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Abstract
When studying the spread of disease, it is imperative to consider variable

factors such as population distributions, the interactions between differing
populations, and socioeconomic factors. We use a network model of interact-
ing nodes with contact rates dependent on population size and socioeconomic
status to explore the disease spread across the twelve districts of Manhattan,
New York City. Influenza was chosen as an example due to its short infection
period and negligible disease-related deaths in comparison to prevalence lev-
els. Since transmission occurs primarily through casual contact, proportionate
mixing is incorporated in the model. Numerical simulation of the model and
sensitivity analysis of its parameters are then used to identify critical factors,
dependent on socioeconomic status, responsible for the severity of the epi-
demic. Vaccination strategies are also implemented to explore what methods
will have the greatest effects on the dynamics of the model.
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1 Introduction

As we head into the 21st century, health care is one of the most prominent topics
of discussion in the United States. Taking proper measures to ensure that everyone
in the country receives adequate health care is a major concern, and Congress has
been petitioned to ensure the Health Care Bill of Rights is not ignored. The bill
would provide universal coverage, cost control, and prescription drug coverage [12].
These are all reasonable items that many Americans would like to receive, yet even
today, many disparities persist concerning health care in this country.

Forty-one million Americans in the United States do not have health care. Sur-
prisingly, eighty-two percent of the uninsured population come from working fami-
lies [11]. However, there are various factors affecting these numbers. Availability of
health care can often be linked to socioeconomic issues of differing neighborhoods
and families. Ethnicity, age, income, and education play vital parts in the average
amount of health care a person in a certain area receives.

There are some recurring trends among certain families and their ability to re-
ceive health care coverage. One dominant trend is that families with higher incomes
are healthier since health care coverage is more readily available to them. In con-
trast, health coverage is scarce for families with median or below median income.
The financial status of a family increasingly determines how much health care they
receive. For low-income families, health care often becomes a passive proposition.
This passivity is manifested in reduced vaccination rates for influenza.

Vaccines are a means to decrease the probability of infection in many populations.
A person is supposed to receive a flu shot every year, however that does not often
occur. Different people have varying reasons for refraining from flu shots. Five
common reasons for missing an annual flu vaccination among African-Americans
are: not knowing it was needed (20.6 %), thinking the shot could cause the flu
(18.4 %), thinking the shot has adverse effects (15 %), thinking the shot could
prevent the flu (14.5 %), and simply forgetting to get the vaccination (12.6 %)
[10]. However, educating people about the vaccine for influenza may increase the
probability of receiving a vaccination and thus decrease the annual flu epidemic.
Educational methods may include giving general information on flu vaccinations in
order to correct many misconceptions and to inform people about locations where
vaccines can be received.

Every year millions of Americans are infected with the Influenza virus, precipi-
tating a set back in the economy due to lost work days and lowered work efficiency.
Population density and socioeconomic status have significant effects on outbreak.
Data shows that flu affects poor districts disproportionately with respect to national
averages [14] [3]. Vaccination is a safe and effective method of prevention, but the
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majority of the population does not get vaccinated [5]. In response to this, the
Center for Disease Control (CDC) has pushed to increase vaccination rates in the
US [11].

Data is published annually that can attest to the discrepancies in health care
and socioeconomic status [14]. The availability of information on Manhattan allows
exploration concerning the differences in socioeconomic status between communities.
A major factor for using New York City in this model is that New York City has a
wide income gap and is representative of many different levels of economic status.
New York City’s five boroughs, in particular the Manhattan borough, exhibit many
more disparities in income, population, and health status than those prevalent in
the United States.

Given the disparities in socioeconomic status that characterize the borough of
Manhattan, the wealth of data, and the CDC’s willingness to improve vaccination
rates in the United States, we develop a mathematical model of the spread of the
flu throughout the twelve densely populated, socioeconomically diverse districts of
Manhattan, New York City. The model will attempt to optimize the vaccination
increases that may result from increased education efforts. This subject does not
lack in importance since the impacy of the flu cannot be understated in terms of
cost both human and economic.

2 Model Formulation

We develop a model of Manhattan, one of New York City’s five boroughs. Manhat-
tan is composed of twelve districts, each of which we consider to be a subpopulation
of the city. Figure 1 displays the divisions of each borough as well as the districts
within them according to the New York City Department of City Planning [14]. In-
teractions occur between the people of Manhattan having important effects on the
dynamics of the spread of a disease when it is introduced into areas of Manhattan,
thus making this a metapopulation model [9].

Each district is represented as a node within a network; there are twelve nodes
that are all interconnected. Our model is compartmental with four classes: suscep-
tible, latent, infective and recovered (SLIR) and the spread of disease, in our case
influenza, is affected by the interactions and activity levels within districts. Suscep-
tible are those at risk of contracting the disease, latent are those who are infected
but not yet infective, infective are those able to pass on the disease and recovered
are those who have recovered from the flu. The model consists of four difference
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Figure 1: Boroughs of New York City; our focus is on Manhattan

equations for each of Manhattan’s districts and is given by

Sit+1 = SitG(I(j=1,..,12)t
) (1)

Lit+1 = (1−G(I(j=1,..,12)t
))Sit + λLt (2)

Iit+1 = (1− λ)Lit + ωiIit , (3)

Rit+1 = (1− ωi)Iit + Rit (4)

where 1 ≤ i ≤ 12. Since we are only observing short time periods, we assume that
in the time course of the simulations there are no births, deaths and the proportion
of people who move into and out of a particular district is insignificant. Note that
(Si + Li + Ii + Ri)t+1 = (Si + Li + Ii + Ri)t = Ni = Ki, where Ni is the population
at district i and Ki is a constant.

Here, G(I(j=1,..,12)t
) is the probability of an individual not becoming infected

from t to t + 1. For homogeneously mixed populations, G(I(j=1,..,12)t
) will be taken

to be of the form
∑12

j=1 e
−αj

Ijt
Nj , where

Ijt

Nj
is the proportion of infected individuals

in district j and αj denotes the force of infection. We assume that the force of
infection is higher among more populous districts and also in a more impoverished
neighborhood, given that poor neighborhoods tend to have more community housing
(such as apartments or public housing); thus αj is district-dependent. In Table 1,
we define the characteristics of each of the districts, including population size and
poverty level.
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District Population Size Proportion of Population in Poverty
1 34420 0.1313
2 93119 0.1086
3 164407 0.2826
4 87479 0.1490
5 44028 0.1116
6 136156 0.0974
7 207699 0.1090
8 217063 0.0663
9 111724 0.3050
10 107109 0.3608
11 117743 0.3727
12 208414 0.3070

Table 1: District characteristics (data is taken from the New York City Department
of City Planning)

Letting αj
Ijt

Nj
= xjt , where xjt is the proportion of contacts that are infective,

and assuming that 0 < xjt << 1, finding the Taylor expansion about xjt gives,

e−xjt = (1− xjt) + h.o.t.

where h.o.t. refers to higher order terms of order x2
jt

and above. Since xjt is the
probability of becoming infected from an individual in district j, then 1−xjt approx-
imates the probability of not becoming infected. Writing the difference equations in
this form avoids any negative solutions; all parameters are between 0 and 1.

Now we must take into account interactions between districts. We consider
proportionate mixing which is represented by

P̄j =
CjNj∑12

m=1 CmNm

, (5)

where for some district i, each P̄j represents the proportion of total contacts per
individual made in district j and Cj is the probability of contacting a certain person
in district j [7]. The contact probability, Cj, is approximated by equating it to the
proportion of the population in district j. Therefore it is more likely to contact
a person from a more populous district. Note that

∑12
j=1 P̄j = 1. Combining the

probability of not becoming infected given that one has come in contact with an
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Parameter Definition
λ Probability of remaining latent
ωi Probability of remaining infectious
αj Force of transmission in district j
P̄j Proportional mixing matrix
Cj Probabilities of contact
vi Proportion of vaccinated individuals in district i

Table 2: Parameters

infected individual and proportionate mixing, we have

G(I(j=1,..,12)t
) ≡

12∑
j=1

P̄je
−αj

Ijt
Nj . (6)

Also, in Equations (2) and (3), λ represents the probability of remaining in the
latent stage of influenza. Similarly, the probability of remaining infected is given by
ωi, which is district-dependent because in a more poor district, access to antiviral
drugs are not as readily available.

Finally, in New York City, a proportion of susceptibles will receive vaccinations.
To account for this it is assumed that people who are vaccinated receive the vaccine
prior to the peak flu season, which is where we begin our analysis. At the initial
time, a fraction of the susceptible class of each district i, given by vi, is immediately
moved into the recovered class for the purpose of taking them out of the group at
risk of becoming infected. Thus, the initial conditions for the susceptible class are
given by Si0 = (1−vi)(Ni−Ii0−Li0). The methods by which these initial vaccinated
proportions are determined can be found in the Parameter Fitting Section and Table
2 lists the parameter definitions.

3 Parameter Fitting

To determine our model’s parameter values, United States time series data on in-
fluenza is used to approximate the time series data for each of the twelve districts.
Data available from the Center for Disease Control (CDC) gives the weekly admis-
sion rates to the hospital as a result of influenza [3]. From this information, we find
the proportion of people in the United States in the hospital for influenza during a
given week and assume these weekly percentages also hold in Manhattan (see figure
2). By finding the average total number of people admitted to the hospital during
the influenza season as well as the total number of influenza cases in the United
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States during a given year, it is found that there are approximately 71 cases of
influenza for every one person admitted to the hospital.

Figure 2: Time series data for the United States taken from the Centers for Disease
Control

This information is used to approximate the expected proportion of total in-
fluenza cases in the United States during a given week. Since we are assuming that
the districts of Manhattan follow these same patterns, we need information on ad-
mission rates to the hospital for each district throughout the year. Our information
on the twelve districts is taken from the New York City District Profiles from the
CDC and although it gives information on the population size of each as well as
the proportion of people living in poverty, it does not give hospitalization rates [10].
However, the DOHMH gives this information but their division of Manhattan has
only ten districts and the divisions are significantly different than ours [15].

To solve this problem and find the rates for our districts, we compared the
hospitalization rates to the proportion of people living in poverty within the ten
district data and found that there is a correlation coefficient r of 0.80697 (see figure
3). Because of the significant correlation, we assume that hospitalization rates and
level of poverty in an area are correlated to one another by the linear regression line

y = 0.0006x− 0.0586

where y is the admission rate to hospital (per 100,000 people) and x is the proportion
of the population in poverty. Using this regression line, we calculate the admission
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rates to the hospital (related to influenza) based on the levels of poverty for each of
the twelve districts.

Figure 3: Regression for the admission rate to the hospital for influenza vs. the
proportion of population living in poverty in the districts of Manhattan. Data is
taken from the New York City Department of Health and Mental Hygiene.

From these calculated rates, we approximate the total number of hospitaliza-
tions for each week based on the hospitalization rates and the time series data
for the United States. Using the hospitalization rates we calculate the number of
hospitalized individuals during a given week in each district and from that the cor-
responding total number of infected individuals (there are 71 infected for every one
hospitalized individual) are estimated.

Once these time series data are obtained, we fit the parameters γi, ωi, λ as well
as the initial conditions for the latent and infectious classes. The initial conditions
for the recovered class are approximated according to the percentage of vaccinations
made in each district; the number of vaccinated individuals are considered to be the
initial conditions for the recovered class.

In our model we assume that people who are vaccinated receive vaccinations
prior to the beginning of the flu season, which is true in most cases. Since flu
vaccination data is not given specifically for each district of the Manhattan borough
we used a weighted method based on age distribution data from the various districts.
First, we use data from the National Health Interview Survey (NHIS) to find what
percentage of people get flu vaccinations [5]. The breakdown of the statistics are age
related; the age groups include 18 to 49, 50 to 65, and 65 and above. We use the age

8



breakdowns for the districts of Manhattan and relate them to the national survey,
assuming that the vaccination proportions in Manhattan are comparable to those
in the United States. For each respective age group we multiply the population of
the Manhattan district by the national percentage corresponding to the age group
vaccinated. Since the NHIS has no available data for people under age 18, we assume
that 25 % of that population is vaccinated. We then take a weighted average of the
percentage of vaccinated with respect to age for each district and find, in total, what
percent of the population receive vaccinations. This percentage of people is then
removed from the susceptible class and placed directly into the recovered class.

The latent period of influenza spans from one to four days and the infectious
period lasts for up to seven days. Thus in fitting these parameters, we constrain λ to
this information and allow ωi to correspond to the likelihood of remaining infectious
for 4 to 7 days. The probability of becoming infected given that a susceptible
individual contacts an infectious individual can be anywhere between 0.2 and 0.9,
so we allow this parameter to range between these values [6]. Since αj is also a
probability, it is allowed to range from 0 to 1 for each j and is dependent on the
population size and poverty level of each district j.

After performing parameter fits, they were implemented in a program con-
structed in MATLAB. A sample of one such fit can be seen in figure 4. Our main
concern in determining the parameters is that the peak of the influenza season has an
approximate match to the actual data. Our focus lays in the peak levels of influenza
activity, subsequent influenza cases are less important for our purposes–thus, the
tails of the fits are inconsequential. There are, however, instances where the peak of
the fitted curve does not match the maximum number of infected individuals. This
can be attributed to the fact that our data is approximated, so there is room for
error in finding a best fit curve although all peaks are within a certain tolerance.

4 Analysis

4.1 Equilibrium Points

The equilibrium points that occur in our difference equation system depend on the
following conditions derived from equations (1-4).

Si∞ = G(I(j=1,..,12)infty
)Si∞ (7)

Li∞ = (1−G(I(j=1,..,12)infty
))Si∞ + λLi∞ (8)

Ii∞ = (1− λ)Li∞ + ωiIi∞ (9)

Ri∞ = (1− ωi)Ii∞ + Ri∞ (10)
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Figure 4: Parameter fit for District 12 where the vertical axis represents the number
of infected individuals at time t, the smooth curve represents the fitted data, and
the jagged curve represents the time series data obtained from the DOHMH

where Si∞ , Li∞ , Ii∞ , and Ri∞ refer to the equilibrium values of susceptible, latent,
infective, and recovered, respectively.

The condition for Si∞ suggests that either G(I(j=1,..,12)∞
) = 1 or Si∞ = 0. If we

consider the former then, from eq. 6,

G(I(j=1,..,12)infty
) =

12∑
j=1

P̄je
−αj

Ijinfty
Nj .

Clearly, in our case G(I(j=1,..,12)∞
) = 1 requires that Ijinfty

= 0 for all i.
Using this last result, Equation 9 gives that,

(1− λ)Li∞ + ωi(0) = 0

So Li∞ = 0 for all i since 1 − λ 6= 0. Finally, using these results, Equation 10
becomes,

Ri∞ = (1− ωi)(0) + Ri∞

And so the results is that Ri∞ = Ri∞ for all i.
Therefore, the equilibrium state only has people in the susceptible and recovered

classes and is disease free. We note that this equilibrium is an element of a line of
equilibria since they are constrained by initial conditions satisfying Si∞+Ri∞ = Ni.
The equilibrium line holds for all districts in the model.
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A possible interpretation of the equilibrium point is that the infective die out and
the susceptible class retains individuals that eventually stay in the class permanently
since the infection term is zero as there are no infected, i.e. G(Ii=1...12infty

) = 1. If
the proportion G(I(j=1,..,12)infty

) = 1, this implies that the probability that you will
remain in Si is 1, therefore an individual is bound to remain susceptible. Individuals
who are infective and latent must enter the recovered class since everyone eventually
recovers absent a death rate. Therefore this equilibrium is designated as the Disease
Free Equilibrium (DFE),

EDFE = (Ni=(1,..,12) −R(i=1,..,12)∞ , 0...0, 0...0, R(i=1,..,12)∞).

The remaining condition for Si∞ suggests that Si∞ = 0 for all i. The second
condition becomes,

Li∞ = λLi∞ .

Again, λ 6= 0 and so necessarily Li∞ = 0 for all i. Similarly, Ii∞ = 0 for all i. Finally,

Ri∞ = Ri∞

The above condition holds for all i. This appears to be a special case of the first
equilibrium found, i.e. Si∞ = 0 and so Ri∞ = Ni for all i.

A possible interpretation of this point is that the susceptible class has no mem-
bers at the initial time. This suggests that everybody has been vaccinated.

4.2 The Basic Reproductive Number

The basic reproductive number, R0, represents the average number of secondary
infections resulting from the introduction of one new infectious individual into a
population. For our discrete model we use the Jury Criteria which give conditions
that guarantee that the system is locally asymptotically stable at the DFE. We
then find a condition that must hold to guarantee the criteria is satisfied for each
individual node.

We first linearize the equations Lit+1 and Iit+1 for each individual district as-
suming that there are no interactions between districts and that Si∞ ≈ γiNi where
γi = 1−vi (i.e. γi is the proportion of the susceptible class who are not vaccinated):

J(Lit ,Iit )
=

[
λ γiαie

−αi
Iit
Ni

1− λ ωi

]
. (11)

Calculating this at the disease free equilibrium produces the 2× 2 matrix

J(0,0) =

[
λ γiαi

1− λ ωi

]
(12)
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By the Jury Criteria, the following conditions need to be satisfied:

a1 + a2 + 1 > 0 (13)

1− a1 + a2 > 0 (14)

1− a2 > 0 (15)

where a1 is the negative trace, −(λ+ωi), and a2 is the determinant, λωi−(1−λ)γiαi

[2]. The only condition required for the above three conditions to be satisfied is that
αi

γi

1−ωi
< 1 and therefore for every district i,

R0i
= αi

γi

1− ωi

where 1
1−ωi

is the average amount of time spent in the infectious stage and if R0i
< 1,

the disease free equilibrium of district i is locally asymptotically stable. Thus we
now have the basic reproductive number for each district, assuming that there are
no interactions between districts.

Based on prior work on mixing, we suspect that the value of R0total
, the basic

reproductive number is representative of the entire system, is

R0total
=

12∑
i=1

[
γi

αi

1− ωi

Ni∑12
k=1 Nk

]
,

That is, the weighted average of each value of R0i
according to their population size.

4.3 Sensitivity Analysis

The solutions that we found depend on various parameters including force of infec-
tion (αi’s), initial unvaccinated proportions (γi’s), recovery probability (1−ωi), and
the latent-infective transition probability (1 − λ). This last transition probability,
(1− λ), is the same for all districts.

4.3.1 Sensitivity of R0total

We previously found that

R0total
=

12∑
i=1

[
γi

αi

1− ωi

Ni∑12
k=1 Nk

]
.

and all parameters appearing in R0total
are district-dependent; αi is dependent on

population size as well as the level of poverty within a district, γi is dependent on

12



the age breakdown of each district and ωi is again dependent on the level of poverty
in district i.

We find the sensitivity indexes for each of these parameters which allows us to
analyze which parameters have the greatest effects on the dynamics of the system
given a slight change in the parameter value. For a parameter p, the sensitivity
index is given by

Sp =
∂J

∂p

p

J
(16)

where J(u) is a function dependent on u (and thus depends on some parameter
p), ∂p represents a perturbation on p and ∂J is the resulting change in J from the
perturbation [1].

Finding the sensitivity indexes of the αi’s with respect to R0total
requires us to

first find
∂R0total

∂αi
. To make this clearer, we expand R0total

:

R0total
=

α1γ1

1− ω1

N1

Ntotal

+
α2γ2

1− ω2

N2

Ntotal

+ · · ·+ α12γ12

1− ω12

N12

Ntotal

where Ntotal =
∑12

k=1 Nk. It is now clear that for 1 ≤ i ≤ 12,

∂R0total

∂αi

=
γi

1− ωi

Ni

Ntotal

. (17)

From Equation 16 we now multiply Equation 17 by αi

R0total
which gives us the sensi-

tivity index of each αi,

Sαi
=

αiγi

R0total
(1− ωi)

Ni

Ntotal

.

Since Sαi
> 0 for all i, an increase in αi will result in an increase in R0total

; if the force
of transmission is increased then the peak of the epidemic will increase. Substituting
in the respective parameter values we find that districts with the highest sensitivity
of αi are predominantly those districts that have the highest proportion of people
living in poverty (percent in poverty is >25 %) as well as the districts with the
largest population. In particular, α12 has the largest sensitivity index. Using the
same methods, we find the sensitivity indexes for the γi’s, which are identical to Sαi

for all i:

Sγi
= Sαi

=
αiγi

R0total
(1− ωi)

Ni

Ntotal

.

Similarly, since Sγi
> 0 for all i, an increase in the proportion of non-vaccinated

individuals will result in an increase in the peak of the epidemic.
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For the sensitivity of the ωi’s we find

Sωi
=

ωiαiγi

R0total
(1− ωi)2

Ni

Ntotal

.

Again since Sωi
> 0 for all i an increase in ωi will result in an increase in R0total

.
We find that the districts with the largest sensitivity indexes of ωi are again those
with more poverty and larger population sizes. Again, District 12 has the largest
sensitivity index for this parameter. Also, within a district i, ωi is always the most
sensitive parameter (greater than that of the index of γi and αi). This implies that
R0total

is affected the most by changes in the parameters in the districts with the
most poverty and largest populations. Clearly, changes in the amount of time spent
in the infectious stage will have the greatest effects on R0total

and in turn has the
greatest effects on the dynamics of the influenza epidemic.

4.3.2 Numerical Sensitivity Analysis

Using Berkeley-Madonna curve-fit program we used numerical methods to explore
the dependence of the numerical solution on the the parameters of the model. The
plots are produced using Berkeley-Madonna’s numerical sensitivity function. This
program produces the numerical partial derivative (

∂Iit

∂p
)of the infective number for

some district over any particular parameter (p). These derivatives are then multi-
plied by p

Iit
in order to obtain,

Sp =
∂Iit

∂p

p

Iit

.

This is the definition of the sensitivity index according to Equation (16). These were
calculated over time and plotted for various parameters.

The results of the sensitivity analysis plots suggest that a perturbation in ωi has
the largest effect on the number of infective at any one time. Figure 5 shows the
sensitivity of the solution with respect to various parameters including various force
of infection parameters (αi’s) and proportions of vaccinated individuals as well as
λ and ωi over time. The figure is representative of the structure of all the infected
classes across the districts. In this case the graph shows the sensitivity parameter
of infective in District 4 as given by equation (16).

In this case ωi initially dominates the plot. The αi’s and to a greater extent λ
controls the behavior as well. It is worth noting that λ affects the solution negatively
in the short run but gains prominence and a positive change in λ increases the
function after about t = 12 weeks. This positive change in λ delays the transition
of latent individuals into the infected class initially since the latent individuals stay
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Figure 5: The sensitivity indices plot for the parameters including γ12, and various
ωi’s, αi’s and λ over time. In this case, the sensitivity indices depend on time. After
t = 10 weeks, the number of infective go to zero sharply.
.

latent longer. Eventually they leave the latent class and enter the infected. This has
an effect of broadening the epidemic but lessening the peak of the outbreak initially.

Additionally, the various other parameters have a much smaller effect on the
infected class in District 4 than either λ or ω12. The αi’s increase the infected class
since higher contact among the districts clearly increases the epidemic.

Although λ and the ωi’s affect the number greatly it is impractical to consider
education programs to change these parameters. For our purposes, it is far more
practical to consider changing the proportion of individuals who are vaccinated in
the various districts. This can perhaps be achieved in the near future.

Figure 6 displays the sensitivity parameters for the non-vaccinated proportions
of the populations as a function of time. In this case, District 11 is studied although
the trend holds for all other districts. Initially we can see an increase in vaccination,
i.e. a decrease in γi causes a decrease in the number of individuals in the infective
class. This decrease then causes an increase later on since it broadens the epidemic
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Figure 6: The sensitivity index plot for the γi’s over time.

slightly. Additionally, we see that Sγ12 is the largest sensitivity index. This is due
to both the population as well as the activity level of the district which is higher
than others. District 12 has a high index of poverty and population and therefore
the γ12 parameter affects all of the other districts immensely.

5 Computer Methods and Simulations

We write our own programs to run simulations using MATLAB’s object oriented
programming language. Our main program, which we call “I vs T” is created to
model the spread of the flu throughout the twelve districts of Manhattan, NY. The
model calculates the number of susceptible, latently infected, infective, and recov-
ered individuals for each district. Varying contact probabilities are estimated using
the method of proportionate mixing. Other parameters are estimated in Berkeley-
Madonna using data from the Center of Disease Control (CDC) [4]. By manipu-
lation of the program structure itself, different scenarios are simulated. Using the
fitted parameters, we simulate different vaccination strategies and derive possible
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recommendations.

5.1 Other Custom-Made Programs

We write several other programs to help us analyze our basic reproductive num-
ber and to observe the effects that different vaccination scenarios have on its value.
We’ve written a program called “InfectionVSR0” which produces a plot of the total
population of infected individuals versus increasing values of our estimated reproduc-
tive number (see Figure 8). The results support our assumption that this estimated
R0total

is close to the “actual” R0total
. Another program, called “RandomFit,” ran-

domly distributes 100,000 additional vaccinations to different districts. Hundreds
of trials are run to find progressively better values for R0total

, producing a visual
representation (see Figure 9). A similar program, called “avgrandom” also performs
operations to find the most efficient method of vaccination using uniform random
numbers weighted by population and poverty level.

Figure 7: The is an example of a predicted flu outbreak in District 12. A simulation
using original vaccination data is compared to a simulation with an additional 25%
of the population vaccinated.

We discover that R0total
is lowest when all vaccinations are concentrated in the

low-income districts. After thousands of computer simulated trials, the values for
the smallest R0total

converge to the value produced when all vaccinations are placed
in District 12. This simply means that District 12 has the greatest affect on the
spread of disease; this observation is also supported through our sensitivity analysis
which shows that District 12 has the greatest effect on R0total

. This also makes
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Figure 8: Infection vs. R0total

Figure 9: Progression of discovered R0total
values (values decrease with simulations)

sense from a practical point of view since District 12 has one of the highest poverty
levels as well as the the second largest population. From these findings we develop a
suggestion for future vaccination that places emphasis on the low-income districts.
The following quantifies these results.
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5.2 Optimizing Improvements in Vaccination Proportions

Using age-related data and census information, we estimate the proportion of vac-
cinated individuals within the twelve districts. These are referred to as the baseline
vaccination proportions. It is then postulated that for a subsequent year there is
an improvement of 6.5% in the number of people vaccinated before the flu seasons
which translates into approximately 100,000 more vaccinations. It is assumed that
a targeted education program could produce these increases in the various districts.
These increases translate into a decrease in the γi’s (non-vaccinated proportion of
district i). Simulation were carried out to maximize the reduction in infected as a
result of differing vaccination strategies. The following simulations attempt to iso-
late the factors that will lead to an optimized vaccination proportion. Initially, we
test the extent to which random vaccination across the districts reduces the number
of infected. We then compare the results of differing vaccination procedures includ-
ing vaccinating predominantly poor districts or vaccinating only in large population
districts. We compare these to the initial trivial case where we vaccinate randomly.

5.2.1 Random Uniform Distribution

Using MATLAB, we create a program to randomly distribute the number of vacci-
nations to each district. This process. The randomization increases the vaccination
proportions for all districts in comparison to the baseline proportions. This is done
using a uniform distribution that is normalized in order for the sum of the propor-
tions to equal to one. The program then averages over 1000 simulations the percent
decrease in infections using these uniform random distributions. This average was
found to be 16.8%.

Figure 10 is a typical result for a uniformly random distribution of vaccination
proportions per district. It displays the baseline vaccination proportions, the new
proportions and the percent reduction of infected people in each district after 33
weeks (after the epidemic has died). The total reduction is also calculated and
included in the figure as well as R0 and effectivity (the number of infections avoided
as a consequence of vaccinating one person above the baseline levels).

5.2.2 Uniform Distribution among the ‘Rich’

There are two general classes in Manhattan. There is a gulf between the districts
in terms of poverty. Harlem and its environs are generally substantially less affluent
than other neighborhoods in Manhattan. It is natural to separate these into two
camps. We test uniform random vaccination only among the richer districts and
allow the same 100,000 additional vaccinations to be distributed between these dis-
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Figure 10: Result of random uniform distribution for new vaccinations

tricts (1, 2, 4, 5, 6, 7, and 8). Figure 11 displays the same information as in Figure
10. This was done in order to isolate the particular vaccination proportion that will
have the largest effect on the number of infected. In this case we isolate the cases
to the rich districts.

Figure 11: Result of random uniform distribution for only the ’rich’ districts

We find that the typical result for this configuration of vaccination proportions
yields a reduction in infection of about 12% on the average. Comparing this to the
uniform distribution among all districts (16% reduction), this result demonstrates
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that vaccinating only rich districts lessens the efficacy of the extra vaccinations with
respect to random vaccination. Given later results, this amounts to stating that
since no one in the poorer districts were vaccinated results in decreased vaccination
efficiency with respect to random variance in vaccination proportions. Vaccinating
among the rich districts is less effective than vaccinating randomly.

5.2.3 Uniform Distribution among the ‘Poor’

The same procedure as in the ‘rich’ case is used instead for the ‘poor’ districts.
These districts are 3, 9, 10, 11 and 12. The vaccination proportions are then varied
randomly using the usual uniform distribution. Figure 12 displays the results of a
typical simulation.

Figure 12: Result of random uniform distribution for only the ’poor’ districts

Using this distribution only among the poor classes we find that the average
reduction in infected is 22% which is an improvement in efficacy over both of the
other two cases (uniform random distribution among the rich and among all dis-
tricts). This result suggests that the differences in force of infection has a large
effect upon the behavior of the system as a whole since a perturbation in the pro-
portion of vaccinated people among the poor classes has a much larger affect on the
rich districts than vice-versa.

5.2.4 Finding the Optimal Vaccination Strategy

If there is an optimum vaccination strategy as suggested by the above results, min-
imizing R0total

over large number of iterations will reveal a pronounced pattern.
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Therefore, we produce 100, 000 different sets of vaccination proportions for the 12
districts. A program calculates R0total

for each of these random proportions and
keeps the set of proportions that minimizes R0total

. The results of this process ap-
pear in Figure 13.

Figure 13: Result of iterated random vaccination proportions

The results show marked increases in all ‘poor’ districts and smaller changes
in the ‘rich’ districts with the exception of District 5. The reduction in infected
is 24%, an improvement over uniform random vaccination in poor districts. The
difference lies in that inferior sets of proportions are discarded and seem to converge
to a behavior as shown in Figure 13. This process was repeated various times and
produced the same general behavior.

The results produced suggest that the ’poor’ districts have an inordinate effect
on their richer neighbors. In order to narrow down the reason for this effect, we
produced vaccination percentages weighted by population so as to favor larger pop-
ulations no matter if they were ’rich’ or ’poor’. As before, 100,000 weighted random
vaccination proportions were produced. The results appear in Figure 14.

The results clearly shows that favoring higher populations produces the same
result as in Figure 12. Even though Districts 7 and 8 are two of the largest pop-
ulations, the additional vaccination in those districts is minimal. On the contrary,
the vaccination increases largely occur in the poor districts. The favoring of ’poor’
districts by the optimizing algorithm isn’t solely due to population size alone as
shown in these results. In addition, the percent reduction in infected improves to
27%.

We have shown that vaccinating rich districts while ignoring the ’poor’ districts
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Figure 14: Result of random uniform distribution weighted by population size

reduces the effectivity. Our iterative procedure favors vaccinating the poor districts
disproportionately. Motivated by the high sensitivity parameter for γ12 as shown in
the sensitivity analysis section, we allow vaccination to occur only in poor districts
and we weigh the proportions for population size. As usual, we produce 100, 000
such sets of proportions. The results are shown in Figure 15.

Figure 15: Result of random uniform distribution weighted by population size re-
stricted to poor districts

The results show the overwhelming effect of favoring District 12 over the oth-
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ers. The reduction in infected (45%) is a large improvement compared to previous
simulations, including those that only uniformly varied among the poor districts.
Concentrating additional vaccination in District 12 has the largest effect on R0total

,
and these results show that it has the largest effect on reducing infected globally,
the ultimate goal of any vaccination strategy. However, poverty is not a defining
characteristic in and of itself for the large effect observed from large variation in
γ12. Figure 16 shows a uniform random distribution for all districts weighed by
poverty. Since the highest poverty districts (11 and 10) aren’t favored by the op-
timization procedure, we conclude that poverty in and of itself does not guarantee
that particular district will be vaccinated to a large degree in the optimized case.

Figure 16: Result of random uniform distribution weighted by poverty level

6 Results

6.1 Optimized Vaccination Proportions

The results exhibited in Figure 16 point to the fact that although District 12 and 3 do
not have the highest poverty levels, the optimized vaccination proportions favor these
districts over the higher poverty level of Districts 10 and 11 notwithstanding the
proportions are weighed by poverty level. These results as well as those presented in
Figure 14 show that both population and poverty level in conjunction determine the
optimized proportion of vaccinations. Districts 7 and 8 have the highest population
and yet their effect on reducing the number of infected is minimal in comparison to

24



District 12 and even the other ’poor’ districts. A possible explanation for this result
lays in that District 12 has increased activity level, i.e. greater force of infection
and consequently more contacts. This is in addition to the fact that an individual
is more likely to meet a person from District 12 simply by the size of its population
than a person from District 2 or 1, i.e. proportionate mixing. Therefore, if it is less
likely that a person from District 12 is infected due to vaccination, then your chances
of an individual getting infected from any other district is lessened as a result. It
happens that District 12 has a large population (a high proportion of contacts are
with individuals from District 12) and higher force of infection. Since the epidemic
spreads faster among poor districts, this engenders many secondary cases in other
districts both poor and rich. Since District 12 affects the spread so immensely, a
dramatic reduction in susceptible individuals within that district due to vaccination,
reduces the magnitude of the spread of the disease.

Consequently, District 12 is unique in that it has a very high population as well as
high poverty levels. In our model, high poverty is distinguished in comparison with
other districts in the higher force of infection (αi) in those districts. Simulation shows
that the combination of higher contact probabilities and the size of the population
of District 12 (District 3 to a much lesser extent) produce the large global effect
that reduces the extent of infection among all districts.

This last result explains the lack of effect of vaccinating the richer classes and
other poor districts as well, since their contribution to the G term is much smaller
than District 12’s, i.e. the amplitudes for these districts are small. Any increase in
vaccination in those districts is largely offset by the interaction between the infected
and susceptible in District 12.

Sensitivity analysis suggests that variations of γ12 have a larger effect on R0total

and in consequence the size of the epidemic in question. As shown before, the
sensitivity parameter of γ12 has the largest effect on R0total

and therefore can reduce
R0total

most efficiently. Since R0 is a measure of the strength of the epidemic it is
not difficult to see that it would be most efficient to reduce γ12 by vaccinating more
people in District 12. This reduction in R0total

then results in a reduction in the
total infected, a key result of the simulations.

6.2 The Healthy People Initiative

Our results show a strong correlation between poverty and the spread of disease.
Therefore, we suggest that future vaccination efforts consider this to prevent flu
outbreak in a more efficient manner. An example of how current efforts could be
improved is the Healthy People Initiative. The plan recommends vaccination for
60% of people aged 18-65 and 90% of people 65 and over by the year 2010 [4]. Our
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model demonstrates that in theory, it should be possible to double the effectiveness
of the above goal simply by focusing on the low-income districts. Although it will
require greater distribution of free flu vaccines in low-income areas, studies show
that benefits outweigh the cost [13].

According to our simulations results, if vaccinations are simply distributed evenly
throughout Manhattan according to the Healthy People Initiative, only 18% of the
total population will be infected by the flu during a season similar to the one in our
model (see Figure 17). However, if vaccinations are distributed systematically with
emphasis on the low-income districts (3, 9, 10, 11, and 12), only 9−10% of the total
population will become infected (see Figure 18). This result is surprising considering
the fact that there is no difference in total number of individuals vaccinated. The
systematic plan is to provide free vaccinations to all low income districts and to pro-
vide public education such as fliers, TV commercials, and door to door information
handouts in an effort to increase people’s willingness to receive vaccinations. With a
simple even distribution, the low income districts end up increasing their vaccination
rates by 21, 21, 18, 18, and 19%, respectively. Systematic vaccinations could result
in a 31, 31, 27, 27, and 34% increase in vaccination proportions with slightly lower
increases in the remaining 6 districts. As our simulations and sensitivity analysis
suggest, we placed the most weight on District 12. With this distribution we find
that the overall effectiveness of vaccination is nearly doubled. Our findings suggest
that an effective strategy for reducing flu outbreaks should consider increased efforts
in less receptive environments, i.e. low-income areas.

Figure 17: Prediction of the results of the Health Care Initiative using even distri-
butions of vaccination proportions
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Figure 18: Prediction of the results of the Health Care Initiative using systematic
distributions of vaccination proportions

7 Discussion

Through the development of a mathematical model, the effects of the influenza epi-
demic within the districts of Manhattan is shown using different scenarios. Our
study primarily focuses on the socioeconomic status of districts within Manhattan.
It is clear that areas with higher levels of poverty need to be targeted when imple-
menting methods of reducing the number of influenza cases during a given year. For
one, the size of the peak of the flu season is substantially greater in poor districts in
comparison with those having more wealthy inhabitants. Additionally, finding the
optimal strategy for distributing more vaccinations throughout Manhattan demon-
strates that the greatest reduction in the overall epidemic occurs when the number
of potentially infected individuals in a more impoverished district is reduced. The
vaccination targets from the CDC’s Healthy People 2010 Initiative, if feasible, will
reduce infections substantially according to our model. We expect that the CDC’s
efforts will produce improvements among all income levels especially the most in
need.

Often, people do not receive vaccinations because they do not find them necessary
or simply do not know about potential resources for finding a free flu vaccination.
Educating and encouraging influenza vaccination for people within Manhattan, in
particular individuals living in the more impoverished areas, will significantly reduce
the size of the annual peak of the influenza season.

There are, however, several ways in which to refine our model to make it more

27



realistic. The model can be extended to include natural birth and death rates,
which may or may not show significant differences within our model. However, if
the length of time studied is increased to include multiple strains of influenza, the
inclusion of these rates may have an impact on the realism of the results. Other
future modifications include the addition of the effects of tourism; Manhattan is a
location attracting many visitors and the disease brought in by these individuals is
bound to have an effect on the dynamics of the epidemic and would give us means
to include many external factors.

Another modification that can be made to the model is that New York City is
comprised of five boroughs–not only Manhattan. There are substantial interactions
between all of these boroughs. Our model considers these interactions to be negligi-
ble, although we expect this to be a oversimplification. A final future modification
is to use an alternative method of mixing within the districts. Rather than using
proportionate mixing, a more realistic mixing matrix may be implemented in which
the interactions between individuals is dependent on where people spend most of
their time. For instance, a larger portion of an individual’s time is spent in his or her
own district as well as districts where they work. This modification may produce
more accurate predictions of the spread of influenza between districts.
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