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Abstract 

The evolution of the influenza virus is characterized by continual changes to its 
surface structures due to antigenic drift and antigenic shift. The host immune system 
must alter antibodies in response to the ever-changing virus allowing for the persistence 
of influenza in a host population. The spread of related strains through a susceptible 
population with regard to their phylogenetic distance from a parental strain during a 
season is examined, as well as the within host dynamics. Very little work has been done 
to integrate phylogenetic analysis of evolution with the epidemiological spread of the 
influenza virus. In this study, an attempt is made to couple these two scale by using 
infection rates that are defined as functions of phylogenetic distances between strains. 
Competition between strains is focused on and strain prevalence for outbreaks during 
several seasons (2000-2004, inclusive) is examined at various levels: global, regional, 
and for New York City. Coexistence is found to only be possible between very similar 
strains, otherwise competitive exclusion or extinction of all strains occurs. Stochastic 
simulations at the cellular level indicate that the immune system is most effective 
when the virus has little variability, so the rapid mutation of influenza is an effective 
strategy in evading the immune system. Similar simulations for the population level 
show that a strain's prevalence depends largely on the effect on the antigenic structure 
as a result of the locations of amino acid mutations. 

1 Introduction 

Influenza, commonly known as the flu, is caused by viruses that infect the respiratory 
tract. Typical symptoms of influenza include fever, cough, sore throat, runny or stuffy 
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nose, as well as a headache, muscle aches, and sometimes fatigue. The Centers for Disease 
Control (CDC) note that every year in the United States, an average of 5% to 20% of the 
population gets the flu, more than 200,000 people are hospitalized from flu complications, 
and about 36, 000 people of those infected die from the disease. Influenza costs more 
than 20 billion dollars per year in treatment costs and lost productivity in the US. The 
virus spreads directly from person to person via respiratory droplets released by coughing 
and sneezing [4], and it can survive outside the body for several hours, especially in cold 
weather [10] or indirectly via inanimate objects (fomites) touched by infected individuals 
[12]. Some of the major pandemics of the last century include the "Spanish Flu" of 
1918 - 1919 which was responsible for 20 million deaths worldwide and 500,000 death in 
the US, the "Asian Flu" pandemic of 1957 - 58 responsible for 70,000 deaths in the US 
and the "Hong-Kong flu" pandemic of 1968 - 69 which resulted in 34,000 deaths in the 
US. [4] 

The influenza virus is a member of the Orthomyxoviridae family, which is characterized 
by segmented negative-sense single stranded RNA molecules encased within a protein coat 
[10]. The influenza virus, like other viruses, can only reproduce by seizing the protein 
manufacturing abilities of a host cell. The virus itself does not directly kill the cell, since 
new viruses are released through budding rather than cell membrane rupturing as is the 
case with many viruses [10]. However, since the infected host cell cannot produce vital 
proteins needed for metabolism, it does eventually die due to starvation. 

Influenza is a particularly interesting virus in that it has the ability to undergo rapid 
antigenic mutation [7]. The immune response against viruses such as influenza involves 
the use of antibodies against the viral antigen. Antigens are proteins carried by viruses 
that serve as targets for antibody binding. As shown in Figure 1, when a virus infects a 
human host cell, the antigens are displayed on cell surface proteins called human leukocyte 
antigens (HLAs). The HLA-antigen complex is then detected by CD4+ T:-helper cells, 
which release cytokines that instruct B cells to begin producing antibodies. The infected 
cell produces new viruses until an effective antibody is produced, which allows for an 
immune response to be initiated. 

The antibodies mark virally-infected cells for destruction by the immune system's 
CD8+ cytotoxic T lymphocytes (CTLs). After an infection, memory B cells continue to 
carry the antibodies, creating an arsenal for use against future infections. Should the same 
virus infect the host, the memory B cells can immediately create the same antibody to 
fight the virus (See Fig. 2, Case I). Since CTLs will only attack an infected cell that is 
marked with an antibody, the ability of the influenza virus to rapidly alter its antigen forces 
the immune system to alter its antibodies. The immune system utilizes a specialized 
B cell selection process known as somatic hypermutation to create new antibodies. The 
immune system selects B cells with antibodies that are more similar to the new antigen. 
The antibody selected is better than the original but still does not bind with the antigens 
perfectly, so the selection process repeats. This refinement is repeated until an antibody 
that is suitable for attaching the antigen is produced, so the length of time required for 
this process depends on the difference between the antigens of a new influenza virus as 
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Figure 1: Model of Influenza Infection 

opposed to the strain encountered previously. Due to this somatic hypermutation process, 
an antibody against a slightly altered influenza virus can be produced relatively quickly 
(Fig. 2, Case II), but more time is required to produce an antibody against a very different 
strain (Fig. 2, Case III). 

The genetic variation between influenza strains can be represented using phylogenetic 
trees. A phylogenetic tree is a graphical representation of the ancestor-descendant re­
lationship between organisms created by examining differences in nucleic or amino acid 
sequences [11]. Figure 2 shows the trees which correspond to the three previously men­
tioned cases. The genetic distances between the original influenza strain and the new 
strain can be calculated from the branch lengths of a phylogenetic tree. Notice that the 
genetic distances are horizontal only. The vertical direction represents evolutionary splits 
from one viral strain into two distinct new strains. Each split produces an additional. 
genetic distance from the original strain. In Case I of Figure 2, no splits have occurred, 
so there is no genetic difference between the original and new strain. In Case II, only 
one split has occurred, so the genetic distance between the original and new strains is 
fairly low. Three splits have occurred in Case III, creating a much larger genetic distance 
between the original and new strains. Phylogenetic trees can become quite complex, as 
shown in Figure 3 for a group of Influenza A strain H3N2 variants. 

The evolutionary progression of the influenza A virus is examined at both the cellu­
lar and population levels. At the cellular level, the evolution of the virus results from 
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Figure 2: Model of Antibody Adaption 

intense selective pressures by the immune system. At the population level, the spread 
of the various mutated strains can be observed to determine how the prevalence of the 
strains changes over time. Therefore, two models interplay in the relationship between the 
selective evolution of the virus and the spread of mutant viruses through the population. 
The evolution occurs at the cellular level within hosts, while the spread between hosts is 
modeled at the population level. Both are presented in this paper with the goal of mod­
eling and capturing the epidemiological and evolutionary dynamics of the influenza virus. 
Linking these two levels is quite difficult, since the application of evolutionary virulence 
to epidemiology is still in its infancy [8]. As a result, little theory linking the two levels 
has been developed[23], though strides have been made by Perelson et al. with studies 
and simulations of HIV infection. [18] 

In order to understand the dynamics of influenza evolution, a cellular-level model is 
examined in Section 2. This is followed by an introduction to evolutionary analysis with 
phylogenetic trees in Section 3. Section 4 presents statistical analyses of phylogenetic 
trees for various levels (global, regional, and for New York City), which are used to make 
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Figure 3: Phylogeny of a human influenza A virus strain H3N2 

predictions of the most prevalent strains in each region. The genetic distances from the 
phylogenetic trees are then incorporated into a population-level S-I-R model in Section 5. 
A discussion of the results is given in Section 7. 

2 The- Cellular-Level Model 

In this section, a cellular-level model is presented to examine the selection process acting 
upon the influenza virus as a result of a single host's immune system. 

2.1 Deterministic Model 

For an individual host, let X be the population of uninfected cells, Vi be the population of 
the viral strain i, Yi be population of host cells infected with viral strain i, and Zi be the 
population of the Cytotoxic T Lymphocytes (CTLs) of the immune system, which attack 
host cells infected with viral strain i. 
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Table 1· Parameters for Cellular Level Deterministic Model -
Parameters at Host Level Description 

A Rate at which uninfected cells are produced per capita 
d Death rate of the uninfected cells per capita 

(3i Rate at which an uninfected host cell becomes infected by viral strain i 
a Death rate of infected cells per capita 
p Rate at which infected cells are destroyed by CTL's per capita 
ki Rate at which virus i is produced per capita 

f.l Decline of rate of virus production 

Ci Rate of CTL proliferation in response to antigen from strain i 
b Rate of decay of CTL (in absence of stimulation) 

mji Mutation rate of virus j into virus i 

Table 2· Variables for Cellular-Level Deterministic Model 
Variables at Host Level Description 

X(t) Population of uninfected host cells at time t 
Yi(t) Population of host cells infected with viral strain i at time t 
Vi(t) Population of the viral strain i at time t 
Zi(t) Population of the Cytotoxic T Lymphocytes (CTL) of the 

immune system that attack host cells infected with viral strain i at time t 

(X, Yi, Vi, Zi)i=l:n E lR.3n+1 

For 1 :S i :S n, then the following system has dimension 3n + 1: 

X= A - dX - 2:,}=1 (3j VjX 

Yi= (3iViX - (a+pZi)Yi 
(1) 

~= 2:,}=1 mjikj lj - f.l Vi 

Zi= (CiYi - b)Zi 

As shown in Figure 4, the model begins with uninfected host cells X. New cells enter 
this class at a rate of A, and leave the class in the form of a natural death rate of d, or by 
infection by an influenza virus. The host cells enter the Yi class upon infection by anyone 
of the n strains of viruses Vi at a rate (3, which is different for each strain. The infected 
host cells die at a a death rate of a, or are destroyed by the CTLs at a rate of p. 

The class of virus particles includes n strains of the influenza virus. A virus mutates 
from the strain i class to the strain j class at a mutation rate of mji, once during the 
cycle of a single virus. The rate k defines the strain-specific rate at which the viruses are 
produced. The viruses become inviable at a rate of f.l. 
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The CTLs enter the Zi class as a result of activation due to the presence of infected 
cells Yi using a scaling constant c. The CTLs cease responding to infection at a rate b. 
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Figure 4: Within-Host Model 

In the case of the host-pathogen level model, at least three equilibria exist: the disease­
free equilibrium, the coexistence equilibrium, and the immune-free equilibrium. 

2.2 Disease-Free Equilibrium 1Ro 

The disease-free equilibrium (DFE) for the cellular-level model occurs when the virus is 
absent (and in turn the infected cells and CTLs as well). Therefore, to find the disease 
free equilibrium (DFE) for the two-strain case, (X, Y1, Y2, Vi, 112, Zl, Z2) is determined 
with all values except X set to equal zero. After solving the equations it can be seen that 
the value of X is ~. Therefore, the DFE exists at: 

A 
(~,O,O,O,O,O,O) 

The DFE can be used to calculate the basic reproduction number ~o for the system 
given in (1). We are able to find the general ~ for n-strains by observing the patterns 
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that emerge in the I-strain system, compared to the 2-strain system. The computation is 
included in the Appendix, Section 8.l.l. 

For n=I, we get 

where 

For n=2, we get 

~O = 

If we define 

~Oi = 

(31 A k1 
--mu­

J.L d a 

(3i A ki --m"-
d n 

J.L a 

(32 m 22 k2 
q= 

(31 m U k1 

a measure of strain two's reproductive capacity relative to strain one. 
Then we can write ~o more simply as: 

~o = 1 ((31 A k1) [ - - -mu - 1 + q + 
2 J.L d a 

Note: 

For a general n, ~o > max ~Oi 
~o is greater because the contribution mutations make, m12 and m21. 

2.3 Co-existence Equilibrium 

The co-existent equilibrium for n-strain model occurs when all strains are able to attain 
a stable coexistence. To find this equilibrium, each of the derivative equations (1), are set 
equal to zero and then solved for values of X, Yi, Vi, and Zi· Doing so yields the following 
components for the co-existence equilibrium: 

( XOO y;oo v;oo Z?O)~ E ]R3n+1 , ~ , ~ , ~ ~=1 
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where, 
x oo = 

y;oo = 
Z 

v:;oo = 
Z 

z'?O = 
Z 

A 
d+~n (Q>. ~n k. . . (.!!..» 

L..tj=l I-' wi=l 'I.
m 'l.J ci 

.l!.. 
Ci 

I:j=l kjmji 1; 
f.i. 

(f3i)(X OO

)[("f!' k·m··Ei.) - a] f.i. p L.,J=l Z JZ Cj 

(2) 

The coordinates of the co-existence equilibrium are positive (and therefore realistic) 
as long as this restriction is met: 

n k. Ci I) ; mji -;;-:) > 1 'V i 
j=l J 

Figure 5 displays the stability of the co-existence equilibrium based on computer sim­
ulations. 

From this picture generated by the simulation we can see that this equilibrium is stable. 
This is because of the fact that both the Yi and Y2 level off to a specific value. For the Yi 
the value is approximately and for the Y2 the value is very close to 0 

2.4 Immune-Free Equilibrium 

There is also a case in which the host's immune system does not respond to the infection. 
Such an equilibrium would occur in a host with AIDS or another condition which severely 
compromises the immune system. This immune-free equilibrium occurs (IFE) when the 
CTL levels (Zd remain at zero, regardless of the infection size. The IFE is given by 
Equation (3) for any strain i. 

X OO = A 
d + Lk {3k Vk

oo 

y;oo = {3i X OO Voo 
Z a Z 

Zi=O'Vi 

See Appendix, Section 8.1.2, for computation. 

(3) 

The biological meaning of these equilibria can be interpreted as failure to produce 
effective antibodies against particular strains, this is realistic, since CTLs cannot attack 
infected cells unless they are marked with antibodies. This may also reflect the antigenic 
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Figure 5: Simulated Stability of the Co-existent Equilibrium 

distance hypothesis proposed by Smith et al.[21], which results from a study of influenza 
vaccines. 

In some cases a vaccine against a strain may not result in an immune response if the 
antigenic structure of the vaccine was very similar to that of a vaccine administered in a 
previous year. This is due to cross-reactivities of the antibodies, so the antibodies created 
in response to the first vaccine prevent new antibody production against the second vac­
cine. 
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2.5 Competitive Exclusion 

Competitive exclusion for the two-strain case occurs when one strain infects the entire 
host while the other dies out. Begin by setting all the equations for strain 2 equal to zero, 
the competitive-exclusion equilibrium should be found. 

Let: 
YI > 0, Y2 = OJ VI > 0, V 2 = OJ ZI > 0, and Z2 = 0 

In addition, if strain 2 is out-competed, then V2 = 0, so 
Competitive exclusion of strain j can only occur if no other strain mutates in to it, 

i.e., mji = 0 Vi =f. j. 
Biologically, these conditional make sense. Biological fitness is a term used to describe 

an organism's ability to persist and reproduce. Viruses require invading and seizing a host 
cell's protein manufacturing abilities to replicate, while avoiding the immune system long 
enough to accomplish this. The more efficient a virus is at evading the immune system, 
the higher its fitness value. Therefore, very similar viruses would have very similar fitness 
values, and thus be equally evasive. However, if one virus is more fit than the other, the 
fitness of the first virus will be higher than the fitness of the second virus, the first would 
be able to replicate for a much longer period of time than the second virus, which would 
be eliminated by the immune system. 

From the analysis of the cellular level model we are able to say many things. As long as 
~o < 1 the immune system is able to lower the rate of production of secondary infections. 
This means that the disease will die out. When ~o > 1 we have three possible cases. 
In the first case we see that multiple viruses are able to Infect the host and coexist. The 
second case shows the situation in which the host's immune system does not respond to the 
infected cells. This is biologically meaningful when the host's immune system is severely 
compromised like in AIDS patients. In the third case we see that the only situation in 
which one strain will out compete the other strain is when there is no mutation. This 
would happen because the immune system would select against the strain with lower 
fitness. Ultimately the evolution of the influenza virus is driven by the virus's mutation 
and selection by the immune system. 

2.6 Stochastic Model 

The consideration of the deterministic version of this model is especially useful for analysis 
and consideration of the average behavior of the interaction between healthy cells, cells 
infected by influenza, free influenza virus and Cytotoxic T Lymphocytes. A stochastic 
interpretation of this behavior is useful in the consideration of the distribution events. 

This approach is useful biologically for many reasons because biological processes do 
not occur at identically distributed intervals. Also, it gives insight into the possible out­
comes of these interactions, or the distribution of cellular events during different infections. 
Varying the parameters, gives information about the distribution of cellular events over 
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different strains (by varying virus and infected cell parameters) and different hosts (by 
varying the CTL parameters). Using this simulations, we can look at the effect of the 
mutation matrix on the course of infection. 

The behavior was modelled stochastically, and analyzed through simulations that were 
written as continuous time Markov chain models [1]. The simulations were run over mul­
tiple realizations with varying parameters. The cellular level model can be characterized 
with stochastic effects by Equation (9) [1],[9] 

The cellular level has 3n + 1 classes including: One susceptible class, X, which cor­
responds to the healthy cell population; n infected classes, }'i, which correspond to cells 
infected by each viral strain i; n infective classes, Vi, which correspond to the viral load 
of strain i; and n CTL classes, Zi, which corresponds to the population of Cytotoxic T 
Lymphocytes acting against cells infected with viral strain i. There are, not including 
initial conditions, n 2 + 3n + 6 parameters: A is the constant rate of birth of healthy cells; 

~ 

d is the proportional rate of natural death of healthy cells; {3 which is a 1 x n array of 
infection rates of each free virus; a, the natural death rate of infected cells; p, the rate 

~ 

that CTL's kill infected cells; k, which is a 1 x n array of replication rates of each strain 
within an infected cell; a matrix m of mutation rates, where mji is the rate of mutation 
from strain j to strain i; flo is the clearance rate of free virus; (! is the strain specific birth 
of CTL in response to infected cells; and b is the natural loss of productivity of CTL's. 

Each simulation was run over 25 realizations, with 1.5 x 106 time steps. The parameter 
flo was estimated as 3.1 days-1 from an e-mail correspondence with Alan Perelson[19] Xo 
was set at 106 cells. A and d were set at 5 x 105 cells x days -1, and .5 days -1 respectively, 
so that Xo was at disease free equilibrium. All other parameters were set constant except 
~~ ~ ~ ~ 

for k, {3 , and c. k and {3 were chosen from uniform random distributions such that 
all of the decoupled ~iO would be significantly greater than one. Using the bounds of 
those distributions, (! was selected such that endemic equilibria would exist under all 
conditions for each strain. Selecting each {3i&ki from a uniform distributions for each 
realization corresponds to the varying ability of free virus strains to infect healthy cells 
and replicate. Choosing each Ci from a uniform random distribution in each realization 
corresponds to variability in the hosts immune response time. Two simulations were run 
over 25 realizations. One used a tridiagonal mutation matrix with the main diagonal 
equal to .79618 and the upper and lower sub diagonals .10191 with wrapped boundaries 
which were estimated from The Encyclopedia of Virology [10]. The other simulation used 
matrices with entries chosen from a uniform random distribution and then normalized so 
that the sum of each row is one. A counter variable was included in the programs to count 
infection events by strain. From that we determined the final number of total infections 
produced by each strain during each simulation. 

The results of the simulations include the total number of cells infected by each strain 
during each realization. For each strain, the mean, standard deviation and median of its 
total infection size were calculated for the 25 realizations. These values were averaged over 
all strains to discern the difference from the mutation matrices used in the two simulations. 
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Realization Mean StDev Median Realization Mean StDev Median 
1 89833 72860 51845 1 31364 15320 30804 
2 89025 59653 70738 2" 34899 15862 33504 
3 86898 65190 64376 3 27881 19597 23432 
4 89152 51798 80593 4 30063 14344 29541 
5 90139 61628 69737 5 28545 12458 24804 
6 89365 53329 84295 6 27919 19680 17932 
7 88609 70391 60996 7 31902 12693 35935 
8 90330 67642 70215 8 27008 18674 17123 
9 90230 53039 64619 9 32886 18277 32377 

10 89458 80660 56073 10 37073 14415 35432 
11 90794 64054 78210 11 27156 19712 27893 
12 90885 40065 85467 12 25612 17012 22585 
13 89744 67532 83929 13 33806 18013 28349 
14 90798 78766 43387 14 36407 18347 34774 
15 90596 78593 60164 15 29756 18136 28431 
16 90110 63754 66061 16 32156 18634 28179 
17 90117 54239 59644 17 35072 19840 27269 
18 89909 66149 84799 18 24692 12369 19424 
19 86477 56290 66031 19 36310 14008 37330 
20 90817 56643 83634 20 32367 21308 30462 
21 88778 70507 50510 21 30837 14424 34078 
22 84476 60525 64820 22 34994 9819 32536 
23 86011 72221 56283 23 29108 15402 24313 
24 90746 59605 77632 24 31078 13247 29702 
25 89438 63988 74125 25 29295 20307 18447 

Table 3: Descriptive statistics of realizations over strains: Random Mutation Matrix (R), 
Tridiagonal Mutation Matrix (L) 
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Figure 6: Descriptive statistics for total number of infected cells of each strain during each 
realization: constant, random mutation matrix (R), tridiagonal mutation matrix (L) 

The simulations with· the constant mutation matrix had strain means varying. from 
25,617 to 37740 with a mean of 31,127. The standard deviations varied from 12,936 to 
19,426 with a mean of 16, 123. The medians varied from 22,441 to 36,357 with a mean of 
28,886. The simulations with a random mutation matrix had means varying from 40,377 
to 201,626 with a mean of 89, 309. The standard deviations range from 16,849 to 57,822 
with a mean of 33,716. The median varied from 32,555 to 223,354 with a mean of 90,515. 
It is worthwhile to note that the 95% confidence intervals for the mean of the means and 
standard of deviations do not intersect. 

The random mutation matrix produced larger final infection .counts and final infection 
count variability amongst strains. This implies that the immune system is most effective 
when the virus has little variability. It also implies that viral mutation is an effective 
evasive strategy in the presence of cytotoxic T lymphocytes. 

3 Phylogenetic Evolution 

3.1 Phylogenetic Trees 

A phylogenetic tree is a graphical representation depicting the ancestor-descendant re­
lationship between organisms by the examination of differences in nucleic or amino acid 
sequences. The descendants are located at the tips of the tree branches, and splits between 
the branches can be traced back to their unobservable ancestor [11]. This allows for recon­
struction and comparison of the evolutionary history of species which are among the most 
important biological and genetic subjects. Phylogenetic trees can shed light on which of 
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an organism's features are changing rapidly and allows for the calculation of residues that 
provide evidence of natural selection operating on the species. 
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Figure 7: Influenza A H3N2 phylogenetic tree for New York during 2002 

Influenza A viruses consist of eight RNA segments wrapped in a protein coat. Of 
the eight RNA segments, two code for proteins known as hemagglutinin (HA) and neu­
raminidase (NA), which aid in the invasion of cells. These proteins become the major 
antigens which the immune system recognizes, and thus they are used to name influenza 
strains. For example, Influenza A type H3N2 carries a type three hemagglutinin and type 
two neuraminidase. Studies have indicated that production of antibodies against neu­
raminidase are rare due to the small size of NA, so the immune response depends mostly 
on antibodies against HA [2]. Therefore, a mutated strain will refer to changes occurring 
in hemagglutinin only, and all phylogenetic trees to follow will track amino acid changes 
in the HA protein among influenza A viruses. 

3.2 Statistical Methods and Algorithms 

Several different methods exist for creating and testing the reliability of a phylogenetic 
tree. The Neighbor-Joining method was chosen since it does not require the assumption 
of a constant rate of evolution, and it is relatively fast computationally. The first step 
in the algorithm is converting the DNA or protein sequences into a distance matrix that 
represents the evolutionary distance between sequences. The N J method is known to do 
well with data that have diverged recently. This assumption holds true for influenza since 
yearly data for influenza from within the last decade is being considered [11]. All phylo­
genetic trees were created by using Molecular Evolutionary Genetics Analysis (MEGA), 
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version 3.0 [13], from sequences obtained from the National Centers for Biotechnology In­
formation (NCBI) Influenza Virus Resource [17] and the Los Alamos National Laboratory 
(LANL) Influenza Sequence Database [15]. 

It is important to consider how strongly the data supports the relationships depicted 
in the phylogenetic trees. One of the most commonly used tests of the reliability of an 
inferred tree is the bootstrap test, which is evaluated using the bootstrap resampling tech­
nique. Consider m sequences, each with n nucleotides or amino acids, a phylogenetic 
tree can be reconstructed. From each sequence, n nucleotides are randomly chosen with 
replacements, giving rise to m rows of n columns each. These now constitute a new set 
of sequences. A tree is then reconstructed with these new sequences using the same tree 
building method as before. Next the topology of this tree is compared to that of the origi­
nal tree. Each interior branch of the original tree that is different from the bootstrap tree 
the sequences it· partitions is given a score of 0; all other . interior branches are given the 
value 1. This procedure of resampling the sites and the subsequent tree reconstruction is 
repeated several hundred times, and the percentage of times each interior branch is given 
a value of 1 is noted. This is known as the bootstrap value. In the phylogenetic trees 
produced for the data set, the number of replicates were specified as well as the seed for 
the pseudorandom number generator. In each bootstrap replicate, the desired quantity is 
estimated and the standard deviation of the original values are computed. 

3.3 Phylogenetic Distance Coupled to Epidemiology 

Global spatio-temporal strain dynamics determine phylogeny. By utilizing the genetic 
distances obtained from the phylogenetic trees, the effects of immune system selection at 
the cellular level can be observed at the population level by incorporating these distances 
into an epidemiological S-I-R model. This allows for the spread of the various strains to 
be tracked through a population of susceptible individuals. Each strain creates a separate 
infective class, which leads to a corresponding resistant class. It should be noted that some 
degree of immunity toward every strain is incurred by resistance to any strain. However, 
for simplicity, this variable cross-immunity will be neglected and left for future versions of 
the model. Instead, immunity will be considered to be complete and cover all strains. 

4 Statistical Analysis 

In this section, influenza outbreaks across the globe over a three-year period from 2002 
to 2004 inclusive are considered. Studies have indicated that influenza A with type 3 
hemagglutinin (H3) evolve more rapidly than those bearing type 1 (HI) [3]. Of those 
carrying type 3 hemagglutinin, strain H3N2 is most prevalent in outbreaks in humans [4]. 
Influenza B evolves more slowly than either A subtype, and influenza C accounts for only 
a small percentage of outbreaks [3]. 
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4.1 Global Data for Influenza A H3N2 in the year 2002 

When doing any kind of statistical analysis, the question of normality must be addressed. 
The normal distribution is one that appears in a variety of statistical applications. One 
reason for this is the central limit theorem. This theorem states that the sums of random 
variables are approximately normally distributed if the number of observations is large. 
If the data are found to be normally distributed, then many different kind of statistical 
procedures, such as the t-test, can still be used. The global data for 2002 obtained from 
the World Health Organization (WHO)[24] is presented in the Appendix. Figure 7 shows 
a summary of the this data with four graphs: histogram of data with an overlaid normal 
curve, boxplot, 95% confidence intervals for f.J" and 95% confidence intervals for the median. 
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Figure 8: Summary Statistics for 2002 

This graphical summary also displays a table of the Anderson-Darling Normality Test, 
descriptive statistics and confidence intervals for mean f.J" standard deviation 0", and the 
median. To test for normality, a conservative Q is chosen, in this case 0.05. The data are 
normal if p-value > Q. Since p-value < 0.005 < Q = 0.05, the null hypothesis (Ho) is 
rejected, so there would appear to be a problem with normality. This can be seen in the 
histogram of data with an overlaid normal curve where it does not really fit. 

The data appears to follow non-normal distribution, and Figure 8 shows a histogram of 
the 2002 data overlaid with a gamma distribution curve. The gamma-distribution param­
eter (1'), or shape parameter of, the curve can be interpreted biologically as an estimate 
of the transfer rate (3 of the virus as it spreads through a population. In addition, the 
frequency shown on the histogram indicates that large genetic mutations are usually rare 
events. This is further supported by the fact that antigenic shifts (that is, the appearance 
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of totally new hemagglutinin types) are rare events [12]. 

Figure 9: Global Data overlaid with Gamma Distribution 2002 

The data appears to follow a gamma distribution, implying the waiting times be­
tween Poisson distributed events are relevant. Biologically this makes sense because rates 
are most likely heterogeneous, and highly dependent upon biochemical properties of the 
antigens and antibodies which must be accounted for at the population level. This is es­
pecially true for creating phylogenetic trees for viral strains that mutate at different rates 
in different locations a~ong the antigen sequence. 

Figure 10: Regional Data overlaid with Gamma Distribution 2002 

On a regional level (Figure 9) this can be observed, because the immunological histories 
of hosts differ due to biological and socio-economic factors. For instance, all subtypes of 
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influenza A viruses have been found in aquatic birds in China, where current agricultural 
practices put large numbers of people in close proximity to farm animals, including ducks 
and pigs. These conditions favor the generation and spread of new viral strains and provide 
a possible medium (pigs) for the genetic reassortment of human and avian viruses [20]. In 
fact the serotype under study in this paper (H3N2) originally appeared as an antigenic 
shift that resulted in a pandemic in 1968 - 1969 known as the "Hong-Kong Flu." This 
pandemic was responsible for 34,000 deaths in the United States of America alone. 

In the phylogenetic tree approach, interest lies in identifying the most distant strand 
from its "parent". One way to identify outliers is the plot of residuals versus fits. This 
plot shows a random pattern of residuals on both sides of o. If a point lies far from the 
majority of the rest of the points, it may be an outlier. In addition, there should not be 
any recognizable patterns in the residual plot. The residual plot shown in Figure 10 may 
indicate error that is not random. 
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Figure 11: Residuals versus the Fitted Values 2002 

It can be readily seen that there is no discernible pattern and thus no problem with 
linearity or constant variance. More interesting, though, is how evident the outliers are in 
the positive direction compared to the rest of the data points. There appear to be around 
four points that are extreme in the positive case, which coincides with the observable 
distance from the phylogenetic trees produced. 

4.2 Influenza A H3N2 for the year 2003 

Similar statistical analysis as done above can be employed on other data with similar 
results. Figure 11 summarizes the statistics for data from the year 2003 (also given in the 
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Appendix). Figures 12 overlays a gamma distribution onto the histograms for the global 
data. Figure 13 shows the data for the American and Asian regions. Figure 14 shows the 
residuals for the global data. 
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Figure 12: Summary Statistics for 2003 

Figure 13: Global Data overlaid with Gamma Distribution 2003 

It should be noted that other regions, including Africa, Europe, and Oceania, also 
reported influenza cases. However, since the number of unique strains was less than ten, 
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Figure 14: Regional Data overlaid with Gamma Distribution 2003 

these regions were not included in this study, but this data are given in the Appendix. 
This brings up a very important biological fact, since hosts in different regions of the 
world have encountered different strains of influenza, both during the years studied as 
well as during previous years. Therefore, people in different regions would have different 
antibodies, and therefore would have different immunological histories. At the population 
level, this geographical isolation of strains should be considered using a weighting factor 
bi to account for variations in immunological history. 
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Figure 15: Residuals versus the Fitted Values 2003 
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4.3 Influenza A H3N2 for the year 2004 

North America, specifically the United States of America, did not report more than ten 
unique strains during 2004. For this reason North America was not included in the re­
gional study for that year. Data obtained from the Centers for Disease Control and 
Prevention (CDC) indicated that influenza activity occurred at low levels from October 
to mid-December, steadily increased during January and peaked in mid-February during 
the 2004-05 U.S. season. [4] 

Figure 15 shows the global data (also given in the Appendix) statistics for 2004, Figure 
16 displays regional data for Oceania and Asia, and Figure 17 displays the residuals for 
the global data. 
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Figure 16: Summary Statistics for 2004 

4.4 Summary of Statistical Analysis 

This analysis has employed standard statistical techniques to explain the interaction and 
underlying factors of data collected over a three period for Influenza A H3N2. Among 
things tested for were normality, perceived distribution and outliers. It was found that 
none of the data sets were normal with an alpha level of 0.05. The data did follow a gamma 

100 



Dls~ance to :1>arent" 
>'Gamma" 

~oeEDa.ta~ 

Figure 17: Global Data overlaid with Gamma Distribution 2004 

Figure 18: Regional Data overlaid with Gamma Distribution 2004 

distribution better than a normal or exponential, which coincides with the biological aspect 
of the data, specifically the stochasticity of waiting times between Poisson distributed 
events. 

4.5 Most Prevalent Strains per Region per Year 

Having presented the statistical data for a three-year period 2002 - 2004, the attention 
is returned to the phylogenetic trees and the strain distance from an ancestral strain. 
Having established a phylogenetic tree for 2002, and implementing the weighted distances, 
somewhere among the estimates should contain the dominating strain for the next year, 
2003. 

Considering the 10 most distant strains of 2002, the most prevalent (H3N2) strain 
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Figure 19: Residuals versus the Fitted Values 2004 

for 2003 was found to be A/ Fujian/ 411/2002 which accounted for 88.8% of the antigenic 
characterization of viral isolates [24]. The top four strains were from the Republic of Korea, 
where its geographical location and socialized health care most likely kept those strains 
from spreading. Positions five, six and seven differ from A/ Fujian/411/2002(H3N2) 
within a hundredth of a decimal place. This discrepancy may also be attributed to how 
the trees were constructed and the fact that no true tree exists, but rather estimations 
of them are produced. So the hypothesis that phylogenetic distance can be an estimator 
of dominance was validated. Turning our attention to the 2003 season, 22% of the 709 
influenza A H3N2 isolates were antigenically similar to A/Wyoming/3/2003 [24], but a 
new strain emerged as the dominant one in 2004: A/California/7/2004 [24]. However this 
strain has not yet been sequenced and therefore could not be included in the analysis nor 
the construction of the phylogenetic tree. In this estimation, a snapshot of the influenza 
persistence was captured, yet estimations were hindered due to lack of information and 
access to all strains. Similarly, the estimation of the most influential strain for the 2005 
season may be skewed due to lack of the sequencing of A/California/7/2004. However, 
a list of possible dominant strains was developed based on the 2004 analysis. Figure 20 
shows a radial phylogenetic tree of the estimation for 2004. 

5 Population-Level Model 

The cellular level model allowed for the selection of single influenza virus by the immune 
system to be observed. This underlying mechanism is an important factor in understanding 
the evolution of the virus over time. The phylogenetic trees allow for the determination of 
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Figure 20: Radial Phylogenetic Tree of Global 2004 Data 

genetic distances among different strains. Now that the in-host dynamics are understood 
and the genetic distances have been determined, it is possible to examine the epidemio­
logical effects the viral evolution as the strains spread through a population of susceptible 
individuals. 

5.1. The S-I-R Model 

Consider S(t) as a population of susceptible hosts at time t. The population can be kept 
constant for simplicity, that is the birth rate equals the death rate (both are p,), and the 
same death rate is used for every class. The susceptibles become infected at a strain­
specific rate f3i, and enter an infective Ii(t) class for strain i. Infected individuals recover 
at a strain-specific rate Ti, and enter a resistant class Ri(t). 
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Table 4: Variables for S-I-R Population Model 
Variables at Population Level Description 

S(t) Susceptible hosts at time t 
Ii(t) Hosts infected with strain i at time t 
Ri(t) Hosts recovered from strain i infection at time t 

Table 5: Parameters for S-I-R Population Model 
Parameters at Population Level Description 

J1. Birth and death rates of hosts per capita 

f3i Rate of infection of susceptible hosts from strain i 

"fi Recovery rate of infected hosts from strain i infection 

(4) 

Ri = "fiIi - J1.Ri 

In order to mimic the immune system selection at the cellular level, f3i must be altered 
in such a way that the transmission rates incorporate the genetic distance of strain i from 
the ancestral strain, which is represented as d i . This can be achieved by considering the 
genetic distance of strain i versus all strains, as shown in Eqn. (5). The constant bi is a 
strain-specific birth rate, included to reflect the relative fitness of the different viral strains. 
However, the ratio of genetic distances alone does not determine which strain dominates 
during a particular season. In fact, the histograms presented in Section 4 indicate that 
the dominant strain during a given year is often only a moderate genetic distance from 
the dominant strain of the previous year. This is likely a reflection of the effects of the 
positions of mutations in the amino acid sequence. 

Research has shown that antibodies toward hemagglutinin target five particular anti­
genic sites comprised of 131 amino acids combined [14]. However, various searches on the 
LANL and NCB I Influenza Databases [15], [17] returned hemagglutinin chain lengths often 
exceeding 1700 amino acids. As a result, significant genetic distances alone do not neces­
sarily reflect significant antigenic changes. In addition, certain amino acid substitutions 
may not significantly change the three-dimensional shape of the antigen [2]. These are 
known as synonymous mutations and do not change the antigenicity of the hemagglutinin 
protein, even when the mutation occurs within one of the five antigenic sites. In order 
to incorporate these important biological concepts, it is necessary to weight the genetic 
distance di values to convert them into antigenic distances using strain-specific weighting 
constants Wi. These weighting constants are defined as some currently unknown function 
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relating the genetic distance to the antigenic distance of strain i from the unknown ances­
tral strain. A higher Wi indicates a mutation within one of the five antigenic sites, while a 
lower Wi represents either a mutation outside of these sites or a synonymous mutation. An 
Wi = 0 would represent a synonymous mutation (one which has no effect on ,the antigenic 
structure) . 

(3i = bi [ Widi ] 
L:k Wkdk 

where Wi = f(antigenic distance, genetic distance (di)) 
Figure 21 shows the diagram that corresponds to the host-level population model. 
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Figure 21: S-I-R Population Model 

(5) 

Two equilibria exist for the population-level model: the disease-free equilibrium and 
competitive exclusion equilibrium. 
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5.2 Disease-Free Equilibrium and Calculation of iRa 

The disease-free equilibrium (DFE) occurs when no influenza strains are circulating through 
the population. In order to calculate the DFE for the population-level model, 

Let Ii = ° Vi 

==> ° = J-lN - J-lS 
==> Soo = N 

==>~=O 

The DFE exists at (N, 0, 0) E jR2n+l. 

This can be used to calculate the basic reproductive rate iRb. Begin by considering the ji 
equation: 

ji = Ii [,8i ~ - "Ii - JL] 

Linearizing about the DFE (N,O,O), this reduces to: 

From this expression for iRb, it is easy to see that the population of hosts infected with 
strain i will increase from any non-zero initial size as long as ,8i > "Ii + J-l, and it will decline 
if ,8i < "Ii + J-l. Note that, since ,8i and "Ii are strain-specific parameters, each strain has its 
own iRb. 

5.3 Competitive-Exclusion Equilibria 

If selection by the immune system does occur, then it is expected that one strain will dom­
inate over any other competing strain. This is known as competitive-exclusion. Consider 
the case of two influenza strains i and j: 

106 



Suppose Ii > 0 and Ij = 0 where j =1= i. 

Which implies 

Therefore the competitive-exclusion equilibrium for the two-strain (n = 2) population­
level model occurs at: 

Since the competitive-exclusion equilibrium exists, one strain can dominate during an 
outbreak at the population level. 

5.4 Coexistence Equilibrium 

A coexistence equilibrium occurs when multiple strains can circulate through the popula­
tion alongside one another. In order to determine the existence of a coexistence equilibrium 

107 



for two strains, it is necessary to set ji = 0 and jj = 0, as such: 

Suppose i -=I j 

o = Ii [tJi ~ - 'Yi - J.L] 

o = Ij [tJj ~ - 'Yj - J.L] 

Solving for S in each equation, an endemic equilibrium exists if and only if the following 
conditions on S are true: 

and 

s= N("(j +J.L) 
tJj 

However, both of these requirements are satisfied if and only if iRb = 1Rb = "/~J.L. 
This implies that the two strains reproduce at the same rate. For example, this can 
occur if tJi = tJj V i, j and 'Yi = 'Yj V i, j, meaning that strains i and j have identical 
transmission and recovery rates. This would mean that the strains are exactly alike (that 
is, II = 12' = Is = ... = Ii), which is the case when the strains differ by synonymous 
mutations. When the strains differ more significantly and the basic reproduction rates 
of the strains are different, then the conditions on S are not satisfied, and coexistence 
between the two strains is again not possible. This indicates that viral fitness manifests 
itself at the population level as the strains' ability to remain viable outside of the body 
long enough to be transmitted and the length of time which the strain can infect and be 
spread to other hosts before the immune system of the infected host eliminates it. That 
is, competitive exclusion will occur if iR1 > 0 and iR2 > 0 but iR1 -=I iR2. Since the strains 
have different basic reproductive rates, then the fitness of the strains would also differ. 
Therefore, the strain with lower basic reproductive rate would be less fit. Such fitness 
differences are often targeted by natural selection, and this is also the case with immune 
system selection. The less-fit strain would be selected against by the immune system, so 
the more-fit strain will exclude it due to its competitive advantage. 

From the determination of these equilibria, the phase portrait shown in Figure 21 can 
be determined for the two-strain population-level model. 

5.5 Single-Outbreak (J.L = 0) 

Influenza outbreaks usually occur during colder seasons. Therefore it is necessary to ob­
serve the epidemiological dynamics during a single epidemic season using a single outbreak 
S-I-R model. A single outbreak S-I-R model considers a small enough time scale that the 
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Figure 22: Population phase portrait for two strains 

birth and death rates (both equaling J.L) are negligible, which reduces the S-I-R model in 
Eqn. (4) to the one shown in Eqn. (6). 

(6) 

For a particular strain i, the basic reproductive rate ~o during a particular outbreak can 
be calculated as such: 

In this case, ~b tells the outcome of strain i during the outbreak. If the ~b < 1, then 
strain i will die out and the outbreak. However, if ~b > 1, then strain i will begin an 
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epidemic. In addition, the lRb allows for the following asymptotic behavior to be inferred: 

(1) lim 8(t) = 8 00 
. 

t~oo 

(2) lim Ii(t) = ° Vi 
t~oo 

(3) lim Ri(t) = Ri 
t~oo 

Hence, Ri can be referred to as the prevalence of the ith strain during the outbreak. 
By finding this prevalence in stochastic simulations of influenza outbreaks, the dominant 
strain during the outbreaks can be determined. 

5.6 Single-Outbreak Stochastic (Poisson) Model 

The population level model is considered during a single outbreak without demographic 
-> -> 

rates. The parameters includes two 1 x n arrays {3 and -;y. Each {3i of (3 is a function of 
-> -> 

three arrays d, c;J & b. Each di corresponds to the genetic distance to a parental strain, 
Wi is a weighting constant that accounts for antigenic distance, and bi is a strain-specific 
viral reproduction rate. Adding stochastic effects to the deterministic model in Eqn. (6) 
yields Eqn (7) [1], [9]. . 

f3iSt[jI(t) ~t + o(~t), 
i-I 2n-i 

,.-"--.. ..---..... 
(k,h, ... ,In,ml, ... ,mn) = (-1,0, ... ,0, 1,0, ... ,0) 

i n-l n-i 
. ,.-"--.. ..---.......---..... 

(k, ll, ... , In, ml, ... , m n) = (0, ... ,0, -1,0, ... ,0,1,0, ... ,0) 

1- [I:J=IIj(t) ej~(t) +"0)] ~t+o(~t), 
2n+l 

,.-"--.. 
(k,h, ... ,ln,ml, ... ,mn) = (0, ... ,0) 

o(~t), otherwise 

(7) 

The distances from Section 4.4 are used in this simulation. Simulations were run for 
each of the four sets of New York phylogenetic data from 2000 through 2004 and three sets 
of global phylogenetic data from 2001 through 2005 by inputting the genetic distances as 
-> 
d. The New York and global distances were run separately by year. All simulations chose 

-> 
bi from a uniform distribution, and -;y was set equal to 1. With each data set, the simu­

-> 
lation was run twice. The first simulation set c;J = 1, which would mean that antigenic 

no 



distance is solely determined by genetic distance, while the second simulation includes 
different weighting constants for each strain. In the second simulation, the strain which 
had the smallest genetic distance received the highest weighting constant (to represent a 
mutation that causes a key antigenic change), while all other strains received weighting 
constants of 0.1 (to represent minor mutations). 

When comparing the two simulations for New York from the years 2000 to 2004, it 
was found that the weighting constants w do in fact make a significant difference for ~o, 
which are displayed in Table 5. 

Year Different weights Same weights 
2000 15.243 72.766 
2001 25.379 2.8567 
2002 7.342 2.9787 
2003 6.305 2.8656 
2004 10.267 13.344 

Table 6: ~o values for New York due to the variation of the weighting constant w 

The weighting constant also has an impact on the final size. Table 6 shows that having 
the same weight values for all strains resulted in the final size being much larger than when 
the genetic weights were varied by strain. 

Year Different weights Same weights 
2000 1.7012 74.009 
2001 2.7880 130.30 
2002 0.9539 29.748 
2003 0.7053 21.433 
2004 19.662 53.253 

Table 7: Means of final size resulting from the variation of the weighting constant w 

These results are consistent with the results from the global data, which indicate that by 
varying the weights there is a significant difference in the outcome of the outbreak. This 
lends credence to the antigenic distance hypothesis, and that the antigenic distance of a 
strain from an ancestral strain greatly impacts the epidemic spread of the strain under 
the constraints of the model. 
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6 Concluding Remarks 

Cellular-level dynamics of selection acting upon different strains of the influenza viruses 
by the immune system certainly affects the spread of the strains through a susceptible host 
population. The complex interactions involved cross scales and indicate the importance 
of understanding the interplay between evolution and epidemiology that has often been 
overlooked. 

This research implemented phylogenetic distances created from differences in amino 
acid sequences of the primary antigenic protein for influenza (a surface molecule known 
as hemagglutinin). Influenza seasons were observed globally and locally and revealed 
that phylogenetic trees can lend some understanding to the dominance of a specific strain 
during an outbreak. 

Genetic distances much be properly weighted to account for the location of mutations 
along the antigen sequence. The locations of mutations yield different antigenic distances 
of strains from their common ancestor, which in turn determine the fitness of the new 
strains. When weighted to account for antigenic distances, the genetic distances obtained 
from phylogenetic trees can be used to effectively estimate of the dominant strain for the 
following year. 

The analyses conducted with statistics and with stochastic simulations produced sets 
of strains with large genetic distances from unknown ancestral strains that correctly con­
tained the dominant strain the next year. However, the data available was not structured 
to allow for the fact that flu seasons transverse years, beginning in fall of the first year 
and ending just before spring the next year. Nevertheless, the analysis was able to ac­
count for regional differences, which is important due to the fact that people in different 
regions of the world have susceptibility to different strains. This is referred to as an im­
munological history. The data at global, regional, and local levels all followed a gamma 
distribution, which can account for high levels of susceptibles each year followed by high 
levels of recovered. 

It was observed that, at the cellular-level, coexistence of very similar strains was pos­
sible during the infection of the host when the strains do not mutate. At the population­
level, coexistence can only occur between strains with equal ~o, which indicates strains 
with the same fitness. Very different strains cannot coexist due to the different fitness val­
ues of the viral strains, since the immune system selects against the lowest fitness value. 
At first, this might seem to indicate that all influenza strains should eventually evolve 
similar properties. This is not the case, again due to the immune system, which easily 
eliminates strains that are similar to previously-encountered strains. 

It seems that the heterogeneity of hosts' immune systems in fact greatly contribute to 
major epidemics. Individuals in different regions have different immunological histories, 
as was indicated by the fact that phylogenetic trees indicate different dominant strains in 
different regions. A strain might seem to be mild when present in the region in which it 
develops, since the hosts in that region have encountered it or a very similar strain in the 
past. However, when that seemingly-mild strain is carried by an infected individual to an 
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area that has not encountered a virus like it before, then symptoms associated with that 
would be more severe. Its fitness would suddenly be raised, and it would have a much 
larger impact in the new region. Eventually, though, the individuals in that region would 
build a general (herd) immunity toward that strain. However, the virus would mutate and 
continue to evolve and evade the immune system of the hosts. It could also potentially 
undergo an antigenic shift under certain conditions [12]" such as close proximity of the 
host to another host type that can also be infected with the flu (such as ducks or pigs)[20]. 
This would allow the virus strains from the two hosts to recombine into a brand new strain 
with a completely different hemagglutinin type. Such antigenic shifts have accounted for 
most of the pandemics mentioned in the introduction [4]'[24]. 

It is apparent that the population-level model affects the cellular-level selection, though 
this was not examined with the model presented. The movements of hosts between regions 
as well as contact with other influenza host species is quite important to the evolution 
of the virus. In addition, at the cellular level, genetic distances alone are not the best 
predictor of strain dominance. Instead, the antigenic distances proposed by Smith et 
al. [21] could more accurately relate a circulating strain to its ancestral strain. This is due 
to the fact that not all mutations actually change the antigenicity of the virus. Future 
research should include closer links between the cellular-level model and the population­
level model. In addition, future research could also study the antigenic distances, perhaps 
by determining exactly how the Wi weights used in this model relate the genetic distances 
from the phylogenetic trees to these antigenic distances. 
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8 Appendix 

8.1 Cellular Level Calculations 

8.1.1 Calculation of 3?0 

J= 
o 

o 

o 

6 

where: 

0 ... 0 

( 

mllk1 m21k2 ... mn1kn) 
m12k1 m22k2 ... mn2kn 

. . . . 
m1nk1 m2nk2 ... mnnkn 

* 

( 

1310:' O~ .~. ~) 
f31X' 0 

... f31X' 

( 

-p, 0 ... ~) 
o 0: 

: -p, 0 
o 0 ... -p, 

o 

( 

-(a+pZi) .0 ... ~) 

• = ~ :. 0 : 

: : -(a+pZ;;_l) 0 
o 0 ... -(a+pZ;;J 

115 

0 ... 0 

o ... 0) 
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-pY,:'-l 0 
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c; 0 ... 0) 
*= o . o : 

Cn-1Z;;_1 0 
0 0 ... Cn Z ;;' 

The Jacobian for the Disease Free Equilibrium )DFE) can be written as follows: 

-d 

o 

o 

JDFE = o 

o 

0 ... 0 

(

-a .0 

o . 

o 0 

o ) (/h% 0 
o : 0 

-a 0 
... -a) 0 0 

o ) o : 
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(-: ~ .~. ~) 
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0 ... 0 
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-b 0 ... ~) 
o 0: 

: -b 0 
o 0 ... -b 

The basic reproduction number, Ro, is calculated by using the second generator approach 
as described on Diekmann and Heesterbeek, and van den Driessche and Watmough [6]) 
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M= 

( 

mUkl m2Ik2 ... mnIkn) 
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8.1.2 Calculation of the Immune-Free Equilibrium 

The equilibrium can be evaluated using Equation (8). 

where 

A= 

117 

o 

0 

i3n -1 A 
-IJ.-d 0 

0 i3n A 
/i'd 

0 

(8) 



A 
(Xij = -mij ki/3i , i =I j, 

J.La 

A 
(Xii = -miiki/3i - d, 

J.La 

and Aj is the matrix obtained by replacing the lh row of A with the row vector !P' = 
[/3r fh ... ,en]. 

The equation for the Vioo comes from the n equilibrium conditions obtained by setting 
Vi = 0 V i and substituting the above expressions for Xoo, lioo , and Zi. These can be 
rewritten as a single vector equation: 

(VOOP - A + d1) VOO = (5 

(I is the identity matrix). Solutions to this require either that VOO = (5 or that the matrix 

( voo!P' - A + d1) be singular. Since we are interested in the endemic equilibrium, we 

discard the all-zero solution for VOO and set the determinant of the matrix to zero. Some 
algebra yields the linear equation (8) given above. 

Note that (8) has infinitely many solutions (a set of dimension n-1 in general), unless 
all the coefficients det Ad det A are negative, i.e., det Ai all have the same sign as each 
other (i = 1,2, ... , n) and the opposite sign as det A, in which case there are no solutions. 
This creates infinitely many (non-isolated) partially immune-free equilibria. 
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8.2 Stochastic (Poisson Process) Model 

The cellular level model can be characterized with stochastic effects by Equation (9) [1],[9] 

Prob{~N(t) = j, ~S(t) = l, Ii(t) = mi, ~(t) = Pi, 1 $ i $ n I N(t), S(t), Ii(t), ~(t)} 
A~t + o(~t), 

3n 
~ 

(e,iI,12 ... in,91,92, ... 9n,hl,h2, ... hn) = (1,0, ... 0) 
dX(t)~t + o(~t), 

3n 
~ 

(e,iI,12 ... in,91,92, ... 9n,h1,h2, ... hn) = (-1,0, ... 0) 
X (t)(3i Vi(t)~t + o(~t), 

n+i-l 2n-i ...-----., ~ 
(e, iI, h··· in,91, 92,··· 9n, hI, h2, ... hn) = (-1,0, ... ,0,1,0, ... 0) 

Yi(t)[a + pZi(t)]~t + o(~t), 
n+i 2n-i 

(e,iI,12·· ·in,91,92,.· ·9n,h1,h2, ... hn) =~, -l,W) 
X(t) 'Lj=1 kjmji"Yj~t + o(~t), 

i 3n-i 
...-----., ~ 

(e,iI,12·· ·in,91,92,.· ·9n, hI, h2, ... hn) = (0, ... ,0,1,0, ... 0) 
,uVi(t)~t + o(~t), 

, i 3n-i 

(e,iI,12···in,91,92,···9n,hl,h2, ... hn) = ~,-l,W) 
CiZi(t)Yi(t)~t + o(~t), 

2n+i n-i ...-----., ~ 
(e, iI, h··· in,91,92," ·9n, hI, h2,· .. hn) = (0, ... ,0,1,0, ... 0) 

bZi(t)~t + o(~t), 
2n+i n-i ...-----., ~ 

(e, iI, h··· in, 91,92,··· 9n, hI, h2,'" hn) = (0, ... ,0, -1,0, ... 0) 

1 - [A + X(t)(d + 'L~=1 (3rVr(t)) +.'L~j=1 kjmjr"Yj(t) ... 

+ 'Lj=I[,u1t}(t) + (Cj"Yj(t) - b)Zj(t) + (a + pZj(t))"Yj(t)l] ~t + o(~t), 
3n+l ...-----., 

(e, iI,· .. ,in, 91,··· 9n, hI,··· ,hn) = 0, ... , ° 
o(~t) otherwise 

(9) 
The cellular level has 3n + 1 classes including: One susceptible class, X, which cor­

responds to the healthy cell population; n infected classes, Yi, which correspond to cells 
infected by each viral strain i; n infective classes, Vi, which correspond to the viral load of 
strain i; and n CTL classes, Zi, which corresponds to the population of Cytotoxic T Lym­
phocytes acting against each cells infected with viral strain i. There are also n 2 + 3n + 6 
parameters: A is the constant rate of birth of healthy cells; d is the proportional rate of 

----natural death of healthy cells; (3 which is a 1 x n array of infection rates of each free 
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---7 

virus; k, which is a 1 x n array of replication rates of each strain within an infected cell; 
a matrix m of mutation rates, where mji is the rate of infection from strain j to strain i; 
and a clearance rate f.1 of free virus; 
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8.3 Phylogenetic Trees 

8.3.1 Global Phylogenetic Tree 2002 

Mill i 
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8.3.2 Global Phylogenetic Trees 2003 
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8.4 Histogram of 2002 Regional Data 

8.5 Histogram of 2003 Regional Data 
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8.6 Histogram of 2004 Regional Data 
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