.Lm(f.Lm + (/h) + (f.L + Id(2f.Lm + <PI))). + 
f.Lm(f.Lm + <Pl)(f.L + Id(l - nd = 0, (19) 

and, 

).3 + (2f.Lm + 12 + <P2 + f.L).2 + (f.Lm(f.Lm + <P2) + (f.L + 12) (2f.Lm + <P2))). + 
f.Lm(f.Lm + <P2)(f.L + 12)(1 - n 2) = O. (20) 

From the Routh-Hurwitz criteria we have al > 0 and a3 > 0 if no < 1 since all parameters 
are nonnegative. Therefore, we are left to verify the condition ala2 - a3 > O. 

Thus, 

1 See Appendix 

8 



and, 

where i = 1,2. Hence, the Routh-Hurwitz criteria holds. 

0.8 j 
j 

O.S I '/1/ 

0.' I 
unstable 

a.e()1 

O.tool 

j 
0.1lIl6 

j i/l/ 

I O.Clll4 
stable 

I I 0.0012 

j j 
RO 

Figure 2: Forward bifurcations in terms of no. 

j 

) 

unstable 

(22) 

o 

In Figure 2 we have the forward bifurcations in terms of no and YI, UI, VI and jI' Clearly, 
when no < 1 the disease-free is stable and unstable otherwise. 

Proposition 6.2. It is a necessary condition for the local asymptotic stability of the endemic 
equilibria that (for i, k = 1,2, i i- k) 

(23) 

Proof. We show that all the eigenvalues of the sub-matrix G22 have negative real part. The 
problem easily reduces to determining the eigenyalues of the real part of the cubic factor of 
the characteristic polynomial, 

2See Appendix for terms h5 and h6 
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1
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91
2 

91
2 

91
2 

Figure 3: Regions of stability when a) a1 = /31 = 0.2, a2 = /32 = 0.2, 1'1 = 0.33, 'lj; = 0.5, 
p = 0.1 and b) a1 = a2 = 0.2, /31 = /32 = 0.5, 1'2 = 0.33, 'lj; = 0.9, p = 0.9 and c) 
a1 = /31 = 0.2, a2 = /32 = 0.5, 1'1 = 0.33, 'lj; = 0.5, p = 1. 

(24) 

of this sub-matrix. 
With aI, a2, and a3 the quadratic, linear, and constant coefficients, respectively. It is 

easy to see that al,a2 are positive, and that terms cancel sufficiently to prove a1a2 - a3 > o. 
The inequality of the proposition is, after substitution of the expressions of h5 and h6 , the 
condition that a3 > O. Thus, the inequality (23) insures that the Routh-Hurwitz criteria are 
satisfied and hence all eigenvalues have negative real part. 

o 

In Figure 3 there are four regions of stability for various parameter values. All parameters 
are taken from Table 2 except where noted. "DF" represents the disease free equilibrium 
that is stable when no < 1. Region I represents local stability of the endemic equilibrium 
for strain 1 when n 1 > 1 and region I I represents the analogous case for R2 > 1. Region 
I I I represents the co-existence of both strains. Different parameter values can greatly affect 
the size of region I I I, but not the overall dynamics of the stability regions. 
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7 Global stability of disease-free equilibria 

Next, the global stability of the disease-free equilibria is determined. 

Theorem 7.1. Assume f3i = Pk, for i 1= k, 'ljJ = 0 and Ro < I, then the positive 
disease-free equilibrium given by (10) is globally asymptotically stable on the domain n = 

{(x, Yi, Ui, Zi, Vi, W, a, li' ji)lx+ I:i=l (Yi+Ui+Zi +Vi) +W = 1, a+ I:i=lli + I:i=l ji = I} C lR~ 
for i = 1,2. 

Proof. We construct the following Lyapunov function, where i, k = 1,2 and i 1= k. 

where the orbital derivative is given by 

By inspection and with f3i sufficiently small but greater than /-Lm, £ ::; o. o 

8 Seasonal Variation Model 

We now examine a seasonal variation model that uses a recruitment function, which takes 
into account the seasonality of the mosquito population in some tropical regions. There 
is evidence that suggests the mosquito population is related to the number and location of 
breeding sites in a region [12]. Thus, during the rainy seasons there is an increase in breeding 
sites, which results in an increase in the population density of mosquitoes. This introduces 
seasonal variation to the mosquito population. 

To incorporate an approximation for the seasonal variation in the model, we choose a 
recruitment function that is periodic in time. Specifically, we choose a cosine function so that 
the rainy season corresponds to the peak of our function and the off-peak season corresponds 
to the minium of our function: 

7]0 + 7]1 cos (wt + ¢). 

We choose 7]0 to be the average recruitment rate such that our recruitment is always positive. 
We choose 7]1 such that our function is strictly positive. w is chosen such that it is liT where 
T represents the period of the seasonal variation (one year), t is unit time and ¢ is the phase 
shift. 

The host system remains invariant while the mosquito system has a change in the sus­
ceptible class as follows: 

11 
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dV 

dt 

(25) 

Note that now the mosquito system has a non-constant population. Therefore we add a 
new equation to the mosquito system: 

dM 
dt = i-tm M (770 + 771 COS(wt + ¢)) - 1). (26) 

9 World dengue data 

There has been growing interest concerning the prevalence of dengue in the world. In partic­
ular, the World Health Organization is making the attempt to increase the awareness of this 
disease by increasing the reported cases of dengue [20J. The number of dengue cases reported 
each year varies dramatically and has reached a peak in 1998 (see Figure 4), followed by a 
sharp decrease and a steadily increasing number of cases in the past few years. 

en 
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Year 

Figure 4: Large variations in World Dengue Cases. 

While dengue cases vary widely per year, there are also strong seasonal variations within 
a year. This phenomenon is most prevalent in tropical and sub-tropical climates like Puerto 
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Figure 5: World Distribution of Dengue, 2000. 

Rico as illustrated in Figure 6. In particular, there is a sharp decrease in dengue cases in 
February due to the start of the dry season. 

We can normalize the number of dengue cases by the mean value for that particular 
year and see that they each follow the same pattern: a marked drop in February followed 
by near constant numbers of cases (see Figure 6). Analyzing the percent variation makes 
this pattern very clear. In fact, February cases are generally over two and a half standard 
deviations below the mean, with a p-value ::::::: 0.0001 for the mean. This is a strong indicator 
that the seasonality displayed is not due to random noise and can be predicted (see Figure 
7). 

Another interesting aspect of our data comes in the ratio of cases per incidence. The 
ratio is nearly constant at 33.48 indicating that the parameter values of infectious force are 
nearly constant. This result supports the model and allows us to consider all parameters of 
infectious force as constants and independent of time. 
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Figure 6: Incidence of Dengue in Puerto Rico. 
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Figure 7: Periodic behavior of dengue in tropical areas. 
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10 Numerical Simulations 

For the simulations, the parameters ai, j3i, Pk, p, and 'ljJ were varied while maintaining /-l, /-lm, 
(h, and Ii constant. Parameter values and initial conditions are chosen to be biologically 
accurate as to display the behavior of our model. The parameters /-l, and /-lm were determined 
from dengue outbreak studies [10, 9]. For the rest of the section the values in Table 2 are 
used, unless otherwise noted for the specific simulation being discussed: 

Table 2: Parameter values and initial conditions 

Parameter Value State Variable Initial Value 
ai 0.5 a 0.9 
j3i 0.5 li 0 
Ii 0.14 ji 0.05 

/-lm 0.033 x 0.9 

/-l 0.00004 Yi 0.05 
¢i 0.1 Zi 0 
Pi 0.2 Ui 0 
'ljJ 0.5 Vi 0 
P 0.1 w 0 

In Figure 8 the system is considered when zero percent of the population leaving the recovery 
class and entering the behavior class changes its behavior after a primary infection, that is 
p = O. Note when p = 0, 'ljJ no longer affects the transmission dynamics of the system. The 
transmission dynamics of dengue continues to affect both mosquito and host populations 
without any intervening measures, such as implementing dengue control measures. Excluding 
the behavioral class, which remains at zero for all time, the mosquito and host systems display 
dampened oscillatory behavior. Damped oscillations display the transmission dynamics of 
dengue which appears in a population, disappears gradually, and then reappears in the 
population to eventually reach an equilibrium. 

Next in Figure 9, we consider the system when p = 1 and 'ljJ = 1. These are ideal 
conditions for effective control strategies initiated by a region infected with dengue serotypes 
since most of the population is taking some precautions and they are very effective. If these 
conditions are attained after dengue has been introduced into a population, the number 
and frequencies of oscillations will be decreased in both host and mosquito populations. 
Incorporating the behavioral change class in the dynamics of this system will result in greater 
damped oscillations in the infected host and mosquito populations. The damped oscillatory 
trend of the behavioral class represents the host population's response to the oscillatory 
nature of dengue transmission. A decrease in behavioral change practices results in the 
sudden reappearance of dengue in a population; subsequently, the population increases its 
behavioral change practices. 
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Zl and Z2, enhanced for clarity when p = 1 and 'lj; = 1. 

16 



(b) 1..<010111 Clava (u.lI"u":;udro,c:I,,,ily) 

_11 _11 .... ~ ---- ~ 

<;:2 0.1 

-;:i 0.09 

--" ... ":'-
30 40 50 60 70 eo 90 100 

TI"''' (day_) 

(c:) Second.,y In(eclion 

°o~~~~,~o~~~~~~~~~~~~~~,oo 
Tlm .. (dlOya) 

1 1.:2 1." 1.6 La :2 
TlmQ(dnya) K 10" 

3.5 " 10·' (d) Secgnd1il'y ",'eChon ,lOnhllnC"d (0' CI ... ,ly) 

2.5 

/\ A .... J\..~. -- _______ . _____ . ____ _ 
0." 0.6 0.6 1 1.:2 1.4 1.6 l.a :2 

Time (dey.) " 10~ 

Figure 10: (a) The secondary infection classes Z1 and Z2 (b) The secondary infection classes 
Z1 and Z2 enhanced for clarity (c) The latent classes hand l2 (d) The latent classes hand l2 

enhanced for clarity, when p = 0.1, 1/J = 0.5, Q1 = 1/3, /31 = 1/3, C¥2 = 1/2, and /32 = 1/2. 

In Figure 10, the system is analyzed with 10% of the population leaving the recovery 
classes to enter the behavior change classes and the effectiveness of their behavior change is 
50%, that is p = 0.1 and 1/J = 0.5. Strain 2 is the dominant strain in the population with 
Q1 < Q2 and /31 < /32 (Le. Q1 = 1/3 and /31 = 1/3). This conclusion can be easily seen 
for Figure 12, (a) and (b), the latent stage of the mosquito system, where the largest peak 
corresponds to the dominant strain present in the population. However, (c) and (d), the 
secondary infection classes, must be analyzed from a different perspective. Due to the large 
amount of susceptible host population entering the primary infection class of strain 2, these 
individuals will be taking precautionary measures for the prevention of becoming infected 
with strain 1; this results in a larger population entering the secondary infection class of 
strain 1. The same will also be true for the behavior class of strain 1. 

In Figure 11, the system is also considered when p = 0.1, but the effectiveness of there 
behavior change is 0, i.e. 1/J = O. The transmission rates of infection are unequal, that 
is Q1 = 1/3, /31 = 1/3, Q2 = 1/2, /32 = 1/2, and Pi = 1/5. In this case, a portion of 
the population leaving the recover classes and entering the behavior classes is implementing 
dengue control methods, but their preventive measures are not effective in decreasing the 
spread of infection. Strain 2 is the dominant strain in the population. Due to the large 
amount of the population entering the primary infection class of strain 2, these individuals 
will be changing their behavior in the prevention of becoming infected with strain 1; this 
results in- a larger population of the previously specified population entering the behavior 
class and secondary infection classes of strain 1. 

Finally in Figure 12, the system was simulated with parameter values that will result in 
R2 < 1, that is the population will be rid of dengue infection. For R2 < 1, we let Q2 = 1/15 
and /32 = 1/15. Thus, strain 2 vanishes as time increases and will not reappear in the 
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Figure 11: (a) The behavior classes UI and U2 (b) The behavior classes UI and U2 enhanced 
for clarity (c) The secondary infection classes Zl and Z2 (d) The secondary infection classes 
Zl Z2 enhanced for clarity, when p=O.I, 7j; = 0, <:Xl = 1/3, f31 = 1/3,<:X2 = 1/2, and f32 = 1/2. 

population. 

11 Simulations with Seasonality 

The introduction of seasonality requires 4 control parameters: TJo which controls the growth 
of the mosquito population, TJI which controls the strength of the seasonality, w which con­
trols the frequency of oscillation and ¢ which controls the phase of oscillations. The control 
parameters playa large role in determining the dynamics of the system. TJo dictates whether 
the population will eventually die out, go unbounded, or reach a steady mean value. Os-
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Figure 12: YI when RI > 1 and Y2 when R2 < 1. 
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Figure 13: Yl when Rl > 1 and Y2 when R2 < 1. 

ciIlations in both mosquito and host classes can be induced by T}l and w can determine the 
nature of the oscillations while ¢ is the phase shift. The most important feature, however, 
is that the seasonality term is an explicit function of time. That is, the system of equations 
is now non-autonomous. This adds a great deal of complexity to the analysis and numerical 
solutions were sought in order to address this issue. Figure 13 is a summary of our results. 
We see that adding the seasonality term has a tremendous impact on the total mosquito 
population. It was previously assumed that the mosquito population was constant and that 
allowed for the re-scaling of the system of equations, transforming them into a very tractable 
form. Figure 13 (a) clearly shows that the total mosquito population is not constant and in 
fact is periodic in time. In Figure 13 (b) we see that while these periodic oscillations are also 
evident in the number of susceptible mosquitoes, the dynamics of that class are dominated 
by the initial growth and decay terms. The oscillations are of very low amplitude and do 
not effect the overall dynamics signficantly. Looking at Figure 13 (c) and (d), there is little 
change between the system with seasonality and without. 

12 Conclusions 

A model for the transmission dynamics of two strains of dengue, a mosquito-transmitted dis­
ease, was formulated and analyzed with the incorporation of a behavioral change class. In a 
region where two serotypes of dengue are present, the incorporation of a behavioral change 
class may be essential to more accurately model host and mosquito populations in efforts 
to implement disease control methods. After a primary infection and the severe medical 
complications that may accompany the infection, a once primary infected susceptible indi­
vidual may change his or her behavior to prevent a possible secondary infection. The model 
shows that the rate of secondary infections is influenced greatly through the incorporation 
of a behavioral change class. As to further incorporate factors that may influence the trans­
mission dynamics of dengue, we formulated and analyzed a model incorporating seasonal 
variations in the mosquito population. Dengue outbreaks may occur during dry seasons and 
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periods of non-elevated mosquito populations, this second model shows elevated populations 
of mosquitoes associated with rainy conditions insufficiently affect the transmission rate of 
infection in both host and mosquito systems [12]. 

In the initial model, the local and global stability of the disease free equilibria and the 
existence of two possible endemic equilibria were established. Incorporating the behavioral 
change class, Oi, the risk of being infected with a second strain after changing behavior, is 
an important limitation for the existence of endemic equilibria, as well as Ro. 

When we add seasonal variation to our initial model, we get oscillations in the total 
mosquito population, but the overall dynamics remain unchanged. 

The two framework presented attempt to more accurately model two factors that may 
affect dengue transmission dynamics, host population behavioral change and seasonal vari­
ations of the mosquito population. Our results support the necessity of a behavioral change 
class to model the transmission dynamics of dengue. A behavioral change constitutes any 
control methods implemented by a once primarily infected, susceptible population. Any 
proportion of that population implementing control methods results in a dramatic decrease 
of the infectious and infected mosquito population rates as shown in section 8 outlining nu­
merical simulations. Control methods instituted by those individuals may be an effective 
method to control dengue outbreaks. Heighten control methods implemented continuously 
may also be an effective method to lessen the rate of dengue outbreaks. 

Social behavior plays a major role in the evolution of infectious diseases. There are 
tremendous challenges in modeling social dynamics. Provided the implementation of better 
measures is not effectively communicated to the public, and therefore progress is not being 
made. We are our best allies in fighting diseases, but innovating methods must be presented 
in order to have a bigger impact on future generations. 
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14 Appendix 

The Jacobian of the system (1) - (7) is given by, 

J({) = [J1 J2] 
h J4 

where, 

J1 = 
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Also, for convenience the order of the system in the Jacobian matrix is, 
[= (Y2,V2,U2,l2,j2,Z2,Y1,V1,U1,ir,j1,Zl,X). 

At a disease free equilibrium [*(DF) = (1,0,0,0,0,0,0,0,0,0,0,0,0) it reduces to 
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-(/-L+'"Y2) 0 0 0 f32 0 0 0 0 0 0 0 0 
"12 -(/-L+p) 0 0 0 0 0 0 0 0 0 0 0 
0 P -/-L 0 0 0 0 0 0 0 0 0 0 

0<2 0 o -(/-Lm+<P2) 0 0<2 0 0 0 0 0 0 0 
0 0 0 <P2 -/-Lm 0 0 0 0 0 0 0 0 
0 0 0 0 f32 -(/-L+'Y2) 0 0 0 0 0 0 0 
0 0 0 0 0 0 -(/-L+'Y1) 0 0 0 0 0 0 
0 0 0 0 0 0 "11 -(/-L+p) 0 0 0 0 0 
0 0 0 0 0 0 0 P -/-L 0 0 0 0 
0 0 0 0 0 0 0<1 0 0 -(/-Lm+<Pl) 0 0<1 0 
0 0 0 0 0 0 0 0 0 <P1 -/-Lm 0 0 
0 0 0 0 0 0 0 0 0 0 0 -(/-L+'Y1) 0 
0 0 0 0 -f32 0 0 0 0 0 -f31 0 -/-L 

The Jacobian matrix corresponding to the endemic equilibria is as follows, where 
( = (x, Y2, Z2, U2, V2, l2' )2, Yl, ZI, Ul, VI, ll' jl): 

J(~-:'(EE)) = [~1 ;2] . 
where, 

-ILCn 2-1) 
/-L 0 0 0 0 0 -!32 C"2+1-o2) 

"2+ 1-°2 "2+n 2 62 
ILCn 2- 1) -(/-L+'Y2) 0 0 0 0 -!32 C"2+1-o2) 
"2+ 1-°2 "2+n 2 °2 

Gl= 0 0 -(/-L+'Y2) 0 0 0 0 
0 0 0 -/-L P 0 0 
0 "12 0 0 -(/-L+p) 0 0 
0 h1 h1 h2 0 h3 h4 
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and, 
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1'1 0 0 -ILCn 2-1) P-/-L 0 0 
"2+1 °2 

h6 h6 0 0 -(/-Lm+<P1) 0 
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The following values are found in J(~-:'(EE)), 
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