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Abstract 

The retina is arguably the single most important component in the vision process. Via its photoreceptors 

it is responsible for converting electromagnetic radiation into a chemical signal understandable by the brain. 

The interactions between rods and cones in the retina have been the focus of innumerable experimental and 

theoretical biological studies in previous decades, yet the understanding of these interactions is still in its 

infancy. We develop mathematical models which address the possibilities of direct photoreceptor interactions 

through horizontal cells as well as indirect interactions via an intermediary trophic factor. We address the 

role these means of communication play in the presence of the degenerative disease, Retinitis pigmentosa. 

The diseased system is reduced by considering the rod-cone interaction mechanism in the physiology of a 
disease free person. Extensive analyses of the dynamics of the nonhyperbolic solutions of the models (with 

and without delay) are offered. We show the disease free system exhibits a fold-Hopf bifurcation. Biological 
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interpretation of all systems is given with the long-term objective of using our results to aid in prevention 
of vision loss in retinally degenerative diseases. 

1 Introd uction 

To excite in us tastes, odors, and sounds I believe that nothing is required in 
external bodies except shapes, numbers, and slow or rapid movements. . .. if ears, 
tongues, and noses were removed, shapes and numbers and motions would remain, 
but not odors or tastes or sounds. -Galileo Galilei [18] 

Vision is the most far reaching ofthe five.senses; through vision we obtain information 
about the most distant objects in our world, as well as knowledge of worlds unknown. The 
eye has been the subject of inquisition for hundreds of years, its function ever more exposed 
by man's inquisitive eye. Our understanding of the form and function of the eye has ad­
vanced by leaps and bounds, yet every answer begs more questions. While our knowledge 
reaches farther than ever, the number of questions about this fascinating organ is literally 
unbounded. 

Of the plethora of current unanswered questions, many involve the interactions between 
photoreceptors: the cells which convert light to chemical signals. Some is known, more is 
postulated, and biologists work diligently to understand the intercellular and extracellular 
means by which photoreceptors interact. Bearing an alternative tool to the microscope, we 
join our colleagues in exploration of the eye. Through mathematics we hope to increase 
knowledge of the relationship between rods and cones in the human retina, and in so do­
ing cast light on the marvelous sense of sight and aid in preservation of vision amidst disease. 

1.1 How the Eye Processes Light 

The images of the world around us are captured by the eye through a series of complex steps. 
The eye must detect, transduce, and process light signals before sending them to the brain 
(for interpretation) via the optic nerves. Utilizing over a billion specialized light sensitive 
photopigments molecules, the eye detects light photons of various wavelengths. After light 
stimuli is absorbed, it must be converted into electrical signals on the cell membrane. In 
other words the light input must be converted into information that can be read by the ner­
vous system. Light signals must be filtered (processed) before transmission to the brain[7] 
[16]. 
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Every component of the eye takes part in the visual process, but some structures play 
a more important role than others. Following Sherwood's description of the eye physiology, 
we briefly describe some of the various components of the eye and their roles in the visual 
cascade[16]. Light enters through the cornea, the transparent layer covering the eye. The 
cornea contributes most extensively to the eye's refractive ability; the other structure impor­
tant to the eye's refractive power is the lens. The light then passes through the pupil, the 
round opening in the center of the iris. The iris is responsible for eye color and for controlling 
the amount of light that enters the eye. Through muscle contractions it can adjust its size to 
admit more or less light as needed. In bright light the circular muscles contract causing the 
pupil to get smaller and reduce the amount of light entering the eye. On the other hand, the 
radia muscles contract in the dark causing the pupil to dilate and allow the entrance of more 
light. After passing through the pupil, light passes to the lens and then through the vitreous 
humor (the larger posterior cavity between the lens and the retina)[16]. Contraction of the 
ciliary bodies allows the lens to focus images on the retina. Finally, light contacts the retina, 
the inner most coat under the choroid. The choirod is responsible for supplying blood to 
the eye[8]. The white of the eye is known as the sclera and it forms "part of the supporting 
wall of the eye ball" [8]. The retina consists of an outer pigmented layer and inner nervous 
tissue layer and more importantly, it contains the rods and cones: the photoreceptors that 
convert light energy into nerve impulses that are sent to the brain. Unlike other receptors, 
light absorption hyperpolarizes (inhibits) the photoreceptors. It is in the dark that these 
cells are depolorized ( activated) [16]. 

Ciliary body 

Figure 1: An overview of the eye. All borrowed figures courtesy of[8]. 
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Absorption of light leads to a cascade of biochemical events triggered by the activation 
of the photopigments. When a photopigment absorbs light it dissociates its retinene and 
opsin components. Its retinene portion, identical in all four photopigments, changes shape 
triggering the enzymatic activity of opsin. This leads to a activation of tranducin (the 
G protein contained in the rods and cones), which in turn depolarizes phosphodiesterase. 
This intracellular enzyme decreases the concentration of cyclic GMP (cGMP) which brings 
about the closure of the N a+ channels[16]. Hence the potential across the membrane of 
the photoreceptor hyperpolarizes all the way to the synaptic terminal. The potential change 
leads to the closure of the Ca2+ channels and a reduction in the glutamate neuro-transmitter 
release from the synaptic terminal. The amount of the hyperpolarization response and the 
reduction in the transmitter release depend on the intensity of the light photon. This leads 
to depolarization of the bipolar cells which exhibit graded potentials. The action potentials 
in the ganglion cells (the neurons between the bipolar cells and the optic nevers) propagates 
the visual signals to the brain[16]. See Fig. 1 for spatial organization of major components 
of the eye. 

1.2 The Retina and Photoreceptors 

The retina, literally an extension of the brain, is a crucial in the process of vision. The retina 
is a circular disk about 42mm in diameter found in the rear of the eye and is composed of 
three layers of nerve cell bodies and two layers of synapses (gaps between neurons)[8]. The 
three nerve cell layers include the outer nuclear layer, the inner nuclear layer, and the gan­
glion cell layer. The outer plexiform layer (OPL) and inner plexiform layer (IPL) bridge the 
gaps between these three celllayers[8]. 

The retina is not a homogeneous structure, but is instead characterized by diverse regions 
such as the fovea and optic disk which have different densities and spatial distributions of 
photoreceptors. The blood vessel free fovea, located directly in the back of the eye is the 
region with the highest concentration of cones. In its center, the foveal pit, the cones reach 
their maximum density. In this rod free region, cones are ordered in a tight hexagonal 
arrangement[8]. The density of rods increases radially away from the fovea. The optic disk 
surrounds the attachment point of the optic nerve in the retina. The major blood vessels of 
the eye radiate outward non-uniformly from the optic nerve. Due to the bundling of nerve 
cells and blood vessels no photoreceptors are to be found in the optic disc[8]. See Fig 1.2 for 
rod and cone distribution in the retina. 

Photoreceptors are in constant need of nutrient supply. They undergo continuous cellu­
lar renewal processes which depend on numerous biological factors. Following a circadian 
rhythm, rods and cones form and shed segment discs which are phagocytosed by the pig-
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Figure 2: Rod and cone distribution[8] Cone packing in fovea[8] 

ment epithelium, and through this process they regenerate completely about every 12 days, 
but this process can take up to 3 weeks[13]. Shedding requires numerous amino acids (pre­
cursors of opsin) and a great deal of intracellular energy all precursors of which must be 
delivered in the blood supply. In addition to the aforementioned factors, the blood supplied 
by the choroid contains other nutrients vital to photoreceptor survival. Synthesis of neuro­
transmitters such as glutamate, gamma aminobutyric acid, glycine, dopamine, acetylcholine, 
serotonin, and melatonin are crucial for rod and cone survival. Numerous neuropeptides are 
also required for proper neural function[8]. The trophic pool supplied by blood from the 
choroid is vital for photoreceptor survival. 

Figure 3: Overview of the normal retina[8] 
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1.3 Rod and Cone Morphology 

The outer nuclear layer of the retina contains the cell bodies of the four types of photoreceptors­
the rod and three types of cones (red, blue, and green) which each optimally receive light 
of different wavelengths due to differing photopigments[8]. Cones are larger structures and 
number approximately 6 million in the eye[19]. They "are conical cells which have their cell 
bodies located under the outer limiting membrane and their inner segments protrude into 
the subretinal space towards the pigment epithelium" [8]. Rods are much more numerous 
than cones, numbering about 120 million[19]. The rod cells are narrow, cylindrically shaped 
cells with their "inner and outer segments filling the area between the larger cones in the 
subretinal space and stretching to the pigment epithelium cells" [8]. 

Figure 4: Rod and cone overview[8] 

Each photoreceptor can be subdivided into two components: a large opsin protein and 
a smaller retinene (a.k.a. retinal) molecule. Retinal is a derivative of vitamin A and is 
attached to the opsin. Retinal is the same in rods and cones, but the opsin protein differs 
in all four photopigments (actually called rhodopsin in rods)[13]. The fact that all opsins 
differ is crucial, as small genetic defects may only affect one type of photoreceptor as in some 
degenerative diseases (e.g. Retinitis pigment os a ). 
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1.4 Rod and cone function 

Difference in form translates into different functions in rods and cones. The vision pathway 
of the rods is highly convergent: between 15 and 30 rods synapse with a single rod bipolar 
cell in the outer plexiform layer. Having numerous rods synapse onto one bipolar cell aids in 
vision under low light conditions[8]. Rods synapse on only one type of bipolar cell, whereas 
the cones synapse on several different types which in turn synapse directly with ganglion 
cells. The synapsing rod bipolar cells, however, utilize intermediate amacrine cells. The rods 
achieve maximal density in a ring about 18° from the fovea and this high rod density in the 
outer retina aids in peripheral vision. The high density of cones in the central fovea (a 6mm 
wide disk) and lack of horizontal cells (i.e. vertical transmission pathways) is responsible for 
acute central vision[13]. 

1.5 Interactions via horizontal cells and gap junctions 

The inner nuclear layer of the retina contains the cell bodies of bipolar, horizontal, and 
amacrine cells. The horizontal cells have been implicated in direct photoreceptor interactions[8]. 
"Horizontal cells are characterized by large-surface-area gap junctions between dendrites of 
like type neighboring cells. These junctions allow lateral flow of electrical signals within 
syncitial network of cells" [8]. Gap junctions connect phororeceptors of the same type as 
well as differing types. Horizontal cells send visual information back to cones through feed­
back loops, but there is currently no data supporting feedback back onto rods[8]. The gap 
junctional channels synchronize and regulate many Intercellular activities in the retina and 
throughout the body[15]. 

Amacrine cells form intercellular pathways in the inner retina, and interplexiform cells 
form pathways from inner to outer retina. Both of these cell types have an effect of modulat­
ing signal flow between photoreceptors. Amacrine cells "integrate, modulate and interpose 
a temporal domain to the visual message presented to the ganglion cell" [8]. The output of 
rod bipolar cells goes to small All amacrine cells whose output is onto the terminal end of 
cone bipolar cells. "Thus there are extra elements in the rod pathway such that the flow of 
information is rod --t rod bipolar cell --t All amacrine cell --t cone bipolar cell --t ganglion 
cell" [13]. The interplexiform cells carry information in the direction opposite of bipolar cells; 
they direct information from inner to outer retina and have also been shown to modulate 
the information pathway[13]. The amacrine cells and interplexiform cells represent an in­
teraction between information flow of rods and cones. It is likely that this interaction in 
information also represents, to a lesser degree, interaction between rods and cones. 
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1.6 Retinal Degeneration; Retinitis Pigmentosa 

A gradual decrease in the number of rods and cones occurs over time even in healthy indi­
viduals. Extrapolating from a linear fit given in Oyster, we find about 34,000 rods are lost 
per year and about 57 cones are lost per year in the area surrounding the fovea. Given there 
are about 34,000 cones and 7,000,000 rods in this defined area, we can estimate the natural 
death rate of rods and cones in the whole eye to be about 600,000 rods per year and 10,060 
cones per year[13]. 

This natural degradation of rods and cones, while affecting the quality of vision over a 
lifetime, is trivial compared to the devastating effects of several degenerative diseases. Mil­
lions of people suffer from accelerated retinal degeneration often leading to total blindness. 
Diseases such as Retinitis pigmentosa (RP), late-onset retinal degeneration (L-ORD), and 
age related macular degeneration (AMD) have all been shown to usually affect rods first 
and to later extend to cones, resulting in total blindness[5]. Among these, RP is the pri­
mary cause of inherited blindness in the developed world, affecting 50,000-100,000 Americans 
alone[12] [17]. 

Retinitis pigmentosa is a diverse group of inherited diseases typically characterized by 
initial loss of nearly all rods followed shortly thereafter by a slower loss of cones[10]. This 
progressive retinal degeneration manifests in an early loss of peripheral and night vision, and 
later by color blindness and finally loss of central vision[15]. The secondary loss of cones 
may progress over many decades, or sometimes much shorter periods. Different types of RP 
progress at different rates, but the rate is usually similar in family members[ll]. 

Mutations in more than 100 genes coding for proteins in the phototransduction cascade 
have been linked to RP[2]. "RP is inherited as an autosomal dominant disease in 43% of 
cases, autosomal recessive in 20%, and X-linked in 8%" [2]. The loss of cones comes some­
what unexpectedly as the mutations usually affect only the function of the rods and their 
phototransduction cascade. 

1. 7 Possible Causes for Secondary Cone De'ath in RP 

There are two main hypotheses for the secondary wave of cone death in RP, Interactions­
both intercellular and extracellular-are hypothesized to playa key role in transmission of 
toxic factors and trophic factors, 
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Figure 5: A retina affected by Retinitis pigmentosa: note the black pigment in the periphery 
and the thinned blood vessels at the optic nerve head. [8J 

One explanation is that dying rods release toxic substances into the extracellular space 
which spur cone apoptosis (death). Glutamate and products of apoptosis are usually cited 
as candidates for the toxic substance. If the toxicity hypothesis is true, normal rods near 
defective rods would be expected to die at a faster rate than those far away simply by diffu­
sion principles[15]. A study on mice by Huang et al. found uniform rod degeneration rates 
throughout normal and defective rod patches, thus contradicting the extracellular toxicity 
hypothesis[6J. Further, Kedzierski et al. (1998) found uniform degeneration in a mosaic 
pattern of transgene expression, also contradicting the toxicity hypothesis[15]. 

The second explanation is the existence of an extracellular trophic pool which rods and 
cones draw from and give to for survival. The crux of the trophic factor hypotheses is the 
assumption that beneficial factors necessary for cone survival are emitted by the rods, and 
the death of the cones results from deprivation of these factors following rod death. In sup­
port of the trophic factor hypothesis, several studies have shown that injection of specific 
factors can delay the wave of cone death[15]. 

A possible variation on the two previously mentioned hypotheses involves intercellular 
(direct cell to cell )-rather than extracellular-pathways. The toxic factors released from 
dying rods or trophic factors released from healthy rods could flow directly between cells. 
Harris Ripps advocates this "bystander effect", an effect mediated by direct cell-cell gap 
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junctions. Ripps cites the toxicity factor as the more likely of the two hypotheses in this 
case, citing the study by Lin et al. (1998) as experimental support. Lin et al. showed 
that "dying glial cells undergoing apoptosis send death signals to their healthy neighbors 
via gap-junctional channels", and it is thus equally likely rods could do the same to cones[15]. 

If the intercellular toxicity hypothesis is true, the lack of horizontal cells in the center of 
the fovea should result in a slower degeneration of centrally located cones. Ripps points out, 
this does in fact occur[15]. The cones in the fovea, wired primarily in a one to one vertical 
arrangement necessary for acquisition of fine detail, are some of the last to be affected in 
the wave of cone death. Ripps further points out that while rods have been known to affect 
membrane potentials of cones, it has not been shown that cones regulate the rod membrane 
potentials. If this membrane polarization is beneficial to the photoreceptors, it could account 
for the lack of secondary rod cell death in degenerative diseases which primarily affect cones 
and the secondary wave of cone death in diseases like RP[15]. 

Further experimental study is needed to determine the source and method of propogation 
for the trophic or toxic factor responsible for the secondary wave of cone death. A better 
understanding will result in more efficacious treatments for retinal degenerations. Currently 
rod transplantation, intravitreal injection of survival factors, and oral supplementation of 
vitamin A are several treatments in RP[15]. 

2 The Disease Model 

With a better understand of the biology of the eye disclosed, we now create a mathemat­
ical model. In our model we assume that the eyes are identical and hence consider only 
one eye. We postulate that. cones and the rods interact directly with each other through 
intracellular connections involving the gap junctions between horizontal cells and indirectly 
through the trophic pool. We model the flow of nutrients between the photoreceptors as an 
epidemiological process. We imagine that both the normal rods (R,,) and the cones (C) take 
more nutrients from the trophic pool (T) than they contribute, and that they convert these 
trophic factors to new cells at some ratio. We consider mutations on the rhodopsin molecule 
(which is contained only in the rods) and assume that the mutated rods (Rm) communicate 
indirectly with other healthy rods and cones through the trophic pool. Once the rhodopsin 
molecule is mutated, it transforms a normal rod into mutated rod. The diseased (or mutated) 
rod lives only temporarily, but through its short residence time is still capable of affecting 
other rods and cones. We illustrate the positive directional nutrient flow from the trophic 

34 



pool to all photoreceptors. We consider the trophic pool to supplied with nutrients at a 
constant influx rate which is dependent on the size of the pool. The constant recruitment 
rate into the trophic implies that if withdrawal rate exceeds influx rate the pool will empty. 
Conversely, in the absence of rods the pool will grow exponentially. See flow diagram (Figure 
6), in which all parameters are positive. 

r 

J.111l 

Figure 6: The disease model 

We formulate the system of differential equations from the flowchart and our assumptions. 

Rn(t) 
Rm(t) = 

C(t) 
T(t) 

R,.(t)(aT(t) - J-ln - m) 

Rm(t)(bT(t) - J-lm) + Rn(t)m 
C(t)(cT(t) - J-lc + dR,.(t)) 
T(t)(r - aR,.(t) - f3Rm(t) - ,,!C(t) 

(1) 

Here a and,,! represent the exchange rate of nutrients from the trophic pool to the healthy 
rods and cones, respectively. Once the rods are invaded by the disease they mutate at a rate 
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Variable Description Units 
r Total inflow rate into the trophic pool lit 
a Constant per cell rate at which Rn withdraws T llRnt 
{3 Constant per cell rate at which Rm withdraws T llRmt 
'Y Constant per cell rate at which C withdraws T l/Ct 
6 Constant per cell rate at which Rn helps C l/Ct 
ql Per cell conversion factor Rn/T 
q2 Per cell conversion factor Rm/T 
q3 Per cell conversion factor CIT 
q4 Per cell conversion factor CIRn 
/-tn Per cell death rate of Rn lit 
/-tm Per cell death rate of Rm lit 
/-te Per cell death rate of C lit 
m Per cell mutation rate of Rn lit 
a aql l/Tt 
b {3q2 l/Tt 
c 'Yq3 l/Tt 
d 8q4 llRnt 

Figure 7: Value of parameters for our model 

m. The per cell transfer rate of nutrients from the trophic pool to the mutated rods is defined 
as {3. The per cell rate at which nutrients and signals move between the healthy rods and 
the cones through the horizontal cells is given by 6. The Rn, Jim, and (; equations all have 
a conversion factor associated with them. This conversion factor arises from an assumption 
that one unit of trophic factor does not result in exactly one new photoreceptor. Hence we 
have a = aql, where ql is the conversion accounting for each unit of trophic factor that gets 
converted into rod, likewise for the other systems. The rods help the cones (without hurting 
themselves) at a rate 6 and the cones convert this to new cones at a factor q4· Rn, Rm, and 
C leave the system at natural death rates /-tn, /-tm, and /-te respectively. These assumptions 
are summarized in table 7. 

2.1 Full Model With Delay 

To account for the delay in the secondary degeneration wave of photoreceptors we have 
considered a fixed time delay (T) on the direct communication media between the cones and 
the rods. This changes the set of equations only slightly: 
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Rn(t) = Rn(t) (aT(t) - J.ln - m) 

Rm(t) = Rm(t)(bT(t) - J.lm) + Rn(t)m 

C(t) = C(t) (cT(t) - J.lc + dRn(t - T)) 

T(t) = T(t)(f - aRn(t) - f3Rm(t) - ,,!C(t)) (2) 

This framework allows the investigation of the effect of mutants on cones and rods via 
their effect on the flow of nutrients and signal information. We begin by investigating the 
relationship between rods and cones in a mutation free individual. 

3 The Model Without Disease 

We can illustrate the dynamics of the interactions between the rods and the cones for an 
individual without RP (i.e., a healthy person) by letting Rm = m = J.lm = b = O. Imposing 
such conditions on the original system, equations (1), reduces the system to 3 dimensions. 

3.1 The Disease Free Model Without Delay 

The governing dynamics of an eye without RP are given by 

Rn(t) = 

C(t) 
T(t) 

Rn (t) (aT( t) - J.ln) 
C(t)(cT(t) - J.lc + dRn(t)) 
T(t)(f - aRn(t) - ,,!C(t)) (3) 

Here the parameters have the same meaning as in equations (1). The mechanism be­
tween the trophic pool (T), the normal rods (Rn), and the cones (C) is presented in the flow 
diagram Figure 8. 
We begin by studying the long term behavior of the system given by equations (3). The 
logical first step is to compute the steady state solutions. The equilibria are obtained by 
setting the right hand of (3) to zero and solving for the independent variables. Following 
these steps we obtain four equilibria (Ei' i = 1,2,3,4) which we will denote in the form (R~, 
C*, T*). 
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Figure 8: The disease free model. 

E1 : (0,0,0) 

E2 : ( 0 I i!:f.) 
, "I' C 

E3 : (~,o,~) 

E4 : ( 
-Cf.Ln +af.Le rad+acf.Ln -aaf.Le &) 

ad' "lad ' a 

(4) 

Having solved for the equilibria of the system, we then analyze the local stabily of the 
equilibria by linearization. In other words, we determine the local stability by investigating 
the eigenvalues of the linearized system. Hence, the jacobian for the system is: 

. ( r - aR" - 'YC 
J = aR" 

Cc 

-Ta 
aT - /-hn 

Cd 
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The characteristic equation for the equilibrium Ei is given by 

/ JE - ),,13 /= O. 

Applying this procedure to all four equilibria yields the eigenvalues E i : 

)"(Ed : (f, -f-tn, -f-tc) 

)"(E2) : (-CfLnc+agc, V-ff-tc, -V-ff-tc) 

)..(E3): (rda+a:,;-agca, V - ff-tn, -V -ff-tn) . 

(5) 

The eigenvalues for the E4 are too lengthy (pages long) to show here, but all eigenvalues 
have nonzero have real part. The instability associated to E4 , however, is not difficult to 
show. The stability of the steady state solution is determined by the real part of the eigen­
values. An equilibrium is locally asymptotically stable if all eigenvalues have negative real 
part [9], [14J. If R( ).. )= 0 for any).. then the point is non-hyperbolic and the local analysis 
of the system cannot be determined from linearization. In such cases the original nonlinear 
system is not topologically equivalent to the linear system in a small neighborhood about 
the equilibria. In other words, under nonhyperbolic fixed points there is no diffeomorphism 
between the nonlinear system and the linear system in a small neighborhood about the equi­
librium. Hence higher order terms can not be ignored in analyzing the local behavior of the 
system[9J ,[14J. 

From our eigenvalues it is clear that El and E4 are hyperbolic fixed points. It is also 
clear that E2 and E3 are nonhyperbolic fixed points. Linear analysis of El shows that the 
origin always exists, and since f > 0 it is always unstable. The "healthy human" equilibrium 
point (E4) exists biologically when 

(
f-tnC __ O!_C=--f-tn,,--) aE -, 
f-tc O!f-tc - fd 

provided we make the assumption fd - O!f-tc < O. 

In determining stability of E4 , we use the Routh-Hurwitz criteria on the characteristic 
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polynomial: 

(6) 

For stability, the Routh-Hurwitz criteria requires a characteristic polynomial of the form 
,\3+ a1 ,\2+ a2'\+a3 to have al > O. Clearly that is not the case with E4 since the cooefficient 
on the ,\2 term is O. The "healthy human" equilibria is always unstable[3]'[9]'[14]. 

3.1.1 Dynamic Behavior of Nonhyperbolic Fixed Points 

The model undergoes extremely interesting dynamic behavior around the nonhyperbolic 
fixed points E2 (which lives in the invariant C-T plane) and E3 (which lives in the invariant 
Rn-T plane). Interpretation of the solutions close to E2 and E3 for initial conditions in 
these invariant planes provides ",aluable biological insight. Setting Rn = 0 we see the set of 
equations reduces to the 2-dimensional system, 

(; = C(t)(cT(t) - Pc), 

T = T(t)(f - "(C(t)). (7) 

Similarly, setting C = 0 reduces our system to 2-dimensions and, the mathematical expres­
sions become 

lin = Rn(t)(aT(t) - Pn), 

T = T(t)(f - aRn(t)). (8) 

This behavior implies that once an individual loses all rods or cones (and enters an in­
variant plane), they can never regain them. If a person is born with no rods or cones, they 
will also never gain them, as spontaneous generation of photoreceptors does not occur[15]. 
This fact is accurately reflected in this model. 

Furthermore, dynamics about each of the equilibrium points in their respective planes is 
intriguing. The eigenvalues of E2 are V - f fJ-c and - V - f fJ-c which, given the assumptions on 
the parameters, are both purely imaginary. The eigenvalues of E3 are V-ffJ-n and -V-ffJ-n 
which also have no real part for f > fJ-n > O. Thus we have either a family of centers or 
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weak focus around each of these points in their respective planes[14], [9]. The system in the 
R,,-T plane given in 4, can be written in terms of x and y as 

t =by + p(x, y) 

iJ =cx + q(x, y) 

where p(x, y) = -aTR" and q(x, y) = aTRn . 

Following a thereom in Perko, wherein we characterize the stability behavior of the nonhy­
perbolic equilibriam through the Liapunov number[14]: 

x =ax + by + p(x,y) 

y =cx + dy + q(x, y) 

Note that in our case a = d = 0 and Rn = y, T = x, Ii", = y, t = x. 

t =by + p(x, y) 

y =cx + q(x, y) 

we substitute Rn = y, T = x, Ii", = x, t = y. As we have a nonhyperbolic equilibrium 
(i.e R()') = 0 for at least one of the eigenvalues), we must look at higher order terms. In our 
case we have 

which shows 

dllT R" =aT R" 

Further, 

which results in 

bll T R" = - aT R" 
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We don't consider the other orders because they do not exist in our model. The Liapanov 
number a is given by the equation 

and in our case aij = dij . If we substitute we find a = 0. If fJ, = a = 0, then the rod free 
equilibrium is a weak focus of multiplicity m > 1, and the cone free equilibrium follows by 
symmetry[14]. 

3.1. 2 Level curves 

We have characterized the rod free and cone free hyperbolic fixed points as weak foci of 
mulitplicity > 1, and now we seek the associated level curves. 

Recall the equations in the Rn-T plane 

T =fT- exTRn 

Rn = - RnfJ,n + aTRn. 

In considering the cone free equilibrium in its respective invariant plane, we now have a 
predator-prey system where T is the prey and Rn is the predator. We recall the equation in 
the Rn-T invariant plane to compute the level curves. 

dRn -fJ,nRn + aT Rn 
=------

dT fT - exTRn 
To solve this problem we use separation of variables. 

dRn 

dT 

We separate variables and integrate 

TRn(=!p-+a) 

TRn(L -ex) 

J (~n - ex) dR = J ( -;n + a) dT 

f In Rn - exRn = - fJ,n In T + aT + K 0 

f(T, Rn) = In T(/ln) R}f) - (aT + exRn + Ko). 
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The function f(T, Rn) are the level curves defining the motion of the system. For each 
different constant Ko there exists a different curve projected onto the (T, Rn) plane. 

Exponentiating yields 

Hence R!)e(-etRn) = ~(~:~?, where K is constant. The steady state is in the point(~, f.L;). 

If we compute the nullclines that implies, we found the trivial solution 

R* = 0 and T* = 0 

and the non-trivial solution 

R* = r: and T* = f.Ln et a 

If we use the non trivial solution and substitute T* = 7; in the equation (3.1.2) we get 

~r) e( -o<Rn) = K e;a) and this solution is constant. This proves that E2 and similarly E3 are 

centers. If we graph the function f(Rn) = Rne-etRn and f(y) = K~ra we see 
In the graph of Figure 9 we can see that f(Rn) and f(y) have at most 2 solutions for 

any given constant. If we trace a line in T = 7; we see that this line intersects the graphs 
2 times; therefore the trajectory can't be a spiral [9], [14J. Refer to Figures 10 and 11 for 
graphical representation of the level curves. 

We show that in the cone free equilibrium point E2 we have a weak focus or multiple 
focus. We see this situation graphically in Figure 10 and Figure 11, which shows numerically 
that we have "circles" but not limit cycles. These curves are modeled by the function 

f(T, Rn) = InTRn - (aT + aRn + K) 

where K is a constant. We obtain the same results with Rn = 0 and C =1= O. When this 
happens we don't know the stability of the system. Biologically that means that the rods 
or cones and the trophic factor change but satisfy an equation that remains constant. The 
systems can have neutrally stable cycles, but not limit cycle trajectories[4J. 

3.1.3 Rqds, Cones, and Trophic Factor as a Two Predator-Single Prey System 

"The fact that predator-prey systems have a tendency to oscillate has been observed for well 
over a century" [4J. The oscillations observed in our model force us to ask: could rods and 
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Figure 9: Graphical proof of the equation is no spiral 

cones be preying on the trophic factor? A standard two predator-prey system with x as the 
prey and YI and Y2 as the predators are governed by the following equations[I]: 

x =ax - blxYI - b2xY2 

YI = - CIYI + dlxYI 

Y2 = - C2Y2 + d2xY2 

This set of equations corresponds nearly exactly with ours, if we let x = T, yl = Rn" y2 = 

C. The exception is that we have an extra dRn, term in our (; equation. In our case, the 
rod predator helps the cone predator, whereas in the above equation the predators have no 
interaction. Let us temporarily neglect this extra factor in our (; equation (we are neglecting 
direct cell-cell communication), thus giving us a standard predator-prey model. We then have 
the system of equations: 

T = T(t)(r - aRn,(t) - "(C(t)) 

En = Rn,(t) (aT(t) - !-In) 

(; = C(t)(cT(t) - !-lc) 
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Figure 10: The rods and trophic factor's weak foci 

In this case it has been shown that "one of the predator populations always drives out 
the other" .[4] This is in fact the case in our system. The equilibrium points of this system 
are given by (Rn,c,T): 

E1 : (0,0,0), 

E2 : (O,~,~), 
E3 : (!::O~). a' , a 

The corresponding eigenvalues: 

)"(El) : (f, -J.ln, -J.lc) 
)..(E2): (-cf.Lnc+af1:C,~, -V-fJ.lc) 
)..(E3): (Cf1:n~a/1:c, V-fJ.ln, -V-fJ.ln) . 

(-18) 

( -20) 

It is clear that one of E2 or E3 is unstable at all times, thus showing that rods and cones 
can not coexist. Biologically, this means that if there is no commensalistic factor between 
the rods and cones in our model, only one of the two photoreceptors will survive as t -t 00. 
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Figure 11: The cones and trophic factor's weak foci 

The possibility of coexistence is dependent on the dRn term in the (] equation in this case. 
This strongly suggests the existence of the direct interaction term. 

3.1.4 Complete Three Trophic Level System 

Although there is strong evidence that the cones are helped by the presence of the rods, 
there does not seem to be evidence which suggests that the rods, are even somewhat hurt 
by the cones. One explanation of why this effect may not have been observed could be that 
because the rods so greatly outnumber the cones the harmful effect that the cones have on 
the rods is minimal. Mathematically, however, we could model this interaction by including 
an additional term in the equation for C(t). The full model with delay is then given by 

dRn 

dt 
dC 
dt 
dT 
dt 

= Rn(t) (a T(t) - Pn - e C(t)) (-19) 

C(t) (cT(t) - Pc + dRn(t - T)) ( -18) 

T(t) r - (a Rn(t) + 'Y C(t)) T(t) ( -17) 

When there is no delay in the model, the results are well-known.[I] In particular, the 
results state that all three variables we consider cannot coexist-one must die. 
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For the non-delay equations, the curve along which Hopf bifurcations may occur is given 
by 

( -17) 

where 

(-16) 

Incorporating the time delay gives a new curve: 

( -16) 

where 

F2 = b Ci. f.Le a2 + I c r d a - I a Ci. C f.Ln - I a C Ci. f.Le + I Ci. c2 
f.Ln - Ci. e C r a) (-16) 

and we have assumed that the delay is small in order to obtain a closed form analytical 
expression. See the next section for a full derivation of the analogory results for the system 
where we assume the rods help the cones but are not hurt by them. 

Numerical solutions of the delay equation again showed oscillatory behavior. 

3.1.5 Fold-Ropf Bifurcation at the "healthy human" equilibrium (T = 0 

Recall that the healthy human equilibrium E4 , which is always unstable, is biologically rele­
vant and unique when the parameter a satisfies 

a E (f.Ln
C

, Ci.Cf.Ln ) = (aD, a*) 
f.Le Ci.f.Le - rd 

The evolution of the "healthy human" E4 across the biologically relevant region (i.e. the 1st 
Octant) is shown in Figure 12. Note that when a = J.ln

e = aD, E4 and E2 coincide (they are 
J.lc 

the same point mathematically). Similiary, when a = Q:~~rd = a*, E4 and E2 coincide. 

Therefore, this makes these two a values prime candidates for bifurcation analysis, which 
we do now. 

First, we explored the possibility that for certain parameter values there may exists a 
limit cycle (suggested by numerical solutions). The emergence and/or disappearance ofthese 
limit cycles would correspond to a Hopf bifurcation. In order to locate a Hopf bifurcation 
we look for eigenvalues of the form 
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), = iw 

where w E JR+. Making this substitution into 1 A - ),13 1= 0 gives 

),3 + e), + f = -iw3 + iew + f 

where e, fER This implies 

iw(-w2 +e)+f=O 
or 

f = 0 and w2 = e 

Recalling that w E JR+, it is clear e > O. So for the Hopf bifurcation to occur, we have the 
conditions e > 0 and f = O. 
In the case of our system the parameters have the values 

f..Ln(facd + ac2f..Ln - aacf..Lc - aacf..Ln + aa2f..Lc) 
e= ~~------~----~~----~------~ 

a2 d 

f = f..Ln(Cf..Ln - af..Lc) (acf..Ln - aaf..Lc + fad) 

We solve f = 0 for a which gives 

Cf..Ln ° a=-=a 
f..Lc 

or aCf..Ln * a= =a 
af..Lc - fd 

This shows that at both of these a values the eigenvalues are purely imaginary (a Hopf 
bifurcation), and suggests that we should expect oscillations for all values of a between these 
two critical Hopf values. Numerical solutions (see the following section) indeed verified this 
intuition and again suggested that the limit cycle which occurs between these two parameter 
values is stable. 

Now, we investigate other possible bifurcations that may occure when a = aO or when 
a = a*. In looking for bifurcations at a = aO, we consider the point E2 for two reasons. 
Firstly, E2 lies in the plane in which Rn = 0 (recall, we know quite a good deal about the 
behaviors of solutions confined in this plane). Secondly, recall that when a = aD, E2 and E4 
coincide. Here, we represent the eigenvalues for the point E2 : 
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Note that for all values of a, Az(Ez) and A3(Ez) are always purely imaginary. This 
suggests that solutions should spiral in the two eigendirections corresponding to these purely 
imaginary eigenvalues. However, Al (Ez) is real and can be considered as function of a 
(assuming all other parameter values are held constant). Therefore, this analysis will focus 
only on Al(Ez). Consider the follwing results, which were determined numerically. 

Al(Ez)l(a<aO) < 0 => The point Ez in the invariant plane Rn = 0 is attracting 

Al(Ez)l(a>ao) > 0 => The point Ez in the invariant plane Rn = 0 is repelling 

Here, we showed numerically that for values of a < aD, the plane appears to be attracting 
oscillating solutions. See Figure 15 for a numerical simulation. For values of a > aO, the 
plane appears to be repelling oscillation solutions. Now, we consider the case where a = aD, 
which leads to an interesting result. 

Al (Ez) I (a=aO) = 0 =* The point Ez in the invariant plane Rn = 0 is neutral 

Here, if we examine all three eigenvalues for Ez when a = aO and keeping in mind that 
at this value of a, Ez = E4, we see that 

This form of these eigenvalues is special, and states that when a = aO (i.e. when the 
equilibria E4 and Ez are equal), a Fold-Hopf bifurcation occurs. Simply put, this means 
when a = aO, the point Ez in the plane Rn =0 changes from attracting to repelling at the 
same time that a limit cycle is born. 

A similar analysis is done to investigate other possible bifurcations when the parameter 
a = a*. Analagously, we chose to consider the equilibrium E3 because the behavior of 
solutions confined to the plane in which C = 0, where E3 lives, are well understood and 
because when the bifurcating parameter a = a*, E3 = E4. 

Like the previous case, for all values of a, Az(E3) and A3(E3 ) are always purely imaginary, 
which implies oscillating solutions. Once again like the previous case, we will be interested 
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only in the behavior of Al(E3)' Shown below are more results we were able to gain numeri­
cally (See Figure 19). 

Al(E3)/(a<a*) > 0 => The point E3 in the invariant plane C = 0 is repelling 

Al(E3)/(a>a*) < 0 => The point E3 in the invariant plane C = 0 is attracting 

Here, we numerically showed that that when a < a*, the plane appears to be repelling 
oscillating solutions whereas when a > a*, the plane seems to be attracting them. Here, we 
also find interesting results when a = a*. 

Al (E3) I (a>a*) < 0 ::::? The point E3 in the invariant plane C = 0 is attracting 
and 
Al (E3) = A2(E3 ) = (0, iVf,un' -iVf,un) 

So, we again find another Fold-Hopf bifurcation. At the value a = a*, the point E3 in the 
plane C = 0 changes from repelling to attracting at the same time that we numerically see 
that the limit cycle collapses and ceases to exist. 

3.2 The Model With Delay 

The equations are modified slightly to include the delay term, T: 

Rn = R,.(t)(aT(t) - ,un) 

6 = C(t)(cT(t) - ,uc + dR,.(t - T)) 

T = T(t)(f - o:R,.(t) - 'YC(t)) 

The equilibria of the system with delay are identical to the equilibria in the system 
without delay, see equation 4. The stability of the equilibria may change depending on the 
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delay r. To determine the stability, we linearize by letting 

R,,(t) = () -C/-tn + /-tea 
Ul t + da (-24) 

Rn(t - r) = Ul (t - r) + -c/-t:: /-tea, ( -23) 

C(t) = 
() rda + aC/-tn - a/-tea 

U2 t + d 
I a 

( -22) 

T(t) U3(t) + /-tn 
a 

( -21) 

be small perturbations about the in-phase mode. We substitute equations (-24)-(-21) into 
equations 3. Ignoring higher order terms, 'we obtain 

dUl 
dt 

dU2 
dt 

aU3(t) Ul(t) _ U3(t~ C/-tn + aU3~) /-te 

(t) (t) (t)d (t ) 
rCU3(t) rdUl(t-r) ac2/-tnU3(t) = U2 C U3 + U2 Ul - r + + + ---'--~ 

I I Ida 
a C /-tn Ul (t - r) a /-te C U3 (t) a /-te Ul (t - r) + - - --=-~=..:...--~ ,a ,d , 

= 
(au3(t) + /-tn) (a Ul(t) + U2(t) ,) 

a 

(-20) 

( -20) 

( -19) 

Since equations (-20)-(-19) give a system of linear homogeneous equations with constant 
coefficients, we seek solutions of the form 

() At ~ () A(t-r) () At () At Ul = Uo 1 . e , Ul = Uo 1 . e ,U2 = Uo 2 . e , U3 = Uo 3 . e , (-18) 

Substituting into equations (-20)-(-19) and simplifying gives linear equations on (uok The 
matrix of this system is 

J= 

a 

o 

/-tn I 
a 

C /-tn /-tc a ---
d d 

rca c2 /-tn a /-te C --- +--
I Ida ,d 

( -18) 

o 

The characteristic equation of this system is then the determinant of this matrix. It is given 
by 
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where 

A = - /-Ln ( -).. c r d a - ).. c2 ex. /-Ln + ).. c ex. /-Lc a + ex. ).. a c /-Ln - ex. ).. a 2 /-Lc) e (,\ r) 

- /-Ln (r d a C /-Ln - r d a2 /-Lc + ex. c2 /-Ln 2 
- 2 ex. C /-Ln /-Lc a + ex. /-Lc 2 a2

) 

( -19) 

Setting A = 0,).. = 0, and solving gives the bifurcation curves where a change in stability 
of the equilibria may occur. Solving for ex., we obtain 

rda 
ex. = -----

-C/-Ln + /-Lc a 

r 
R~ 

where R~ is the Rn value of the endemic equilibrium. 

(-18) 

Setting).. = iw gives the curves along which Hopf bifurcations may occur. Expressions 
which the Hopf must satisfy are found in closed form solution as 

and 

/-Ln cos( W T) ( - r d a C /-Ln + r d a2 /-Lc - ex. c2 /-Ln 2 + 2 ex. C /-Ln /-Lc a - ex. /-Lc 2 a2
) 

a2 d 

- /-Ln ( -W C r d a - /-Ln W c2 ex. + W C ex. /-Lc a + /-Ln ex. W C a - ex. W /-Lc a2
) 

a2d 

/-Lnsin( W T) (-/-Ln red a + r /-Lc d a2 
- /-Ln 2 ex. 2 + 2/-Ln ex. C /-Lc a - ex. /-Lc 2 a2

) 

a2 d 

° ( -18) 

( -18) 

= O. 

(-18) 

We were not able to eliminate W from the equations. Ifwe assume the delay is small, we 
can Taylor expand the trigonometric terms. Ignoring terms that are O((WT)4) and higher, 
we can eliminate W to obtain the curve 

ex. ( -c /-Ln + /-Lc a) (2 a /-Lc T + 3 a - 3 C - 2 C /-Ln T) = ° 
r a ( -3 C - 2 C /-Ln T + 2 a /-Lc T) 

( -18) 

along which a Hopf bifurcation may occur. We observe that the curve of possible Hopf 
bifurcations in the model with no delay is given by 

_ (c /-Ln - /-Lc a) ex. = ° 
ra 
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3.3 Analysis of Numerical Simulations 

In an effort to obtain a better qualitative understanding of our system, OJOPLOT, a Mat­
lab code, was written and used to numerically integrate our system of equations using 4th 
and 8th order Runga-Katta method. The lack of experimental data available forced us to 
estimate paramter values to produce somewhat realistic results. As demonstrated earlier, 
the dynamic behavior of the system depends largely on the value of the parameter a, and 
here we show evidence to support the previous statements regarding the qualitative behavior 
of the system. 

For a E (0, l!:£.) = (0, aD), we show all solutions should oscillate and eventually limit upon 
J.1.n 

the invariant plane defined by Rn = O. For any initial conditions inside this plane, trajecto-
ries will always be part of a center. Motions in these invariant planes are defined by a family 
of non-isolated close orbits. 

For values of a E [J.1.c, aj.!n
a

] = (aD, a*), we expect all solutions to oscillate about positive 
J.1.n f!c a 

values of Rn , C, and T. It is important to emphasize that because of the nature of the 
steady state that results from a in this interval, no solutions should go to zero. In fact, in 
this section we demonstrate that all solutions must limit to a steady limit cycle. 

For all solutions associated with a E (aj.!n
a

, 00) = (a*, 00), we expect all solutions to 
J.1.c a 

eventually limit upon the invariant plane defined by C = 0 (undergoing periodic oscillations 
as it does so). Similar to the Rn = 0 plane, for initial conditions starting in this plane C = 0 
all solutions are defined by a family of non isolated close curves. 

Now, all of these qualitative descriptions will be verified numerically. In this section, 
we present and discuss various results for both the delay and non delay model. All follow­
ing graphs have units of photoreceptors in millions and time in years. All graphs plotted 
against time are also normalized, using the original average number of photoreceptors in a 
normal individual, about 126 million[19]. The following parameters were used in all of these 
simulations, and only a was varied to obtain the different qualitative behavior described 
earlier. 

We start by picking a value for a such that a E (0, aD). In the graphs plotted against time, 
you can see that although cones appear to oscillate about positive values, the rod population 
approaches zero. This corresponds to the solutions approaching the invariant plane Rn = O. 
Note that a small time delay has little effect. 

To better illustrate this behavior, we now include a phase space portrait of the system 
for various intial conditions when the parameter a E (0, aD). Here, we see that solutions are 
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Parameter Value 
r 1.5 
a 67 /4500 ~ 0.014889 

'Y 67 /1800 ~ 0.037222 
c 1/7000~ 1.42847xl0-4 

d d = 1/28000 ~ 3.57243xl0-5 

ftn 0.4 
ftc 1/45 ~ 0.022222 

Figure 13: All graphs share the following initial conditions:(Rn , C, T) = (120,6,200) 
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Figure 14: (a) a = .0045, T = 0 
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Figure 15: (a) a E (0, aO), T = 0 for different initial conditions 

100 

repelled from the E3 in the plane C = 0, and oscillate as they approach the plane R", = 0, 
which contains the equilibrium point E2 . 

Now, we pick values of a E (aO, a*), where the "healthy human" equilibrium E4 exists. 
Again, we expect solutions corresponding to rods and cones to oscillate about positive values, 
which is seen below. Once again, a small time delay has little effect. 

Again, we show a phase space portrait with various initial conditions to show how in 
fact, all solutions appear to be repelled both from E3 and £2. We also show that a limit 
cycle exists by running the simulations for longer times and ignore the transient solutions, 
and showing that all initial conditions approach the same limit cycle. 

Finally, we examine parameter values of a E (a*, (0). Here, E4 no longer is biologically 
relevant, and the cone population should approach zero while the rods oscillate about some 
positive value, which is shown below. As in all previous cases, a small time delay has little 
effect on the qualitative behavior of the system. 

Finally, we show the phase space portrait for various initial conditions. Here, we see that 
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Figure 16: (a) a = .0015, T = 0 

Figure 17: (a) a = (aO,a*),T = 0 
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Figure 19: (a) a = .003, T = 0 (b)a = .003, T = 1 

all solutions appear to be repelled by E2 in the plane Rn = 0 and attracted to the point E3 
in the plane C = O. 

4 The disease model: Retinitis pigmentosa 

We now consider what happens to the dynamics of hte rod-cone interaction wehn we in­
troduce a retinally degernative disease such as RP. Introducing such a change adds a new 
dimension to our system. All variables and paramters have the same definitions and restric­
tions in system of equations 1. In the presence of RP the rods are divided into two groups: 
normal (Rn) and mutated (Rm). 
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Figure 20: The model with disease. 

lin = Rn(t)(aT(t) - f.tn - m) 

Rm = ELm(t)(bT(t) - f.tm) + Rnm 

6 = C(t)(cT(t) - f.tc + dRn(t)) 

T = T(t)(r - aRn(t) - /3Rm(t) - "(C(t)) 

4.1 The Model With T = 0 i.e. no delay 

Incorporating delay delay does not change the equilibrium points, it only changes the a val­
ues for which the bifurcation occurs. Thus, for the remainder of this paper we shall omit T. 

Equilibrium points are written in the form (Rn, ELm, C, T). 
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El = (0,0,0,0) which corresponds to the origin. It always exists biologically but is never 
stable. 

The second steady state solution E2 = (0, o,~, ~), is the rod free equilibrium. It always 

exists and is stable when -cf.Lc - cm + muca < ° and (~) < 1 
cmUm 

A third fixed point, E3 = (o,~, 0, IT-), is the "total disease" state-so referred because 
only diseased rods exist. The total disease equilibrium always exists and is stable when 
-bf.Ln - bm + f.Lma < ° and (cb/.Lm) < l. /.Le 

The fourth equilibrium point, 

E = (. f( -bf.Ln - bm + af.Lm) fma ° f.Ln + m) 
4 maf3 + a( -bf.Ln - bm + af.Lm) , maf3 + a( -bf.Ln - bm + af.Lm)" a 

is the cone free equilibrium. It exists when - m;!3 < -bf.Ln - bm + af.Lm and -bf.Ln - bm + 
af.Lm > 0. Stability is difficult to determine. 

The final equilibrium point, 

E = (-cf.ln-cm+af.le (-C/.Ln-cm+a/.Le)m I _ a(-C/.Ln-cm+a/.Le)(a/.Lm-bm-b/.Ln+ma!3) f.ln+m) 
5 da' (-b/.Ln -bm+a/.Lm)d' "I "Ida ' a 

is the endemic equilibrium. It exists when -Cf.Ln - em + af.Lc > 0, -bf.Ln - bm + af.Lm > 0, 
and C > 0. Stability can not be easily concluded. Eigenvalue analysis led to page long 
eigenvalues, and Routh-Hurwitz criteria are also lengthy and intricately conditional. 

5 Preliminary Results from Numerical Simulations of 
Rm System 

As previously stated, analyzing the system mathematically that incorporates disease is ex­
tremely difficult. Therefore, given that we had gained a small amount of insight from the 
simple disease-free model, we chose to consider the model containing Rm numerically as a 
perturbation of the simpler system without Rm. To do this, we choose simi liar (though 
in a few cases different) parameter values and initial conditions and ran various numerical 
simulations using OJOPLOT2,a variation of the original code OJOPLOT use to analyze the 
simpler system. In this section, we present three interesting cases for consideration. While 
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Parameter Value 
T 0 
r 2 
a 67/4500 ~ 0.014889 
/3 0.000001 
I 67 /1800 ~ 0.037222 
a 0.003 
b 0.0045 
c 1/7000 ~ 1.42847xl0-4 

d 1/28000 ~ 3.57243xl0-5 

f..ln 0.4 
f..lm 0.6 
f..lc 0.025 
m 0.000001 

Figure 21: Initial Conditions for Case #2:(Rn, C, T, Rm) = (120,6,200,6) 

this is by no means a complete analysis, we consider these simulations in the hope of drawing 
possible connections between the complex model and the simple one, which we understand 
much better. NOTE: Since we have moved from the simple 3-D model to the more complex 
4-D model, we now must consider different parameter values that were not present in previ­
ous analysis. These parameters are f..lm, m, /3, and b. For a description of these parameters, 
see the parameter table presented earlier in this paper. 

In Case 1, the largest changes to the original parameters came in r. We introduced a 
mutation rate m, which is very small. Also, we assumed that normal rods operate better 
than mutant rods in their efficiency at drawing and converting trophic factor (i.e. a > b). 
Also, we assume that normal and mutant rods die at different rates (i.e. f..lm > f..ln)' 

When analyzing the graph, a few interesting features should be pointed out. First and 
foremost, for certain parameter values, the oscillatory nature of the simple model is con­
served. Secondly, and perhaps more interesting, we can see that at large t values, the cones 
approach zero while all other parameters continue oscillating to what appears to be a steady 
state. This suggests an analog to the invariant planes in our simple 3-D model. This idea of 
invariant spaces is very interesting, and has very potentially significant applications in this 
disease model. If we could find solutions that lived in an invariant space in which Rm = 0 
, this could be exploited to develop strategies aimed at treating degenerative diseases that 
affect the photoreceptors. This idea is further explored in Cases 2 and 3. 

The differences between Case 1 and Case 2 include changes in rand d. Also, by increasing 
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Parameter Value 
T 0 
r 1 
a 67 /4500 ~ 0.014889 
j3 0.000001 

'Y 67 /1800 ~ 0.037222 
a 0.005 
b 0.0045 
c 1/7000 ~ 1.42847x10-4 

d 1/2000 = 0.0005 
ftn 0.4 
ftm 0.4 
ftc 1/30 ~ 0.0333 
m 0.000001 

Figure 23: Initial Conditions for Case #2:(Rn, C, T, Rm) = (120,6,200,6) 

ftc we assume that cones die at a higher rate in the presence of mutant rods than in normal 
ones. Finally, we assume that normal and mutant rods die at the same rate (ftm = ftn) and 
draw from and convert trophic factor at similiar rates (a ~ b). 

It is immediately clear that Case 2 shows a solution that tends towards an invariant space 
in which Rm = O. All other variables continue to oscillate and appear to approach a steady 
state that is much higher than their initial amounts. This is interesting, because it contrasts 
somewhat with the results obtained in Case 3, as we will see shortly. 

The differences between Case 2 and Case 3 include: r is increased, and it is assumed that 
rods are aiding cones less (d is reduced). Finally, the death rate for the cones is increased 
(the negative effect of mutated rods on the survival of the cones is assumed to be stronger 
here than in Case 2). 

Like Case 2, Case 3 appears to .live in an invariant space with Rm = O. However, 
the qualitative dynamics of the cone population are much different. Instead of oscillating 
upwards to reach a steady state, it now appears as if cones are oscillating to reach a steady 
state that was lower than its original value and definitely less than the steady state achieved 
by the cones of Case 2. 

From these three simulations, we were able to observe the oscillatory and invariant space 
nature of this new complex system. The changes in parameters made in these three cases 
also suggest that r may play an imporant role in determining the dynamics of the new 
system. We also hypothesize that many of the other properites of the simple system are 
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Parameter Value 
r 0 
r 1.5 
a 67/4500 ~ 0.014889 
(3 0.000001 

'Y 67 /1800 ~ 0.037222 
a 0.005 
b 0.0045 
c 1/7000 ~ 1.42847x10-4 

d 1/2500 =0.0004 
fLn 0.4 
fLm 0.4 
fLc 0.05 
m 0.000001 

Figure 25: Initial Conditions for Case #3:(Rn" C, T, Rm) = (120,6,200,6) 

conserved in the more complex one, and future work should focus on determining whether 
or not these exist. We are particularly interested in investigating the existence of the analog 
to the critical interval for the parameter a in the simple model. 

6 Conclusion 

Mathematical investigation into the nature of direct and indirect interactions between pho­
toreceptors has provided an interesting and insightful system. The first and most important 
conclusion to be drawn is that there must exist a direct cell-cell interaction via horizontal 
cells and gap junctions through which rods communicate with cones. By removing this in­
teraction, we found that the system reduced to a two predator-single prey system in which 
rod-cone coexistence is impossible. Independent of initial conditions, the rods or cones will 
eventually go extinct in the absence of this direct interaction term. This is biologically im­
possible (since healthy people have both rods and cones) and indicates there must exist a 
direct interaction. There may be, however, other important interactions not accounted for 
in this model. 

Next, we were able to show the importance of a in the system. Recall that a is the per 
cell rate at which normal rods draw from the trophic pool. While a was in a particular 
interval the healthy human equilibrium existed, and for a outside of this interval various 
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initial conditions always limited on invariant planes. One bound on this interval was a func­
tion of f, thus developing treatments that affect the influx rate into the trophic pool could 
have applications to decellerating natural vision loss in healthy individuals. Vitamin A, for 
example, has been shown to have positive effects in slowing retinal degeneration. [8] It is quite 
likely that Vitamin A is a component of the trophic pool. 

Our abbreviated investigation into the effect of time delay showed it to have little effect 
on our system. When considering terms containing eAIr in the characteristic equation, we 
Taylor expanded the corresponding trigonometric functions. The expansion led to an approx­
imation valid only for small delays since we ignored higher order terms. The end effect of the 
small time delay was to alter the values for which the healthy human equilibria bioligically 
existed. While this does have biological value (prolonging existence of the healthy human 
equilibrium point) it had no other effect. Further investigation is needed to rule out other 
effects of time delay, and a better implementation allowing for more accurate estimations at 
higher values is needed. 

We are excited by the rich dynamics of a deceptively simple system, and much more work 
is needed to understand this system and its variations more completely. The investigation of 
two independent trophic factor pools for rods and cones respectively, or investigation into the 
toxicity hypothesis could prove useful. The diseased system should be analyzed under the 
effects of direct interaction removal, or conversely an increase in trophic factor with the hope 
of finding a critical value for preventing secondary cone death. In all cases, more accurate 
estimation of parameters is needed, and for this we await the work of the biologists. 
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