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Abstract

A method for simulating and analyzing the competition between
similar species is presented here by first adapting a Gause type model
that allows four fitting parameters [2]. From this deterministic model
we derive conditions for the existence and stability of several equilibria,
including multiple coexistence equilibria. An agent-based simulation
is then created to model the biology of the species on the scale of in-
dividual interaction. Changes in the growth scale parameters for the
deterministic model are then considered in order to try to replicate the
behavior of the agent-based biology. This is done in an attempt to ra-
tionalize the growth scale parameters as a tool to capture all possible
behaviors. In an effort to observe the dynamics on a different spa-
tial scale, we implement a spatially structured stochastic simulation
with parameters chosen to reflect the different outcomes of the agent-
based model. This second simulation will track, on a larger scale,
the interaction between groups or colonies of the species of interest.
The multiscale method presented here allows for a broader interpreta-
tion of interspecies competition than is possible through deterministic
analysis. For the purpose of an example, two species of ants will be
considered (Solenopsis invicta and S. geminata).
Keywords: Agent-based modeling, competition, invasive species, pair-
approximation.
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Introduction

Competition between similar species is a complex problem. In this paper, interference
competition between two similar species of ants, S. invicta and S. geminata, is discussed
and a framework for modeling and simulation is addressed. Primary to the idea of mod-
eling is what aspects of the species should be considered when looking at competition.
In general, the size of an individual member of a species matters and affects several aspects
of interspecific interference competition [7]. Ants display determinate growth patterns,
that is, the adults of each class (worker, major, etc.) are about the same size [7]. We
assume a larger ant will naturally dominate when it comes to individual physical con-
frontation with a smaller adversary. However, by intuition there must be a tradeoff with
size. The larger a particular ant is the more food is likely required to sustain it self. While
a species may be larger than its competitive counterpart, smaller ants may fight in packs
or swarms and thus nullify any size advantage. It is assumed that an intrinsic carrying
capacity for each species depending on the type of area it is inhabiting and its size. A
larger ant species will have a lower carrying capacity than that made up of smaller ants.
If the two species are competing for the same food source(s) in an area then their ability
to persist in that area comes into question. For example, when several ant species locate
a common food source, the species that find, carry, and alert others to the presence of
the food more efficiently will have the advantage. These are some of the aspects deemed
important while modeling S. invicta and S. geminata. These, however, are not the only
considerations when constructing a simulation.
When simulating the movement of a species, aspects of sensory ability are considered (e.g.
shortsightedness versus olfactory superiority) as well as their mobility. The ants consid-
ered here rely both on sight and smell to find food and communicate by leaving pheromone
trails. Simulations may also take into account events which occur on different time scales
into consideration. As an example, it is clear that the gathering of food and the rearing
of an offspring do not happen on the same time scale and thus need to be accounted for
accordingly. For instance, if one were to track the activities of an individual ant colony,
care should be taken to consider the length of time the ants need to retrieve their food
and convert it into biomass. However, if the interest is more in the large scale relationship
of ant colonies, food can be considered arbitrarily close to a colony. Thus the concern is
more over the distance between individual colonies.
It is known within the realm of interference competition models that outcomes may in-
clude competitive exclusion or coexistence. This paper is not an attempt to provide new
insight into interference competition models, but rather offer tools to use in its analysis.
Analysis of a deterministic model provides a theoretical background for the type of behav-
ior searched for (e.g. coexistence, competitive exclusion). It is proposed that the growth
scale parameters act as a control mechanism to force coexistence into a model with a
parameter set that would not normally allow such a result. An agent-based model is an
alternative to the formation of a traditional stochastic version of the deterministic model.
Furthermore, the agent-based simulation offers a glimpse into the effects of small scale
spatial relations between the individual ants. To observe interactions on a different spatial
scale, that of interacting colonies, it is assumed that on the small scale the ants behave
as the deterministic model portrays them. Thus a spatially structured multi-patch simu-
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lation is offered as a tool to record interactions on the larger scale. First, we analyze the
deterministic model.

Deterministic Model

For the ants several ant characteristics, via model parameters, were considered: size as
it relates to fighting and growth; ability to gather food as it relates to growth rates; and
pheromone secretion. Once data has been found then parameters are fitted into these
equations [2]:

ẋ = µ1x

(
1−

(
x

K1

)θ1

− c2y

µ1

)
, (1)

ẏ = µ2y

(
1−

(
y

K2

)θ2

− c1x

µ2

)
. (2)

This model was chosen because it is a traditional interference competition model which
incorporates interference and the ability to control the speed of the logistic growth. There-
fore the model is open to broader biological application. To better understand the model
as given in Equations (1-2) a discussion of the parameters is required. We define P to be
the set of intervals for which our parameters have biological significance such that P ⊂ R8

+.

Parameter Interpretation
µi Intrinsic growth rate
Ki Carrying capacity
θi Growth Scale
ci Competition Coefficient

Table 1: Parameters and Their Meaning for i = 1, 2

It can be seen that without competition coefficients or growth scales (i.e. c1 = c2 = 0 and
θ1 = θ2 = 1) Equations (1-2) form a standard two-dimensional Verhulst model, and each
species will grow to its individual carrying capacity. Hence, the biological concepts of Ki

and µi do not change from the accepted interpretations from a standard Verhulst model,
where subscript 1 and 2 refer to species x and y respectively. In the case of ants, µi may be
interpreted to depend on their ability to gather food which promotes colony growth. The
addition of the growth scale parameters, θi, allows a shift, with respect to population size,
in the maximum rate of increase in the population. When θi = 1 the maximum increase
is when the current population is 1

2 its carrying capacity. This is demonstrated in Figure
1.
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Figure 1: The effect of θ on the population growth.

Here, the growth scales indicate how efficiently a species utilizes food to create population.
Should a species be inefficient with the conversion of food to biomass then θ would be
particularly low. Finally, c1xy and c2xy reflect interspecific competition between species.
The nature of this competition can be determined by the individual application.

Analysis

Stability of Boundary Equilibria: E0, Ex,Ey

There are three boundary equilibria for the deterministic system, corresponding to compet-
itive exclusion, in Equations (1-2). The extinction, “trivial”, equilibrium- E0 = (x∗, y∗) =
(0, 0), and the boundary equilibria- Ey = (x∗, y∗) = (0,K2) and Ex = (x∗, y∗) = (K1, 0).
There is also a set of coexistence equilibria, CE. We denote this as a set because, as will
be shown, there are conditions when zero, one, two or three interior coexistence equilibria,
CE, may exist.
In order to determine the stability of the equilibria, the eigenvalues of the matrix

J =


µ1 − (θ1+1)µ1

K
θ1
1

xθ1+1 − c2y −c2x

−c1y µ2 − (θ2+1)µ2

K
θ2
2

yθ2+1 − c1x


 (3)

must be determined. Evaluating J at E0 yields eigenvalues λ1 = µ1, λ2 = µ2. This trivial
equilibrium is always unstable because both of the eigenvalues are positive. Evaluating
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the Jacobian at the boundary equilibria, Ex and Ey, results in the following matrices:

J|Ey
=

(
µ1 − c2K2 0
−c1K2 −θ2µ2,

)
(4)

J|Ex
=

(−θ1µ1 −c2K1

0 µ2 − c1K1.

)
(5)

The eigenvalues of Matrix (4) are λ1 = µ1−c2K2 and λ2 = −θ2µ2. The value λ2 is always
negative, so if µ1

c2
< K2 then Ey is a stable node. If µ1

c2
> K2 then Ey is a saddle point. A

similar argument applies to Ex thus, the boundary equilibria are either stable or saddle
nodes. This is illustrated in Figures (2-3).
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Figure 2: Dynamics when boundary equilibria are of the same type. On the
left is species coexistence, on the right competitive exclusion dependant on
initial conditions.
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Figure 3: Dynamics when boundary equilibria are of different type. On the
left is competitive exclusion with species y winning, on the right is coexistence
or exclusion dependant on initial conditions.

Since the boundary equilibria were derived directly from the equations, the existence of
the boundary equilibria is not dependant on system parameter. Thus it only remains to
study the coexistence equilibria.

Existence of the Coexistence Equilibria: CE

There is not a closed form expression for the coexistence equilibria, an explicit analysis
of the eigenvalues of the Jacobian is not possible. Recall that coexistence equilibria will
satisfy the equations:

1−
(

x∗

K1

)θ1

=
c2y

∗

µ1
,

1− c1x
∗

µ2
=

(
y∗

K2

)θ2

.

The nullclines for the system are obtained by solving for y∗, yielding two functions
f, g : R+ → R+ such that R+ := (0,∞) may be defined where:

f(x) :=
µ1

c2

(
1−

(
x

K1

)θ1
)

, (6)

g(x) := K2

(
1− c1x

µ2

) 1
θ2

. (7)

From Equations (6-7), interior fixed points exist only if x ≤ ω := min
(

µ2
c1

,K1

)
, thus for

the analysis, the domains of f and g are restricted to the interval [0, ω]. It is assumed
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that given P ∈ P f and g are not equivalent on P . If f and g are equivalent on P then
the analysis is degenerate, having a curve which describes an infinite number of stable
coexistence equilibria. The curve of f(x) has an x-intercept of (K1, 0) and y-intercept of(
0, µ1

c2

)
. The curve ofg(x) has x-intercept of

(
µ2
c1

, 0
)

and y-intercept of (0,K2). Note that

df

dx
= −µ1θ1x

θ1−1

c2K
θ1
1

< 0, and

dg

dx
= − K2c1

θ2 (µ2 − c1x)

(
µ2 − c1x

µ2

) 1
θ2

< 0.

Recall that the x-intercept for g is µ2
c1

and thus µ2 − c1x > 0. Therefore f and g are
monotonically decreasing. To investigate the existence of elements of CE the nature of
the concavity of both f and g may be helpful.
Observe that

d2f

dx2
=

µ1θ1(1− θ1)xθ1−2

c2K
θ1
1

(8)

then d2f
dx2 < 0 if and only if θ1 > 1 and d2f

dx2 > 0 if and only if θ1 < 1. Similarly

d2g

dx2
=

K2c
2
1 (1− θ2)

θ2
2 (µ2 − c1x)2

(
µ2 − c1x

µ2

) 1
θ2

(9)

then d2g
dx2 < 0 if and only if θ2 > 1 and d2g

dx2 > 0 if and only if θ2 < 1. Again if θ2 = 1 then
g is a linear function.
In other words for θ1,θ2 6= 1, there are no inflection points for f and g.

Proposition 0.1. Given that f is not equivalent to g.
If (

µ1

c2
−K2

)(
µ2

c1
−K1

)
> 0, (10)

then there exists at least a point x∗ ∈ R+ such that f (x∗) = g (x∗).

Proof. Assume (10), and ω as defined above, with both f and g continuous on the interval
[0, ω]. Further, without loss of generality let µ1

c2
> K2 (i.e. f(0) > g(0)) and µ2

c1
> K1 (i.e.

f(ω) < g(ω)), then by the Intermediate Value Theorem there exists an ξ ∈ [0, ω] such that
f(ξ) = g(ξ).

Thus, if the relationship between the species is such that the carrying capacities, Kj , for
each species are either both greater than or less than the ratio µi

cj
, then there exists at

least one coexistence equilibrium, i.e. CE 6= ∅.

Corollary 0.2. Given the same conditions as in Proposition 0.1,
if θ1, θ2 < 1 and K1K2 > θ1θ2µ1µ2

c1c2
thus there exists a unique ξ such that (f(ξ) = g(ξ))

and (ξ, f(ξ)) ∈ CE.
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Proof. Due to the constant concavity and monotonic decrease we have limx→0 f ′ = −∞,
f ′(K1) = − µ1θ1

c2K1
, g′(0) = − c1K2

µ2θ2
, and g′

(
µ2
c1

)
= 0. This is all shown in Figure 4. In

the interval of consideration we have that g′ attains a minimum of − c1K2
µ2θ2

and we’ve
demonstrated that the maximum of f ′ is − µ1θ1

c2K1
thus f ′ > g′, and f − g is monotone

therefore there exists a unique ξ ∈ (0, ω) such that f(ξ) = g(ξ).

x

y

−c1K2

µ2θ2

µ2
c1

− µ1θ1
c2K1

f ′

g′

Figure 4: Illustration of the proof of Corollary 0.2.

Numerical results from a Latin Hypercube sampling, detailed in the Numerical Analysis
section, have shown that 99.95% of parameter combinations found to produce an interior
equilibrium, with each of the θi < 1 fit the criterion for uniqueness of that equilibrium.
This reenforces the claim that θi is the parameter that is producing the biologically sig-
nificant results in the deterministic model. If one considers the inequality K1K2 > µ1µ2

c1c2
,

in the case where both non-trivial boundary equilibria are saddle points, the inequality
is false, refer to Equations (4-5). However, since it is a fact that the interior equilibrium
must exist when Ex and Ey are both saddles and it must be stable, the introduction of the
θi terms is what curves the nullclines and introduces the coexistence equilibrium. There
are also conditions where it can be shown that there exist at most two elements in CE.

Proposition 0.3. Given f and g as defined in (6) and (7), without loss of generality, if
θ1 > 1 and θ2 ≤ 1 then f and g will have at most two intersections in R2

+.

Proof. Let
h(x) = f(x)− g(x).

If the sign of d2h
dx2 does not change, then there exist at most two points, x̃i, i = 1, 2, such

that h (x̃i) = 0, hence f (x̃i) = g (x̃i).
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Since
d2h

dx2
=

d2f

dx2
− d2g

dx2
,

θ1 > 1 ⇒ d2f
dx2 < 0, and θ2 ≤ 1 ⇒ d2g

dx2 ≥ 0, it is the case that d2h
dx2 < 0. Thus there is no

concavity change of h.

Additionally, if θ1 ≤ 1 and θ2 > 1 implies there are at most two elements in CE. Propo-
sition 0.3 tells that if one of the curves is concave up and the other is either linear or
concave down then there are at most two elements in CE. This is intuitive, and an ex-
tensive numerical search has shown that there are in fact no situations, with f and g as
defined regardless of concavity, with more than two intersections within the biologically
acceptable parameter range. The proof of this is outside the scope of this paper, but is
numerically demonstrated in the Numerical Analysis section.

Proposition 0.4. Given Equations (1-2) there are at most three intersections of f and g
in R2

+.

Proof. Making the following normalization:

x̃ =
x

K1
−→ ˙̃x =

1
K1

ẋ,

ỹ =
y

K2
−→ ˙̃y =

1
K2

ẏ,

and then substituting back into Equations (1-2) results in

˙̃x = K1µ1x̃

(
1− x̃θ1 − c2K2

µ1
ỹ

)
, (11)

˙̃y = K2µ2ỹ

(
1− ỹθ2 − c1K1

µ2
x̃

)
. (12)

Let A = c2K2
µ1

and B = c1K1
µ2

, and then solving for the nullclines of Equations (11-12) and
disregarding the trivial solution yields:

1− x̃θ1 −Aỹ = 0, (13)
1− ỹθ2 −Bx̃ = 0. (14)

Solving Equation (13) for ỹ and then substituting into Equation (14) we get

1−
(

1− x̃θ1

A

)θ2

−Bx̃ = 0,

thus, Aθ2 (1−Bx̃) =
(
1− x̃θ1

)θ2
.

We define f̃ :=
(
1− x̃θ1

)θ2 and g̃ := Aθ2 (1−Bx̃). The graph of g̃ is linear so we consider
f̃ .
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Observe,
f̃ ′ = θ2

(
1− x̃θ1

)θ2−1 (−θ1x̃
θ1−1

)
,

f̃ ′′ = θ2 (θ2 − 1)
(
1− x̃θ1

)θ2−1 (−θ1x̃
θ1−1

)2
+ θ2

(
1− x̃θ1

)θ2−1 (
θ1 − θ12

)
x̃θ1−2. (15)

The zeros of Equation (15) are x̃0 = 0, 1,
(

θ1−1
θ1θ2−1

) 1
θ1 . The values 0 and 1 are the bound-

aries of consideration, however
(

θ1−1
θ1θ2−1

) 1
θ1 may lie within (0, 1). If it does not, then there

are no inflection points for f̃ and thus f and g intersect at most twice. However, should the
inflection point lie within the interval then f and g have at most three intersections.

Limit Cycles

Now that some conditions are established for when CE 6= ∅ we will analyze the stability
of the interior equilibria points. It is important at this juncture to rule out limit cycles to
narrow the possible dynamics.

Proposition 0.5. The system described by Equations (1-2) has no limit cycles.

Proof. The proof is a standard application of Dulac’s Criterion. Define a function

D(x, y) =
1
xy

.

Recall the system

ẋ = µ1x

(
1−

(
x

K1

)θ1

− c2y

µ1

)
:= F,

ẏ = µ2y

(
1−

(
y

K2

)θ2

− c1x

µ2

)
:= G,

in which case
∂(DF )

∂x
+

∂(DG)
∂y

= −µ1θ1x
θ1−1

yKθ1
1

− µ2θ2y
θ2−1

xKθ2
2

< 0. (16)

Since Equation (16) is strictly negative on our parameter space P, then by Dulac’s Crite-
rion there are no limit cycles.

Stability of Coexistence Equilibria

Now that limit cycles have been ruled out, consider the four possible combinations of the
states of the non-trivial boundary equilibria. Consider the inequalities describing the sta-
bility of the points Ex and Ey respectively.
Recall Figures (2-3), and consider when both Ex and Ey are stable. According to Equa-
tions (4-5) and Proposition 0.1 this would imply that there is at least one element in CE,
which is a saddle point [2]. When Ex and Ey are saddles the element of CE is a stable
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node. By symmetry the dynamics of when Ex is stable and Ey is a saddle are equivalent
to when Ex is saddle and Ey is stable.
For the case when Ex is stable and Ey is a saddle it is possible for CE = ∅. However, there
is also the chance that the function h has either one or two roots. A single root has been
found to only occur if the functions f and g are of differing concavity. This is odd because
there are no standard fixed points which will preserve the dynamics of the Ex and Ey in
this case. Here the node has a stable manifold where the flow from the saddle point at Ex

goes to the interior node, and on the other side of the manifold the flow is attracted by the
stable point at Ey as in Figure 3. Past this bifurcation we are left with two coexistence
equilibria: a saddle point and a stable point as in Figure 3. These points are arranged such
that the stable coexistence equilibrium is nearest the saddle point boundary equilibrium,
and the saddle point coexistence equilibrium is nearest the stable boundary equilibrium.

Numerical Results

To garner more information from the equations an investigation of the numerics of the
system is undertaken.

Parameter Fitting

The work of Morrison [7] examines three different species of fire ants S. invicta, S. geminata
and S. geminata x xyloni. To study their interfering competitive behavior, experiments
were conducted using various combinations of pairs of the three species. For example, two
ant species were put in the same environment with a common food source and the location
and number of the dead ants were recorded relative to the location of their respected nests.
The experiment was then repeated until each ant species was compared with all others
and relative competition coefficients were extracted from these results.
Adams and Tschinkel [1] studied the biology of S. invicta, in particular their growth rates
were analyzed. A time series of the population size was constructed over the course of six
years which was used to fit parameters to Equations (1-2), see Figure 5.
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Figure 5: Least Squares fit of S. invicta over time
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A Least Squares algorithm was used in the Berkeley Madonna software package to perform
this fit. Due to the lack of many data points, the best fit parameters were combined with
information from Morrison’s work to estimate new parameters to be used throughout
this investigation 2. These parameters are considered as the base case for the numerical
simulations presented here.

Parameter Value
µ1 0.78
µ2 0.91
c1 0.0089
c2 0.01
K1 1391
K2 1000
θ1 0.61
θ2 0.55

Table 2: Least Squares fit of the parameters of Equations (1-2)

In some instances the dynamics of the system were inferred from the fit parameters
but, for ease of simulation, different parameters were chosen from the appropriate param-
eter space. In this regard the dynamics were preserved while allowing for a more clear
interpretation of the simulations as will be seen in the following sections, but first the
interior equilibria are explored numerically as a function of the parameters.

Parameter Sampling

While there are the propositions which assert the existence of interior equilibria there is
not really a sense of how probable these combinations are of occurring. We employed
Latin Hypercube Sampling on a parameter space of

P = {(.1, 2), (.1, 2), (1, 1500), (1, 1500), (.005, 2), (.005, 2), (.001, .1), (.001, .1)} .

This sampling method has been shown to be not only more efficient but also a better
method of obtaining a well stratified sample of random values versus Monte Carlo random
sampling [6]. We ran a program sampling 2,000,000 different parameter sets from 10,000
striations of each parameter interval.
The sampling shows there were roughly 1.8 million parameter 8-tuples where there are only
one interior equilibrium. Of these, none were found to be of the condition that the non-
trivial boundary equilibria were of opposite type. Thus we conclude that the conditions
that give the degenerate interior equilibria is a statistical improbability. There were 29,221
cases where there were two interior equilibria and merely 24 where there were three. Of
the cases with three interior equilibria the carrying capacities were on the orders of 10 and
102, while the competition coefficients were of the order 10−3. The intrinsic birthrates
were also all greater than one. We view this as outside the realistic biological bounds.
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Deterministic Numerical Solutions

With the inability to solve the deterministic system in Equations (1-2) we turn to numerical
solutions. Utilizing the numerical package pplane7 within Matlab and numerical solutions
to the ODE’s we were able to replicate most of the situations stated above for the boundary
and interior equilibria. The critical value for the degenerate saddle node has proved elusive,
since no closed form for the critical parameter values has been found. To determine the
outcome based on our real world parameters consider Figure 6 and then the phase plane
in Figure 7.
It is apparent that with the parameters found by fitting the real world data that the
only outcome is competitive exclusion. This agrees with G. F. Gause [2] who asserts
competitive exclusion is the rule when it comes to two species in local competition over
the same resources. The interesting aspect is that either ant species may prevail given
different initial conditions. That being said, ant 2 being an individually inferior species,
in terms of size and food collecting ability, intuitively should never prevail over ant 1.
However, with enough of an initial population advantage ant 2 will win. The separatrix
of the saddle point in the interior divides the phase space in such a way that ant 2 has a
higher probability of winning given random initial populations.
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Figure 6: Competitive exclusion for real world data with (x (0) , y (0)) =
(500, 500) and (x (0) , y (0)) = (500, 800), and parameters µ1 = .8, µ2 = .6,
K1 = 1000, K2 = 1500, θ1 = .4, θ2 = .5, c1 = .01, and c2 = .008.
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x ’ = mux x (1 − (x/Kx).4 − cy y/mux)
y ’ = muy y (1 − (y/Ky).5 − cx x/muy)

Kx = 1000
cy = .008

muy = .6
cx = .01

mux = .8
Ky = 1500
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Figure 7: The stable and unstable manifolds of the saddle point are plotted
here.

Numerics allow for a qualitative look at the expected results and support the stability
analysis. While the quantity of data provided a poor fit, intuition supported the param-
eter’s fit with little change. Sampling the parameter space via Latin Hyper Cube has
provided a look into the expected number of interior equilibria. The conscientious reader
has noticed that there is a high concentration on θi < 1. What the Latin Hyper Cube
sampling has demonstrated that out of 1.8 million parameter 8-tuples there were 471,636
which had the two θi < 1 and of those 471,417 fit the conditions presented in Corollary
0.2 for that intersection to be the unique one. Should an investigator use the deterministic
model presented here and the θi < 1 inequality holds then they can be sure that com-
petitive exclusion of each species are the dynamics to be expected, and it appears that
s. invicta and s. geminata fall within this category. Numerics have also provided the
information that given the real world parameters s. geminata is more likely to win.
One of the problems with the deterministic approach, and hence the numerics presented
here, is that it is an “average” of behavior. It should also concern the reader that the
deterministic model ignores any interactions on different spatial or temporal scales. If
these are negligible then the deterministic model is reliable and can be used as a tool for
modeling the competition. If the relationships are crucial to the interaction then other
methods must be taken into account.
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Simulations

Agent-Based

Discrete Agent-Based Model

Unlike the deterministic model which is continuous, the agent-based model involves dis-
crete individuals over a spatially explicit landscape. The agent-based model puts two
species into competition in a bounded environment with limited resources where competi-
tion includes gathering limited food sources and interspecific death. While all the behavior
seen in the deterministic model can be reproduced, the major advantage is each agent may
behave independently and interact with other agents or the environment based on certain
rules defined in the next section.

Behavioral Rules

There are four major behaviors exhibited by the agents [1]:

• Each agent will leave the nest in search of a pheromone trail leading towards a food
source. If one is found, it will follow the trail until it encounters the food. If no
pheromone trail is found, then it will search in a random fashion until encounters
a food source or a pheromone trail.

• If food is found, then the agent picks it up and returns home. As the agent returns
home, it leaves a pheromone trail indicating that food has been found. It is assumed
the pheromone evaporates at a constant rate.

• When two agents of different species contact each other (occupy the same space)
then the agents may attack each other.

• The two species may grow as a function of the amount of food gathered.

There is a stochastic component to the movement of the agents which could cause them
to deviate slightly from the “correct” path or in the worst case even head away. While an
agent is searching for food, it can see in the neighboring areas, and can sense pheromone
around itself. If food is found it heads home, otherwise it proceeds until a pheromone
trail from its own species is found. The agent sets its heading (in degrees) towards the
pheromone gradient with a small error. For the sake of argument the error was chosen to
be normally distributed with mean 0 and variance 15 degrees. There is also some proba-
bility that the agent will ignore the pheromone gradient.
Once food is found, the agent will leave a constant amount of pheromone on each patch
unless that patch already has some pheromone, in which case it will leave a fraction of its
normal amount. If the pheromone trail already has too much pheromone, it will not lay
down anything but simply head home.
If an agent encounters agents of a different species, then they immediately attempt to
attack each other. Note several groups of agents may attack each other simultaneously,
thus swarming behavior is possible. For simplicity it is assumed an agent dies only when
successfully attacked and the probability of a successful attack is a random number taken
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from a uniform distribution.

These rules incorporate mechanistic behavior, environmental factors and stochastic vari-
ability into an agent-based model while still preserving all the behavior seen from the
deterministic model. This makes the model more realistic in the local scale between
competing species and allows for a closer investigation of how the parameters affect the
dynamics of the individuals. This information is precisely what is lost by the averaging
inherent in the deterministic approach.

Results from Agent-Based Model

In addition to verifying all the results from the deterministic model, the agent-based
model provided some insight into the spatial component of interference competition. With
parameters where coexistence was expected due to results from the deterministic model,
both species were observed to exist at steady levels for long periods of time. It should
be noted the only absorbing states are extinction of either species and thus one species
will eventually die out, although this may take place only in the limit that time goes to
infinity.
From parameters fit from data, see Table 2, the deterministic model predicted competitive
exclusion as the only stable solution with a saddle point being the only interior equilibrium.
This corresponds well with data since S. invicta has displaced other species of fire ants
in much of the Southwestern United States. However, in the deterministic model there
exists a separatrix of the interior saddle point that divides the basins of attraction for the
two boundary equilibria. Hence initial conditions determine which boundary equilibrium
solutions will tend to and it is not clear S. invicta should be as dominant as it has been.
To illustrate the importance of initial conditions, parameter values were exaggerated to
give species 1 a clear advantage. Initializing species 1 with the same number of agents as
species 2 yields extinction of species 2 100% of the time in 150 trials. However, initializing
species 2 with 4 times the number of agents as species 1 leads to extinction 83% of the
time for species 1.
The next step is to see if the agent-based model can reproduce coexistence found in the
deterministic model with the appropriate parameters, namely low competition coefficients
and high birth rates proportional to the carrying capacities. It remains only to determine
the criterion for coexistence. The end times were recorded in each of the previous sets of
simulations and the set with the largest mean was chosen. The distribution of end times is
examined with the hypothesis that it can be approximated by a log-normal distribution.
Using a mean of 3.607 and standard deviation of .1415, the hypothesis is accepted with
a p-value of > .150, see Figure 8. Since the log10 of 10, 000 is 4, which is well outside 2
standard deviation of the mean, with 95% confidence 10, 000 is considered “long enough”
such that we can talk about coexistence of our populations.
All populations survived past the 10, 000 step threshold, but the population level of each
species varied widely due to the stochastic nature of the simulations. A linear regression
was applied to the data points from 10, 000 to 10, 500 steps and 11% were found to have a
slope < |5 ∗ 10−4|. Thus we see coexistence and every dynamic of the deterministic model
can be reproduced in the agent-based model. This offers some validation, but more insight
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should be gained from this model for it to be useful.

Figure 8: The probability distribution of the log of end times approximates
a normal distribution.

In the agent-based model, a single food source placed between two nearby nests almost
always leads to competitive exclusion. The results of Morrison support this since, although
all of his experiments were on a short time scale, there was always a clear advantage to
one of the species. This agrees well with the formulation of the deterministic model and
competitive exclusion as defined by G.F. Gause [2].
Another interesting facet is the location of competitive interactions (death) in simulations
where the parameters indicate one species should go extinct. According to Morrison the
area near the food source always has a high number of dead of both species. Figure
9 demonstrates this phenomenon since the majority of the fighting, evidenced by the
clustering of grey “X’s”, occurs around the food sources. Another subtle point is the
prevalence of the blue pheromone trails connecting all the food sources to the nest in the
upper left hand corner and the sparse red pheromone trails connecting the nest in the lower
right hand corner to only a few of the food sources. This implies that species 2 dominates
all the food sources and is out competing species 1 which fits well with the principle of
competitive exclusion. Since both species are competing for the same resource and in the
absence of limiting similarities (parameters yielding coexistence) we can consider them to
occupy the same niche. Thus, we expect to see competitive exclusion. The location of the
fighting and dominance of food sources are both results Morrison found experimentally
when he paired S. invicta and S. geminata against each other, however the agent-based
model is not without limitations.
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Figure 9: Distribution of dead agents “X’s”

Agent-Based Discussion

While the agent-based model can reproduce all the dynamics of the deterministic model
and shed some light into interactions among the individuals of the two species, analysis
of the results is much more difficult. The model is inherently stochastic and has many
parameters related to the behavioral rules. Nonetheless, the goal is to incorporate more
realism on the individual level to understand the nature of local interactions and perhaps
even global events. However care must be taken to avoid hasty generalizations of the
results.
Looking at the individual level, S. geminata is a superior competitor, thus extrapolating
individual level competition to colony level competition leads to the conclusion that S.
invicta cannot invade. This is clearly not the case. Morrison notes, “A larger number of
smaller workers (for the same overall biomass) appears to play a role in making S. invicta
a superior competitor over S. geminata” and “S. invicta is able to reach higher densities
faster than any of the other Solenopisis forms.” Initial conditions can drastically change
the outcome, an event also predicted by the deterministic model.
Data from experiments yield parameters in our model which imply, locally, competitive
exclusion is the rule (two stable border equilibria and an interior saddle point). In fact this
is expected from the theory of niches in ecology. This reinforces our results and intuition:
locally there can only be one species.
From data, however, it is clear that many species of fire ants exists simultaneously; S. in-
victa has been a successful invader in displacing many native species but has not completely
eliminated S. geminata. The solution to this apparent contradiction may by revealed by
an examination of the assumptions of the agent-based model: a closely connected and
closed environment is assumed. In real life, there may be major land formations sep-
arating the colonies of different species. There may also be external factors like other
competitors/prey, susceptibility to diseases and parasites, etc. An aspect we can explore,
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however, is the role of initial conditions. Thus initial conditions (how many agents attempt
to establish a new colony) and spatial flow between colonies may lead to more insight.

Spatially Structured Simulation

While the agent-based model may be a good tool for tracking the individual behavior
of the ants while they fight over a food source it may be necessary to view a species’
growth on a larger scale. For this reason we developed a second simulation strategy which
tracks the expansion of colonies, or groups, of the species in question as they disperse over
territory. The idea is to have a lattice of susceptible sites where the species can live. Then
after initializing the opposite edges of the lattice with the species we can track how they
spread overland.

Multi-Patch Simulation

This simulation puts the two species on a 3×3 lattice and allows them to set up of colonies
and expand over territory. In this simulation each site on the lattice may have one of four
designators: {[0, 0], [0, 1], [1, 0], [1, 1]} The value of a lattice site is denoted [xval, yval]ij
where the ijth site with only species x is denoted [1, 0]ij , species y is denoted [0, 1]ij ,
neither species as [0, 0]ij and both species on a site as [1, 1]ij . The lattice is considered
finite, with no edge wrapping.

Figure 10: A snapshot of the Multi-Patch Simulation. Red-Species X, Blue-
Species Y, Magenta-Both, White-Neither.

The lattice is initialized with the opposite vertical edges either saturated with a single
species, or with some small population value (e.g. 500). Each site has its own version of
the deterministic model running behind it to determine the growth or reduction of the
species present. Each of the deterministic models have the same µi, θi,Ki, and ci values.
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However, an assumption is being made that once a site has attained 90% of its carrying
capacity it sends out a small percentage of its population to a random neighbor in order
to spread the colony. The behavior here should mirror the behavior found just running
the deterministic model, with stochastic fluctuation, only on a different scale.

Multi-Patch Results

The simulation was run 100 times with the following set of parameters, and each time
with different initial conditions: The pairs of parameter values correspond to non-trivial

Trial (µ1, K1, θ1, c1) (µ2, K2, θ2, c2) Initial Conditions (x0, y0)
1 (.8, 1000, .4, .01) (.6, 1500, .5, .008) (1000, 1500)
2 (.8, 1000, .4, .01) (.6, 1500, .5, .008) (500, 500)
3 (.8, 1000, .4, .0004) (.6, 1500, .5, .008) (1000, 1500)
4 (.8, 1000, .4, .0004) (.6, 1500, .5, .008) (500, 500)
5 (.8, 1000, .4, .01) (.6, 1500, .5, .0004) (1000, 1500)
6 (.8, 1000, .4, .01) (.6, 1500, .5, .0004) (500, 500)
7 (.8, 1000, .4, .0004) (.6, 1500, .5, .0004) (1000, 1500)
8 (.8, 1000, .4, .0004) (.6, 1500, .5, .0004) (500, 500)

Table 3: Parameter setups for Spatial Simulation.

boundary conditions of two stable points, Ex a saddle and Ey stable, Ex stable and Ey a
saddle, and two saddle points respectively.

Multi-Patch Results

The results are detailed in the following figure. The data show that the simulation does

Trial Species X Wins Species Y Wins Coexistence
1 60 40 0
2 72 28 0
3 66 34 0
4 69 31 0
5 71 29 0
6 76 24 0
7 0 0 100
8 0 0 100

Table 4: Results from the Spatial Simulation.
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Figure 11: Results from the Spatial Simulation.

exactly support the deterministic model in the coexistence circumstances. With stochastic
fluctuation there is also support of the other behaviors found in the deterministic model.
This is due in part to the spatial component now being considered in the multi-patch
simulation. There is an interesting aspect in the spatial structure of coexistence. The
coexistence conditions are brought about by a parameter change that gives the two species
of ants the same competition coefficients and other than that the parameters remain the
same. Consider Figure 12 and observe that Species X is just barely alive. Their persistence
is due to their ability to find and process food , µ1.
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Figure 12: Coexistence is nearly Competitive Exclusion for the coexistence
parameters.

The spatially structured model seems to exhibit very interesting and counterintuitive be-
havior. Even when a boundary equilibrium is unstable, if the other is stable, then we
can get competitive exclusion of either species. At best a proposed reason for this can
be expressed now. In the spatial simulation the dynamics aren’t exactly like those of the
deterministic model. There are both harvesting and stocking terms within the dynamics
of each cell. These terms represent the number of ants sent forth to colonize other cells on
the lattice as well as those who come to the current cell to settle. It is clear that analysis of
this model is beyond the scope of this paper. However, it should be noted that simulation
has shown that there are parallels in the results between this system and the deterministic
model.

Discussion

General Results

Presented here has been an analysis, both numerical and classical, of the deterministic
model. From this analysis it was concluded that there are at most three interior equilibria
and that in any case there are at most one interior stable equilibrium. The Latin Hyper-
cube Sampling has provided, within a set of potentially Biologically viable parameters a
sense of the frequency of these conditions and what can be expected to be produced by
biological systems.
The agent-based simulation proved to generate the same results as the deterministic model.
It is important to state that it appears that with the amount of biology built into the agent-
based simulation the deterministic equations do just as well at capturing what can happen
given certain parameter values. However, the deterministic model cannot provide are in-
sights into worst and best case scenarios, nor can it contain any spatial information on
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the interaction of the species. It was found that with certain parameter sets, the agent-
based model behaves much like a stochastic version of the model, capturing all possible
behaviors, but some at a very low probability. Furthermore, the agent-based simulation
provided an insight into where most ants come into conflict and to the nature of these
individual processes.
The spatially structured, or multi-patch, simulation was crafted in an attempt to simulate
the deterministic model on a larger scale. However, the spatial simulation captured a
behavior, for certain coexistence parameters, that is counter intuitive. It was determined
that the spatial correlations in this system drastically alter the outcomes as well as, it is
hypothesized, the stability of the boundary equilibria.
The three approaches to modelling the competition between similar species each have pros
and cons. The deterministic model is attractive due to its ease of solving and simulating.
However, the deterministic model involves no spacial and very little temporal structure.
The agent-based approach allows for a capturing of both of these structures missed in
the deterministic model. The simulation may be formed in such a way to allow nearly
all known biological considerations to have an effect. With this added realism comes the
inability to form equations describing the interactions. This can be a problem if simply
simulating the process is not enough. The spatially structured simulation has the ability to
capture colony-level interactions at the price of complicating the equations which describe
the dynamics. Furthermore the simulation is assuming that each colony is close enough
to another to allow for interactions. The reason that this simulation does not match what
is happening in the real world with the ants is that the ant colonies are, in some cases, of
a distance too great from one another to facilitate direct competition.
It is stressed that each of these methods have the same richness. They can all replicate the
same behavior within some interpretation and therefore each have merit when considering
the outcomes. Further, each model addresses different questions and should therefore be
utilized when appropriate.

Future Extensions

The Latin Hypercube Sampling should be extended to a larger subset P ⊂ R8
+. Further

when situations of interest are found, three interior equilibria or two intersection with
nullclines of same concavity, then a refinement of the sampling should be performed in
expanding neighborhoods around the values of interest to find the subspaces where these
parameter combinations give certain behavior.
The agent-based simulation should be run with a set collection of parameter values to
determine a probability, δi, that species i will exclude the existence of the other. This
may also be done by considering the stable manifolds of the deterministic system and
computing the probabilities over the acceptable phase space. Not only will these values
be useful for comparison, analysis and prediction, but they can also be employed in a
different version of the multi-patch model.
The multi-patch simulation can first be expanded upon by varying certain conditions be-
tween sites and thus introduce heterogeneity to the landscape. Furthermore the lattice can
be expanded in size, so the simulation will not be affected as much by stochastic fluctua-
tions, but take into account greater spatial structure. If one is to interpret the agent-based
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simulation as the stochastic version of the deterministic model, then one may use the δi

described earlier to have the simulation decide what happens to sites. With this simplifi-
cation it should be easy to construct ordinary pair approximation equations for analysis
on how much impact the spatial structure has on the dynamics [4]. Finally equations
truly describing the dynamics of the spatial simulation can be analyzed using traditional
methods and analysis then done in a manner alternative to ordinary pair approximation.
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