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Abstract 

We use networks, powerful abstract representations of systems of interactingel­
ements, to represent multiple interacting populations and explore the effects of the 
topologies on the initial growth rate of influenza epidemics. Graph theory applied 
to epidemiological models may yield insight into the nature of disease dynamics and 
provide important complementary perspective on understanding these models. We an­
alyze the basic SIR model on three general networks: ring, square lattice, small world 
rietworks. We explore the evolution of the dominant eigenvalues as the network size 
increases for two different cases, when the total population remains constant and when 
the total population increases as the network size increases. The analysis is carried 
out via numerical simulations as well as through the mathematical analysis of simple 
cases. 
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1 Introd uction 

Mathematical models in epidemiology have become vitally important in the development of 
disease prevention strategies. As human populations grow and the far corners of the world 
are more closely linked to one another with transportation such as airlines it is now feasible 
for infectious disease to spread rapidly across continents, as seen recently with the outbreak of 
SARS. Networks provide a way to model more complex dynamics of the spread of infectious 
disease over large scale areas. Unfortunately, realistic graphical representations of large-scale 
systems such as urban environments are computationally and analytically unmanageable. 

Network models of the spread of disease allow for high levels of complexity in interactions 
to be taken into account. These models may aid the scientific and medical communities in 
addressing these issues by providing them with an effective understanding of the growth 
and propagation of disease, thus elucidating approaches toward the prevention of destruc­
tive wide-spread epidemics. Advanced epidemiological models, particularly the agent-based 
decision support simulation system EpiSims, are providing insight into the nature of disease 
dynamics with fine scale resolution. Concurrently, modern network theory is providing im­
portant perspective on understanding the nature of the properties of these graphical models. 

A method of reducing the magnitude of such networks would contribute to increasing 
the efficiency of computation of complex disease dynamic models. However, there is great 
underlying complexity in the derivation of such a method involving the preservation of various 
properties of the original network. Because of the inevitability of information loss in network 
reduction, a first major issue to resolve in approaching this problem is to determine which 
properties to preserve. A basic understanding of the effects of dynamic interactions on 
epidemic propagation is an important step in the direction of reducing the magnitude of 
large-scale networks. 

Using an influenza epidemic model, an SIR model with no disease-induced death, we 
look for an understanding of the initial growth rate on networks ranging in complexity. We 
study the evolution of the dominant eigenvalues of the linearized system as the network size 
increases in a ring, square lattice, and small world network. Also, we observe the distribution 
of the eigenvalues as the network size increases. 

Influenza is a disease which has been around for many years and even today it occurs 
annually around the world. Even with our advanced technology we are yet not capable 
of fully understanding the spread of an epidemic. Influenza spreads between social groups 
through just a few contacts. Within these social groups, the disease spreads rapidly. By 
looking at mathematical models, we gain information on how the disease spreads between 
groups and what can be done to prevent this spread. 

With information about how influenza spreads, preventative measures can be taken. 
Influenza is a disease which kills numerous people every year. These lives can be saved if we 
have a better understanding of how the disease spreads within the population. With this 
information we would be able to better prevent high risk populations from being exposed to 
the infection. Also with this knowledge, decision makers can help reduce influenza spread 
through the production of vaccines and other preventative measures. 

By increasing knowledge of the initial rate of infection, we hope to contribute to the future 
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possibility of allowing for the approximation of a network on the scale of urban disease spread 
by a much smaller model amenable to evaluation by the scientific and medical communities. 

2 Overview 

After years of being considered a problem of the past, infectious diseases have once again 
been recognized as an urgent public health problem. It has become important to use all 
of the tools available to devise effective strategies to minimize the impact and spread of 
infectious diseases, and to predict and understand the development and spread of resistant 
strains. Epidemic models of the spread of a disease through a population can help the 
medical/scientific community anticipate the course of an epidemic, discern the factors driving 
its growth, and evaluate the potential effectiveness of different approaches for bringing an 
epidemic under control. 

The general framework that we propose will be suitable for epidemiological investigation 
of any contagious disease outbreak. We will apply our model to influenza, in particular, 
with indications of its application to smallpox, because smallpox remains a disease of great 
concern, with the potential to kill large numbers of individuals. 

We will model the spread of an epidemic generally using coupled differential equations 
describing the fraction of a population in any of a small number of states (e.g. susceptible, 
infected) as a function of time. The biology of an infectious disease is complex and, therefore, 
so must be the model if it is to be used for quantitative predictions. Key biological parameters 
for modeling an infectious epidemic include: 

• Transmission - the ability of individuals to expose others to the infection. 

• Susceptibility - the sum of biological mechanisms that reduce an individual's protection 
against infection. 

• Recovery - the rate at which a recovered individual retains some level of immunity to 
infection. 

The coupled rate equations for the spread of an epidemic are appropriate when consider­
ing a small number of parameters, large populations, and outbreaks in populations with only 
modest heterogeneity in the social behavior of the susceptible population within a particular 
location. They average over the details of how disease spreads from person to person, as­
suming in effect that the whole population is well mixed. They can only crudely distinguish 
the epidemiological consequences of a disease's properties (susceptibility, latency, etc.) from 
those produced by the structure of social interactions (many small isolated groups, a few 
individuals who interact with many others, etc.). Thus they shed only a dim light on how 
to target sub-populations for intervention strategies. 

Some attempts have been made to connect different locations by a mobility/transportation 
network. For example, Rvachev and Longini partition a region's population by city and 
estimate the transmission rate among cities based on the number of travelers [10]. The 
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small-world models introduced by Watts and Strogatz demonstrate the richness of dynamics 
that can be produced by introducing a small number of partitions [14]. 

The mixing of the population, which allows the virus to spread from person to person, 
is a complex social phenomenon, varying across cultures and between individl).als, and over 
the life history of a given individual. The distribution of social mixing within a population 
and the amount of mixing between behavioral levels has been found to be an important 
determinant of the rate and extent of spread of many infectious diseases. 

3 Epidemic Models on Networks 

Many traditional epidemiological models implicitly contain the assumption of homogeneous 
mixing which means that all individuals in a population contact each other with equal 
probability. While this condition may be relevant within small populations, it is not likely 
to hold for large populations such as those of cities. We take the approach of applying an 
SIR model onto a network to allow for heterogeneous mixing between groups. 

A network is a mathematical structure consisting of nodes (or vertices) and edges con­
. necting these nodes. In applying networks to epidemic models, the nodes may represent 
people or groups of people. People may be grouped demographically such as by age class, 
race or socioeconomic group, or geographically at many levels such as by building, neigh­
borhood, or city. Edges may be directed or undirected and represent connections between 
groups such as number of contacts, rate of contact, visitation, or migration. 

Careful consideration must be given to the structure of the network used to model inter­
actions. The mass-action law "seriously affects the qualitative and quantitative behavior of 
models with interacting subpopulations of varying size" [4]. What this means in an epidemic 
model on interacting populations, is that the total number of contacts between group A and 
group B must be equal to the total number of contacts between group B and group A. If 
the total populations in groups A and B are constant and equal, this implies that there is 
no net inflow or outflow of people. This may be the case when nodes represent static de­
mographic groups, that is, when individuals do not move from group to group. In this case, 
an edge may be undirected and represent rate of contact Cij between groups i and j. Since 
the total populations are equal N A = N B, then the total number of contacts is preserved 
NACij = NBcji (Figure 1). This same undirected graph may represent visitation, in which 
case nodes represent locations from which people leave and contact people from an adjacent 
group, but ultimately return to their original location. 

Figure 1: Examples of a contact (undirected) graph and a mobility (directed) graph. 
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In contrast, directed graphs are used to represent the number of people travelling from 
one location to another, mij, in which case, conservation of contact number does not playa 
role (??). 

For simplicity, we use undirected graphs representing contact between groups of constant 
and equal size. We apply an epidemic model on this structure to allow for heterogeneous 
mixing and analyze its dynamics. 

4 SIR Model 

4.1 Simple SIR Model 

The epidemiological model known as the SIR model is one in which the population consists of 
three classes of individuals: those who are susceptible to a disease, those who are infected and 
infectious, and those who have recovered (Figure 2). Thus, the disease persists throughout 
the duration of the time period considered. With no disease-related death, this model is 
applicable to diseases such as influenza when working over short periods of time, where the 
population does not lose their immunity to the disease. 

I Susceptible H Infected H Recovered 

Figure 2: The wayan epidemic spreads in a simple SIR model. 

In 1927, Kermack and McKendrick created the simple SIR model [8]. This model assumes 
a homogeneous population with random mixing. This model is given by the following set of 
equations: 

5 = 
I = 
R = 

-AS 

AS-cd 

aI, 

(1) 
(2) 
(3) 

where A represents the rate of infection and a is the rate at which infected people recover. 
The rate of infection is defined as the product of the rate of contact (number of contacts 
per time) r, the transmissibility of the disease (probability of infection per contact given the 
contact is infected) {3, and the proportion of infected individuals -Iv: 

(4) 

4.2 Migration Terms 

Migration terms are added to represent the people leaving and entering the system. An 
equal proportion, j..l, of the susceptible, infected, and recovered people leave the system but 
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only susceptible people enter the system. Including these terms the system is: 

S -AS + p,(A - S) 

j = AS - aI - p,I 

R = aI - p,R. 

(5) 
(6) 

(7) 

Assuming the population has stabilized allows us to set those entering the system equal to 
those leaving. Hence, without loss of generality it can be assumed that 

A=S+I+R=N. (8) 

5 Networks 

We have analyzed and observed the initial growth rate of this SIR model, using parame­
ters from influenza data, on three different networks: ring, square lattice, and small world 
networks. 

5.1 Ring Networks 

Applying the SIR model to a ring network generalizes the simple SIR model by dividing the 
population into n groups - or small worlds - based on age, socio-economic status or other 
factors (e.g. the black circles in Figure 3) [12, 11]. People mainly interact with members of 
their own group. The model also allows for interactions with neighboring groups - such as 
the age groups right above or below a person's own age group (e.g. the outer circle in Figure 
3). 

Figure 3: A representation of a ring network and how people interact with others within the 
population. 

Each group, i, is modeled as in refbasicSIR yielding a 3n dimensional system: 

Si = -AiSi + p,(Ni - Si) 

Ii = AiSi - ali - P,Ii 

~ = ali - p,~ . 

(9) 
(10) 

(11) 

The parameter, Ai is dependent on the percent of infected people within the group and also 
on the percent in the neighboring groups: 

[ ( Ii+! ) ( Ii) (Ii-I)] Ai = f3r Bi,i+! Ni+! + Bi,i Ni + Bi,i-l Nil ' (12) 
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Figure 4: A representation oj a periodic 3 x 3 square lattice network and how people interact 
with others within the population. 

where ei,i is the proportion interactions that members of group i have with people of their 
own group, ei,i+l is the proportion of interactions a person in group i has with the people in 
it's neigboring group i + 1, and ei ,i-1 is proportion of interactions a person in group i has 
with people in group i - 1. Since e values are all proportions, 

n 

I:ei,j = 1 (13) 
j=l 

We are assuming uniformity in the the proportion of contacts group i has with it's two· 
neighbors by letting ei,i-1 = ei,i+1 = (1-:;.;). Therefore, when the local population in each 
node is equal, the contacts a group i has with other groups is equally split between these 
two neighboring groups. 

5.2 Interactions between Groups 

Not only must the sum of the proportion of interactions each group has be equal to one, 
but also the number of contacts group i has with group j must be equal to the number of 
contacts group j has with group i. So, each ei,j and ej,i must satisfy, 

(14) 

This is accomplished by all of the models presented here because the local population in 
every node is equal, and each ei,j = ej,i. 

5.3 Square Lattice Networks 

After observing the spread of SIR epidemics on a ring network, we can consider more complex 
interactions between the groups by using a two dimensional periodic n x n lattice to model 
the population (Figure 4). 

The system of equations for each node remains the same but now has slightly different 
notation, for each node (i, j), 

R;. ,J 

Ai,jSi,j - ali,j - !.di,j 

= ali,j - p,R;,j . 
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In this system of equations, A is now dependent on the infected population in the four 
neighbors of node (i, j). At the internal nodes, 

(18) A' . = (3r [Bi,j ( Ii,j+! ) + Bi,j . ( I H1 ,j ) + Bi,j ( Ii,j ) 
t,) t,)+l N t+1,) N t,) N 

i,H1 i+!,j i,j 

. . ( J. . 1) .. (J. 1 . )] +B~') ~ + B~') . ~ 
t,)-l) N.. t-1,) N. . 

t,)-l t-1,) 
(19) 

At the borders, we can use the same equation for Ai,j as in equation (18) but if i-I = 0 
or j - 1 = 0 then 0 -+ n, and if i + 1 = n + 1 or j + 1 = n + 1 then n + 1 -+ 1. In these 
equations, B!',{ is the proportion of contacts group (i,j) has with group (s, t). Here, as in the 
ring network, 

n n 

'" '" Bi,j = 1 ~~ s,t 
t=l s=l 

(20) 

Once again, we assume uniformity in the proportion of contacts groups have by letting 

Bi,j - Bi,j - Bi,j - Bi,j - (1-8;:;) Th e Bi,j' th t' f t t 
i+!,j - i,j+1 - i-1,j - i,j-1 - 4 ererore, i,j 1S e prop or lOn 0 con ac s mem-

bers of group (i,j) have with members within their own group and 1-:;:; is the proportion of 
contacts members of group (i, j) have with members of each of their four closest neigboring 
groups. 

5.4 Small World Ring Networks 

Watts and Strogatz define a small world model as a ring network where each node is con­
nected to r neighbors initially, and then each edge is removed with probability p and recon­
nected to another node in the network randomly (Figure 5) [14J. In our model we let r equal 
one, so we are beginning with the ring network described above (Figure 3), The edges which 
are removed between neighbors and then reconnected with other random nodes represent 
random interactions between distant groups - such as people meeting on a subway. The 

Figure 5: A representation of a small world ring network model where the radius of the 
network, k is 1 and the parameter p is the probability that an edge will be disconnected in 
the ring and then randomly reconnected, 

system of equations remains the same but A changes, so that it allows for each group to have 
interactions with all the other groups in the model, 

[ ( 
11 ) ( 12 ) ( Ii ) ( IH1 ) ( In )] Ai = (3r. Bi ,l N1 + Bi ,2 N2 ... Bi,i Ni + Bi ,H1 NH1 ... Bi,n N

n 
(21) 
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Here, the constant, ei,j, is the proportion of interactions people in group i have with people 
in group j, and [jlNj is the proportion of people in group j who are infected. Since each 
ei,j is a proportion, 

n 

.L ei,j = 1 (22) 
j=l 

6 Parameters 

The parameters used in these models are presented in Table 1. These values allow us to 
model the spread of influenza over short periods of time. Acceptable ranges for parameters 
were given by Hyman and Laforce [7]. The ranges for most of the parameters were found in 
epidmiological papers [1, 13]. Hyman and Laforce chose values for the number of adequate 
contacts (probability of transmitting the infection) per unit time, rf3, by conducting least 
squares analysis on a multi-city model. 

I Meaning I Parameter I Baseline I 
rate of recovery (lldays) [1] a 0.2439 
number of adequate contacts rf3 0.246 
per unit time (contacts I day) 
removal rate of people f..L 0.0002740 
from population in the 
absence of infection(11 days) 

Table 1: This table shows all the influenza parameter values used in the model and all the 
simulations presented in this paper. These values were taken from Hyman and Laforce [7]. 

7 Initial Growth Rate Analysis 

For a system of n nodes in all of the networks, we analyze the initial growth rate by linearizing 
the system near the disease free equilibrium point (when time = 0). First, we simplify the 
system by keeping each Ni constant. This is a valid assumption since influenza occurs over 
a short period of time and also because we are only looking at the spread of the disease 
initially. Therefore, we can reduce the system in each node to: 

n [. 
-f3r "\' e· . _J 5- + II.(N - 5-) L....t t,J N. t ,.., t t 

j=l J 

(23) 

n [. 

L = f3r "\' e· ._J S· - aT - III • L....t t,J N. t t,.., t . 

j=l J 

(24) 

Then, we can solve for ~, 
(25) 
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7.1 Linearization 

As explained in Appendix 1, we linearize the system of differential equations for n nodes 
near the disease free equilibrium point. Since we are interested in the initial growth rate of 
the disease we look only at the infected class of each node at t = O. So we have a system of 
n equations to linearize, 

. Ln 
I· f. = (3r e· ._J s. - CiI - III • ',J N.' .,... • . 

The Jacobian of this system is 

-fJ, - a + (3re1,1 

(3re2,1 

j=l J 

(3re1,2 

-fJ, - a + (3re2,2 

-II. - a + (3re t"'" n,n 

(26) 

(27) 

The role of the Jacobian in initial growth rates and stability can be found in the appendix. 
By computing the eigenvalues of the Jacobian matrix, we are able to understand when the 
infected population of the network increases and leads to an epidemic of influenza (when the 
dominant eigenvalue is greater than zero) and when the disease dies out (when the dominant 
eigenvalue is less than zero). We analyzed what was happening as we added nodes to each 
network. By adding a node to the network, we are adding another equation to the system. 
Then we observe the dominant eigenvalues of the different systems to try to understand the 
effect of adding nodes on the spread of the disease. 

7.2 Numerical Analysis 

Using Matlab, we numerically calculated the eigenvalues of the Jacobian presented above for 
all three types of networks as the number of nodes in the network increased. We did this 
by using an ordinary differential equation solver (ODE113 in Matlab) to solve the system 
of equations using the appropriate e matrix depending on the network for a short amount 
of time (around ten days). Then, we used the equations for the elements of the Jacobian at 
time equal to zero and then solved for the eigenvalues. 

For all three networks, we varied the initial conditions while maintaining equal popula­
tions in all Ni . First, one hundred people were allocated to each node, even as the number of 

. nodes increased, therefore as the network grew the population grew. In the other two cases 
of initial conditions, we maintained the entire population at 5,000 and 10,000 respectively, 
and divided the population equally by the number of nodes present in the network. In all 
cases the disease was spread by one person in one group. 

The only parameter we varied and observed the effects of was e. For each initial condition 
in each network, we set every ei,i, the proportion of contacts group i has with members of 
their own group, equal to 0.25, 0.50, 0.75, and 1.0. Then the remaining contacts were 
equally split among all the other groups that this group i was connected to depending upon 
the network. 
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7.2.1 Numerical Results: Ring and Square Lattice Networks 

As would be expected for all types of networks, when Bi,i = 1 the dominant eigenvalue is just 
equal to the dominant eigenvalue as if the one node the infected person initially resides in 
is the entire population. This value is 0.002054 with the influenza parameters, therefore an 
influenza epidemic takes off in the one node with the infected person but the infection does 
not spread to the rest of the population. 

For all the other values of Bi,i' since the local populations in each node were equal and the 
contacts with other groups were equally divided, the disease spread as if the entire population 
was in one node (homogeneous mixing). This result did not vary with the different initial 
conditions. Once again, this means that the dominant eigenvalue was equal to 0.002054 as 
in the case where Bi,i = 1. 

Since the lattice network is just an expansion of the ring network in the sense that each 
node is connected to the four closest neigbors rather than just the two closest, the same 
results were observed for both the square lattice and ring networks, as expected 

7.2.2 Numerical Results: Small World Network 

First, we observed cases with the small world network where p, the probability an edge would 
be disconnected from a neighbor and randomly reconnnected to another node, was set equal 
to 0.1. Since each small world network is formed based on some randomness, having the same 
initial conditions and parameters does not guarantee the same network. Therefore, when 
trying to find the dominant eigenvalues of different sized networks, we took the average of 
the dominant eigenvalue of fifty networks with the number of nodes, the parameters, and the 
initial conditions we wanted. These results can be seen in figure 6 for one initial condition. 
The blue pluses show the dominant eigenvalues of each of the fifty networks, and the red 
plus shows the mean. We observed that as the number of nodes increased the dominant 
eigenvalues generally increased. Also, as the proportion of interactions members of a group 
had outside of their respective group, the dominant eigenvalue increased slightly. Similar 
results were seen with the other two initial conditions. 

After varying the number of nodes, we decided to fix the number of nodes at one hundred 
and look at what happens to the eigenvalues when we vary p. We observed the largest and 
the second largest eigenvalues as p varied between zero and one (Figures 7 and 8). Once 
again we ran fifty realizations at each p value since the building of a small world network is 
astochastic process. 
We also observed all one hundred eigenvalues for p = 0, p = 0.1, and p = 1 (Figure 9). 

These plots showed us that while p was less than 0.5, as p increased the largest and 
second largest eigenvalues increased. Once p was greater than 0.5, the largest and second 
largest eigenvalues leveled off (and even possibly decreased). Once again, all three initial 
conditions resulted in similar data. 
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Figure 6: Small World Network: The total population of all the nodes always equal 5000 
people. As the number of nodes increases the mean dominant eigenvalue increases and as 
the proportion of contacts outside one's own group decreases, the mean dominant eigenvalue 
increases. 

7.3 Analytic Solution: A Ring Case 

We first attempted to solve for the eigenvalues of the Jacobian for all three networks numer­
ically. Looking more closely, we see that we can solve for the eigenvalues of the ring network 
analytically when considering the case where every Bi,i is equal to B and each Bi,j = 1;8 where 
i of j. The Jacobian for this ring network is 

-j.t - Ci + j3rB j3 1-8 0 0 j3 1-8 r- r-
2 2 

j3 1-8 -j.t - Ci + j3rB j3 1-8 0 0 r- r-
2 2 

0 0 0 (28) 

0 0 j3 1-8 -j.t - Ci + j3rB j3 1-8 r- r-
2 2 

j3 1-8 0 0 j3 1-8 -j.t - Ci + j3rB r- r-
2 2 
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0.4 
SW:theta(i,i)=0.25 

0.2 0.4 0.6 0.8 p 

Figure 7: Small World Network: We set the number of nodes equal to 100 (with each node 
having exactly one hundred people) as we varied p and observed the largest eigenvalue. Notice 
when p is less than 0.5 the mean dominant eigenvalues increase but then after p = 0.5 level 
off. Also, when p is greater than 0.5, there is are epidemics taking off more quickly even 
though the mean is lower. 

The eigenvectors of this matrix are 

_ ik(n-l) 
e 2 

_ ik(n-3) 
e 2 

ik(n-3) e-2-
ik(n-l) 

e 2 

(29) 

and the corresponding eigenvalues to be A = -p,-o:+(3r+(3re(l-cos k) [5]. We can show that 
the dominant eigenvalue occurs when k = 0 and therefore the eigenvalue is A = -p, - a + (3r 
and the corresponding eigenvector is [111 ... 11 JT. 

Using the Gerschogorin's theorem, we know that any eigenvalue, Ai of this Jacobian, 
must satisfy the condition, 

I 
l-e l- e l 1- p, - a + (3re - AI ~ (3r-

2
-1 + l(3r-

2
- . (30) 

Therefore, any eigenvalue of this Jacobian is bounded by -p, - a + (3r, so A = -p, - a + (3r 
must be the dominant eigenvalue [9]. 
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Figure 8: emS mall World Network: We set the number of nodes equal to 100 (with each 
node having exactly one hundred people) as we varied p and observed the second largest 
eigenvalue. The second largest eigenvalues follow the exact same pattern as the largest 
eigenvalues. 
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Figure 9: Small World Network: We set the number of nodes equal to 100 (with each node 
having exactly one hundred people) as we observed all the eigenvalue when p = 0, p = 0.1, 
and p = 1. The plots for p = a and p = 0.1 are similar, while the one for p = 1 has a 
different shape with a fiat region in the middle. 
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8 Conel us ions 

For the cases we looked at with the ring and square lattice networks there are not critical 
local populations at which the disease will die out. But in these cases we assumed the 
local populations were all the same size and that the contacts members of a group had 
with members of other groups were equal, but this is not the case in the real world. The 
world is much more like the small world networks used here. In these we can see that how 
the population is divided does make a difference in if the influenza epidemic takes off or 
not. We observed that as the number of nodes increased the epidemic took off a little more 
quickly. Similar results were seen when the proportion of contacts a group had outside of 
itself increased. 

For the small world model, we also decided to fix the number of groups the population 
was divided into and observe what happens as p, the probability that an edge is removed 
and then randomly reconnected, was varied. When p = 0, the network is equivalent to a ring 
network, and when p = 1, the network is completly random. We observed as p increased 
until 0.5, as the network changed from a ring network to a more random one, the largest 
eigenvalue increased but after p = 0.5, the largest eigenvalue leveled off. This is due to the 
fact that while p is less than 0.5, the diagonal of the Jacobian is dominant but this is not 
the case after that. 

By studying the initial growth rates through dominant eigenvalues (and largest eigen­
values) of the SIR model on different networks we can better understand the impact of our 
society's organization on the spread of diseases. Understanding this allows us to know what 
kind of reorganization would be useful in preventing the initial spread of a newly introduced 
disease. 

9 Future Work 

This paper presents just the beginning of the work that can be done on looking at initial 
growth rates of epidemics on different networks. This work can be continued by looking 
for the local critical population in small world networks with any parameters and initial 
conditions and for lattice and ring networks when the local population and number of con­
tacts are not equal for every group. Also, these ideas can be expanded to include scale free 
networks and the initial growth rate on those networks. Not only should we be looking at 
the dominant eigenvalue but also the range of all of the eigenvalues as the number of nodes 
increases in the networks. 

In this paper we are looking at the relationship between eigenvalues and initial growth 
rate. We can take this one step further by seeing how the eigenvalues of the linearized system 
at nonequilibrium points changes as the epidemic progresses. 

129 



10 Acknowledgments 

We would like to acknowledge and thank Leon Arriola, Carlos Castillo-Chavez, Nakul Chit­
nis, Gerardo Chowell-Puente, Jia Li, Juan Restrepo, Baojun Song, and Abdul-Aziz Yakubu 
for all their assistance, knowledge, time, and patience. 

The process of working on this project has allowed me to learn not only the mathemati­
cal and computational skills involved but also the process of producing a model and working 
through the scientific procedure. There are no guarantees of getting great results (or any 
results) the first path one chooses when conducting research. I have learned so much through 
the task of choosing what path to try next and dealing with the frustrations and joy of gain­
ing results not expected. As a student getting ready to enter graduate school, I appreciate 
the experience of planning and working through my own project and am greatful to all of 
those who have made this possible. 
Shilpa Khatri 

130 



References 

[1] Addy, C. L., 1. M. Longini, and M. Haber, A generalized stochastic-model for the analysis 
of infectious-disease final size data, Biometrics, 47(3):961-974, 1991. 

[2] Brauer, Fred, A Model for an SI Disease in an age-structured population, Discrete Contino 
Dyn. Syst.-Ser. B 2(2):257-264,May 2002. 

[3] Castillo-Chavez, Carlos, Fred Brauer, Mathematical Models in Population Biology and 
Epidemiology, Springer-Verlag New York Inc.: New York, 200l. 

[4] Castillo-Chavez, Carlos, Jorge X. Velasco-Hernandez, and Samuel Fridman, Model­
ing contact structures in biology, Frontiers of Mathematical Biology, Lecture Notes in 
Biomathematics 100:454-91, 1994. 

[5] Gustafsson, Bertil, Heinz-Otto Kreiss, and Joesph Oliger, Time Dependent Problems and 
Difference Methods, John Wiley & Sons Inc.:New York, USA, 1995, pp. 17-19. 

[6] Hethcote, Herbert W., The Mathematics of Infectious Diseases, SIAM Review, 42(4):599-
653,2000. 

[7] Hyman, James M., Tara Laforce, Modeling the Spread of Influenza Among Cities, Los 
Almost National Laboratory, May 2003. 

[8] Kermack, W.O., McKendrick, A. G., A contribution to the mathematical theory of epi­
demics, Proc. R. Soc., A1l5:700-21, 1927. 

[9] Kreysig, Erwin, Advanced Engineering Mathematics, 8th ed., John Wiley & Sons Inc.: 
USA, 1999, pp. 376-379,920-924. 

[10] Longini, R. M., L. A. Rvachev, A Mathematical-Model for the Global Spread OF In­
fluenza, Mathmatical Biosciences, 75(1):1, 1985. 

[11] Moore, Christopher, M. E. J. Newman, Epidemics and Percolation in Small- World 
Networks. Phys. Rev. E, 61:5678-5682,2000 

[12] Newman, M. E. J., Models of the Small World A Review, J. Stat. Phys., 101:819-841, 
2000. 

[13] Stilianakis, N. 1., A. S. Perelson, and F. G. Hayden, Emergence of drug resistance 
during an influenza epidemic: Insights from a mathematical model, Journal of Infectious 
Diseases, 177(4) :863-873, April 1998. 

[14] Watts, Duncan J., Steven Strogatz, Collective dynamics of 'small-world' networks, Na­
ture, 393:440-442, 1998. 

131 



A Solving Linear Systems of Equations 

In this appendix we will explain how to find and interpret solutions to linear systems of 
equations. We begin by describing methods for finding and interpreting eigenvalues and 
eigenvectors and then discuss the role they play in solutions to linear systems. In the final 
section on linearization we discuss methods and reasons for approximating nonlinear systems 
with linear systems. 

A.I Eigenvalues and eigenvectors 

A.1.1 Algebraic explanation 

The eigenvalues, Ai, and the eigenvectors, Vi, of a matrix A satisfy the equation 

Av = AV, (31) 

where V i= O. In other words, the eigenvectors are vectors that the linear tranformation A, 
acts upon by scaling with a constant, the corresponding eigenvalue. The eigenvalues can be 
calculated by rewriting equation (31) as, 

(A - AI)V = O. (32) 

Since we are looking for the nontrival solution to this equation, the determinant of (A - AI) 
is zero. Using this condition known as the characteristic polynomial, the eigenvalues, Ai can 
be found. Once the eigenvalues are known, the corresponding eigenvectors can be found by 
plugging the eigenvalues back into equation (31) [9]. 

Example We will find the eigenvalues and eigenvectors of 

(33) 

To find the eigenvalues, set 

det ( 3 ; A 1 ~ A ) = 0 (34) 

so the characteristic polynomial is 

A2 - 4A - 5 = O. (35) 

Solving this polynomial for its roots gives the eigenvalues A1 = 5 and A2 = -1. By plugging 
the eigenvalues into 

( 3; A 1 ~ A ) Vi = 0 , (36) 

the two corresponding eigenvectors are found to be 

(37) 

where C1 and C2 are constants. 
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A.1.2 Geometric explanation 

The matrix A may be thought of as a linear transformation which acts upon a vector. To 
demonstrate the geometric meaning of eigenvalues and eigenvectors we will first look at the 
mapping of a unit circle under the linear transformation A. Consider the two dimensional 
vector u = (~). This vector may be thought of as a point on the unit circle. Acting upon 
this vector with the matrix A = (i i) gives 

If the vector u is thought of as a point on a plane, this says that the matrix A maps 
the point (0,1) to the point (1,4). Similarly, the point (1,0) would be mapped to the point 
(4,1). Continuing this process would reveal that the unit circle is stretched into to an 
ellipse under the transformation A. This mapping can be characterized by the eigenvectors 
and eigenvalues. Using the methods described in the previous section, the eigenvalues and 
corresponding eigenvectors are 

-AI = 5, VI = G) and A2 = 3, V2 = (~1) . 
The eigenvectors give the principle directions in which the circle is stretched and the cor­
responding eigenvalues tell you how much it is stretched in those directions [9]. The point 
(1,1) on the circle is mapped to (5,5), and the point (1,-1) is mapped to (3,-3) under A. 

A.l.3 Solving a linear system 

Next we will look at the solutions to the linear system of ordinary differential equations. 

y' = Ay, (38) 

with the initial condition Yo = y(o) = Xi' From (38) we get 

y' (0) = Ay(O) . (39) 

It follows from the initial condition that 

y'(O) = x~, ( 40) 

and therefore 
Ay(O) = x~ = AXi . 

Since Xi is a solution to the system, it can be expressed as a linear combination of vectors 
that span the solution space, the eigenvectors Vi' That is Yo = CIVI + C2V2 + ... + CnVn , 

Cl, C2, ... Cn constants. Thus we can write x~ = AXi as 

n n 

I: CiV~ = L CiAvi , 
i=l i=1 
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from which we get 
V~ = AVi. ( 41) 

Since the eigenvectors and eigenvalues satisfy the equation 

(42) 

( 41) becomes 

Since the solution to (38) will be of the form 

(43) 

where eAt = I::o ~(At)J. If we assume that A is diagonalizable, then (43) is equivalent to 

Substituting for Yo gives 
n 

y = L Civie
Ait 

. 
i=l 

Finally, taking the derivative gives us 

n 

y' = L AiCivieAit . 

i=l 

From this expression, we can see that the largest eigenvalue will dominate the behavior and 
therefore determine the growth rate. The corresponding eigenvector indicates the direction 
in which growth occurs. 

A.2 Linearization 

Linearizing a nonlinear function or system means approximating it with a linear model 
. while considering small perturbations. One of two main purposes for linearization is to 

produce linear approximations at sampled points along a solution curve which may then be 
interpolated to reconstruct the original curve. The other main purpose for linearization in 
the context of dynamical systems is to understand local behavior of nonlinear systems. This 
will be our focus. Because linear functions and systems of differential equations are readily 
analyzed and in general easier to understand than nonlinear systems, linearization is used to 
approximate information about the dynamics of nonlinear equations or systems of equations. 
By this method, linear behavior is simulated locally near a point and then results about the 
general domain are extrapolated based on knowledge of the nonlinear behavior. 

Although many methods of linearizing exist, a widely used method is by Taylor expansion. 
We take the Taylor expansion around a solution to the function or system and drop the terms 
of order two and higher. The expansion of the differential equation f(x) = x' around a point 
Xo is done as follows [3J. 
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Let 6(t) = x(t) - Xo be a small perturbation of Xo. We substitute into the differential 
equation and find 

6'(t) = f(xo + 6(t)). 

Assuming the function is continuously differentiable, we take the Taylor expansion and get 

6'(t) = f(xo) + j'(xo)6(t) + f"(xo) 6(t)2 + ... + f(n) (xo) 6(t)n + .... 
2! n! 

We neglect the terms of order two and higher to get the linear model 

6'(t) = f(xo) + j'(xo)6(t). 

Linearization is often done near equilibrium points because the dynamics of the linear func­
tion near this point resemble those of the nonlinear function being approximated [3]. If Xo 
is an equilibrium point (xo = xoo), then we know that 

Therefore, we get the following equation for the linear approximation near an equilibrium 
point, 

v'(t) = j'(xoo)v(t) . 

Similarly, for a system of nonlinear ordinary differential equations, F(x), the linearization 
is 

F(xo + 6(t)) = F(xo) + DnF(xo)6(t) . 

where DnF is the Jacobian matrix of the system. When Xo represents a solution to the 
system of ODE's, the Jacobian matrix gives information about how solutions changes if Xo 
at that point is changed. Near an equilibrium point, as before, we know that 

and we get the following system as a linear approximation near an equilibrium point, 

Since this linear model behaves the same as the original system near an equilibrium 
point, the solutions may be used to determine what happens nearby in the nonlinear case. 
Analyzing these solutions gives eigenvectors and eigenvalues which may be used to determine 
the stability of the equilibria. 

In this project we linearize our multipopulation SIR model near the disease free equi­
librium (Ii = 0, i = l..n) and look at the eigenvalue and eigenvector solutions to this 
linearization. We evaluate the effects of network topology on these solutions to determine 
the effects on the initial rate of growth of the infection. 

135 



136 


