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Abstract

We consider the behavior of an infectious disease over a system of networked cities
with SLIR dynamics. Two models are studied: one with a partition between traveler
and resident populations, and another without. Ry is computed for both the parti-
tioned and non-partitioned models. Numerical solutions of the nonlinear dynamical
systems are performed in order to gain insight into the initial behavior and intercity
spread of disease, and system response to dispersal volumes and number of connections
between cities is also studied. We consider a theoretical future disease with SARS-like
parameters, and run numerical solutions using parameters from past studies on SARS.

1 Introduction

Modern developments in mass transit have created contact points between geographical
regions that beforehand could not interact on a timescale of biological importance. Dis-
eases that once could have been isolated in a specific region of the world now have the
ability to jump from one location to another in a matter of hours, and may have the
opportunity to develop an epidemic if the new location is sufficiently conducive to disease
growth. Recently the outbreak of SARS in China has presented such a problem. Even
after the local epidemic was contained a small number of travelling infected individuals
expanded the infection to provinces in Canada.

Similarly, if a previously unknown highly infectious disease were to be introduced into
the air traffic of the United States, it would be beneficial to understand how migration
rates affect the ability of the disease to establish itself independently in new cities. The
mathematical model presented here is used to determine the impact of travel on the spread
of a moderately infectious disease. We work with a general model for a system with n
cities, looking only at short time intervals (the beginning phase of an epidemic) where the
disease can be introduced to new cities by air travel.
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2 Background

Modeling the spread of a disease over city networks has been increasingly important over
the past few decades. An early discrete-time multi-city model was presented by Rvachev
and Longinie [14] in 1985. More recent work has been presented by Hyman and LaForce
(12], Arino and van den Driessche [1], [2], (3], [9], Castillo-Chavez, Song, et al. [4], Chowell
and Castillo-Chavez [5], [6] and others.

A similar model to the ones presented here was presented by Hyman and LaForce
[12], in which they modify an SIRP (Susceptible, Infected, Recovered, Protected) model
to look at the spread of Influenza within a network of cities. The susceptible and infected
populations mix randomly within each city. The SIRP transmission model is extended to
predict the spread of the virus among multiple cities, with the assumption that infection
does not occur during the actual act of transit. Travel is modelled as a constant flow
between cities, and it is assumed that everyone in each city has an opportunity to travel.

Castillo-Chavez, Song et al. [4] present an SLIR model for the spread of disease within
New York, distinguishing between people who use the subway system and those who do
not. In any particular neighborhood of the city, non-subway users (NSU) interact with
people in their own neighborhood (both with other non-subway users and with subway
users), while subway users also interact with people from other neighborhoods due to their
contact interaction on the subway system. v

In researching methods for analysis of our model we also consider work done by Arino
et al.[1] on the spread of an epidemic within a system of multiple spatial patches and
multiple species. They develop an SEIR model and use a mobility matrices similar to the
models presented here. Our model can be analyzed using methods adapted from those
presented in their work.

3 Partitioned SLIR Model

We present a general model for an n~city system, looking primarily at short time intervals
(the beginning phase of an epidemic) where the disease is introduced to new cities by air
travel. We use two partitions consisting of a Traveler population and a Resident population
to better model the fact that not everyone in a city is likely to travel frequently during the
timescale of an epidemic. The Traveler partition is assumed to be a constant proportion
of the total population, and the Resident partition is composed of the remainder. We use
the term migration interchangeably with daily intercity travel.

Each partition has four classes (Susceptible, Latent, Infected, and Recovered). For any
city ¢, the total outgoing migrations for any class can be described as the summation of
migrations to that same class in all other cities J, where j takes integer values from 1 to
n. These migrations can be written as aj; (where o; is the migration, in people per day,
from the Traveler partition of city ¢ to that of city j) multiplied by the proportion of that
class in the total traveler population; for example, the migration of susceptibles from city
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i to city 7 would be written as s f, Similarly, the inward migrations of susceptibles

from city j to city ¢ would be written as ol f,;

For both the Traveler and Resident partitions within city i, susceptible individuals
can become infected at a rate proportional to their possible contacts with infected indi-
viduals from either compartment; for example, susceptible travelers become infected at
rate EM. They then have a latent infection, and can progress from latency to
infectlousness at a rate kLr;. Finally, they can recover at the rate y.Ip;.

Because we are only interested in brief early stages of an epidemic, we assume that
there is no time for re-infection of recovered individuals. Behavioral effects and a disease-
induced death rate, although probably quite significant for longer time periods, are also
omitted in our analysis. Natural birth and death rates are included for demographic
renewal. :

See Figure 1 for the state diagram. From this figure we derive a system of nonlinear
ODE’s with parameters described in Table 1.
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Figure 1: State Diagram for Partitioned Model
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Parameter/State Meaning Units
LR : Residents Birth/Death Rate day™!
ur Traveler Birth/Death Rate day™!

U Birth/Death Rate day™?
Q5 Rate of travel from city j to city 1 persons(day™)
Jé} Rate of Infection day™!
k Rate of Incubation day™!
v Rate of Recovery day~!
Sti Susceptible Travelers at city ¢ persons
Lp; Latent Travelers at city ¢ persons
I Infected Travelers at city ¢ persons
Rep; Recovered Travelers at city 4 persons
Sk Susceptible Residents at city ¢ persons
Lpr; Latent Residents at city ¢ DETSONS
Ir; Infected Residents at city ¢ persons
Rp; Recovered Residents at city 4 persons
N; Total population of city 4 persons
Np; Total population of Residents of city % persons
Ny Total population of Travelers of city 4 persons

Table 1: Model Parameters and States
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3.1 Model Equations for Partitioned n-City System
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4 Non-Partitioned SLIR Model

From the Partitioned Model we derived a simplified model for the spread of a disease within
a network of cities (Figure 2). This model assumes that everyone has the opportunity to
travel, and thus the Resident partition is omitted. This model also includes birth and
death rates, while a disease induced death rate is omitted. The migration (travel) rate is
represented by c;;, which is read as the migration from city j to city i. These migrations
are also multiplied by by the proportion of that class in the total traveler population; for
example, the migration of susceptibles from city 7 to city j would be written as Qi 1“('}
Due to the nature of the equations the system’s total population is maintained constant
and for balanced migration, the population of any given city is constant as well. It is
assumed that recovered individuals cannot be reinfected, since the model is intended for
a short time interval at the beginning of an epidemic.
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Figure 2: State Diagram for Non-Partitioned Model

4.1 Model Equations for Non-Partitioned System
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5 Analysis

For our system we need to know how Ry depends on migration in order to determine
whether the persistence of the disease in a city is dependent on the migration. We find
that even though the Rg is dependent of the migrations, with the values of populations
and migrations from the 34 largest cities in the United States, the proportional migration
terms are significantly smaller then the infection and recovery rate. Taking the migration
terms to approach zero we found that Ry becomes the same as a single SLIR model.

6 The Basic Reproductive Ratio Ry

In calculating Ry for this system the method demonstrated by Julian Arino and Pauline
van den Driessche [3] was used. In their work they use the next generation operator given
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by Diekmann and Heesterbeek [8] but due to the symmetry of the system of equations
they are able to reduce the dimensions of the matrices used in the process. They separate
both the F" and V' matrices into four block matrices apiece. For the non-partitioned model
with 4n equations for n cities this method reduces a 2n x 2n matrix to an n X n matrix.
For the partitioned model with 8n equations it is reduces a 4n x 4n matrix to a 2n x 2n
maftrix.

6.1 R, for a Non-Partitioned Model with n Cities

To begin make the substitutions m;; = %Jl to simplify the expressions.Next the disease
free equilibrium must be found. The disease free equilibrium, denoted often as DFE, is
the values of which the populations of each class approaches in the absence of a disease.
Letting >°2 ; I; = 0 and 37 L; = 0. Then as time continués the value of 37 R;
approaches zero as time continues since its population is being reduced by death and it
is not being replenished by the infected class. Since the population is constant for the
system %, S; = > j=1 Ni. Also since the population of each city is constant S; = NN; at
the DFE. '

To generate the F and V matrices first define a vector X = (L1, Lo, ..., Lp, [1, Lo, ..., I,)T
then separate the terms of the infected and latent equations that represent new infections
from the remaining terms. The new infections are then written as a new vector, denoted
here as f while the negative of the remaining terms are represented in another vector, v

(B+k)Ly = 377 maLy + 377 my1La

ﬂM n n
185_15_}_9‘ (u+k)Ly - Zj:l ma; Lj + Zj:l mgjoLo
Na .
fe| gsamn o= | | BFRIa = Simmeils + 35 mynLn
gﬂ ’ (p+ k)1 — Z?:l mi;l; + Z?:l mj1ly — kL
] (/l + k)IQ — Z?:l mszj + Z;vl:l mjzfg ~kLq
0 .
(,LL + k)In - Z?:l mnd]’ + Z;-L:l mjnIn — kL,

Now let F' = 363];— and V = g—gj(. The F' and V matrices here will be 2n x 2n and can then
be divided into a total of eight block matrices such that

0 G A 0
r=(55)v=(2 5)
where G,A,B and C are n x n matrices
Evaluating the F and V matrices with S; = N; and R; = 0 from the DFE the matrices

G,A B and C will be of the form
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Bt k430 mp —mi2 e ~Min

A —may r+k+ Z?—_—1 mjig - —Man
—Mn1 —Mn2 o pt+k4 Z?:—_l mjn
pty+ 30 my —my2 e ~Min
B —ma1 m+y-+ Z?:l M2 - —MM2n
—Mp1 . : e lu -+ 0% + Z;f=1 mjn
B 0 0 '
0 g 0
00 --- 8

Applying the property demonstrated by Arino and van den Driessche an inverse of
matrix V' can be found from the block matrix form. Then Ry will be the spectral radius
or dominant eigenvalue of the FV ! matrix.

AL 0
-1 _
Vo= ( B-lCc4-t Bl >

py-1_(0 G AL 0 _( GB™'cA™t GB™!
0 0 B~lCA-! B! 0 0

~ Since the lower row of FV ™! consists of zero matrices any non zero eigenvalues of
FV~1 are also eigenvalues of GB~1CA~!. Thus Arino and van den Driessche conclude
that Ry is the spectral radius of the matrix GB~1CA™!; that is,

Ro = p(GB~lCcA™)

, where p(X) is defined to be the spectral radius of a matrix X.

6.2 Ry for a Non-Partitioned Model with 2 Cities

The smallest non-partitioned model of interest is that with two cities. For the matrices A
and B, we have

A=<u+’¥+m21 —1M12 )
—may p+y+m )7’

B b+ k+mo —m12
—mp1 p+k+mo )7
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Taking the inverse of A and B yields:

A1 = 1 ( B+ v+ mig miz >
(1 + v +ma1) (e + v + m12) — marmaa) ma1 W+ +may

51— 1 < pt k+my m12 >
(b + k& +ma1)(u + k 4+ miz) — marmaa ma1 K+ k +may

To simplify calculations we introduce the substitutions

dy = p+ v+ ma
dy = pp+ 7+ mag
e1 = p+k+mop
eg = p-+k+my

Thus providing a simplified form of the matrices A~! and B~
Al 1 ( do - Mg )
dids —ma1mia \ M di )’

B_l _ 1 €92 mi2
€1€2 — M21MM12 ma1 €1

Substituting into the general form of Ry and finding the dominant eigenvalue yields:

RO =p( 1 ( /662 ﬂm12 ) < kdz kmlg >>
(ere2 — marmaa)(didy — maymya) \ Bmar  Ber kmoy  kdy

_ lkﬂ (dlel + daea + 2maamar + /(dier — dzez)? + dmagmig (di + e1)(dz + 62)>
2

(did2 — miamay)(e1ez — miamar)

Even though this is a complicated expression to analyze, a bounding interval for R
can be found. ‘
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1 (dlel + daeg + 2miamo; + /(die; — d262)2>

Ry > =k
°7 32 g (d1dz — myamar)(ere2 — migmor)

% —l—kﬂ <d161 + daeg + 2mismar + |die; — d2¢2|)
2 (d1dz — miamar)(ereg — miamor)

— lk,@ ( 2max(d161, d2€2) + 2m12m21 )

2 (d1dz — miamar)(eiea — miama;)

max(die;, daes) + miama;

=k
'B(dld2 — miamar)(e1ez — miamar)
Thus,
max(die1, dpez) + miama;
Ry >k
0 ﬂ(dldz — mizamai)(e1ez — migmay)
Additionally,
1 dier + daez + 2miamgy + +/(drey — daea)? + \/dmyamy (d; + e1)(da + €a)
Ry < —kg
2 : (dida — miamar)(e1e2 — miamag)

— kg max(diey, dgea) + miamagy + \/m12m2_1(d1 +e1)(dz + e2)
(d1da — migma1)(ere2 — miamar)

- Thus,

max(dier, daez) + mizmar + /miamar(d1 + e1)(ds + e2)
(d1da — miama)(ere2 — mizmar )

Ro<k,@<

Therefore, for a two city system

kg

(dida — migma;)(e1e2 — myama;)

Ry for a Partitioned Model with n Cities
To apply the results of Arino et al. define the X vector as

X = (Lt1,Lp1, Lo, Lra, - - -, Lrn, Len, Ir1, IR1, It2, IRos - - . I, IR)T
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_ Again the f vector contains all the terms of the latent and infected that result in new
. infections while the v vector contains the negative of the remaining terms.

BSTy (I71+Ir1) (b + k) L1 = 325 ma;Lry + 300 mj L
08 (Irs+la) (k+ k)L

™ :
6Sra(lractInn) (+ k) Lrn ~ Z%l m}:; IL;Tj + 2 5=1MynLrn

C N M+ k) LR
f — ﬁSRn(j,f\zl"n+IRn) U= n
0 | (i + 91— kLps = Sy masTps + 0y mp Ty
(+7) g1 — kLR
6 (1 + )10 — KLrn = 3200 MangIry + 350 mjnlT

(/'L + 'Y)IRn - kLRn

For the G matrix a substitution is used to simplify the problem. At the DFE each
susceptible class has the same population as its initial conditions that is Sty = Ny and
Sr; = Npg; also Let Pl——-NTT‘;L, where N7y is the transitive population of city [ and N is the

total population of city . Then, 1-P; = 1-1—\% = &%,JIXT—‘ = %%. We then redefine our G
Matrix as

P P 00 00
(1-1ﬁ 1—P1> (o 0> o (0 o>
00 Py Py 00
G=4 <0 0) (1——P2 1—P2> <0 O) ,

00 : 00 P P
00 00 1-P, 1-P,

The B, C, and A matrices are defined as below

(e L) () (75 o)

0 p+k 0 0 0 0
—-mg1 0 ptk+30 mp 0 o —mgn O
A= 0 0 0 p+k 0 0
~Mni O ~Mpz 0 N+k+2:=1 Mijn 0
0 0 . 0 0 0 0
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< uty+ Z;-L=1 my; 0 ) —may 0 ) ( —Min 0 )

0 bty 0 0 0 0

—maoi 0 #+’Y+Z;~1‘=1 mj2 0 —Man 0
B = 0 0 0 w4y 0 0

—p1 0 —Mpa 0 o ety + Z?=1 mj;Z 0
0 0 0 o0 0 0
C = diag(k).

Again Rp = p(GB~'C A1) with the A,B,C,G matrices for this system. Note that the elements |
of these matrices are not matrices as well. This notation is only used to represent they patterned
behavior of their elements

7 Numerical Results

The partitioned and non-partitioned models act quite similarly in overall behavior, but many
cities show a time lag in their behavior between the two models (See Figure 3 for example).
More specifically, disease spread occurs faster in the non-partitioned model than in the partitioned
model-the initial city loses infected individuals faster, and the other cities gain them sooner.

All numerical solutions to the systems were run using baseline SARS data (6 = .25,k = .
55717 = 357) from Chowell and Castillo-Chavez [6]. We look at a system consisting of the
34 largest cities in the United States, for which airline/population data was gathered from the
United States 2000 census by Hyman and LaForce [12]. This data assumes balanced migrations
between cities; that is, @;; = agi. Due to the assumption of balanced migration, the sums of the
inward and outward migrations across all classes in a city are equal; therefore, the population is
constant within a city and over the entire system. In this data, a; is considered to be zero Vi, and
because not all ;; terms are nonzero, the network is not fully connected. See Figure ?? for city
populations and Figure ?? for flight data. Traveler populations were assumed to be 10 percent
of the entire population of their respective cities, the initial number of infected individuals was
held at .0001 percent of the entire system population (approximately 107 individuals), and natural
birth/death rates were assumed to be very low (around .0002740, a number gathered from [12]).
These parameters give us an Ry greater than one for each run.

‘ 7.1 Partitioned Model Results

In order to study how migration affects disease spread in the 34-city network, we found numerical
solutions to our system using Matlab’s built-in one-step ODE45 solver, which is an implementation
of the Dormand-Prince pair explicit Runge-Kutta (4,5) formula. For each of the 34 cities, we look
at disease spread at several different time steps (Figure 4) and at day 35 (35 days is the average
time from initial infection with SARS to recovery) as shown in Figure 5.

Here we consider disease s?read to be the proportion of infected individuals in the total sec-
ondary population (Z;‘ i £’—"%”~ where the ith city is the initial host) at a given time. Disease
parameters and initial number of infected individuals was held constant for each run. At any
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Figure 3: Behavior of Partitioned and Non-Partitioned Models

time step, looking at this information against the proportional outward migration rate for city 4
(Z;;l OJ‘\}) yields a scatter plot that looks very logarithmic (Figure 4), and indeed when this is
plotted on a log scale for day 35, the data shows a highly significant (p = .000 within Minitab’s
tolerance) linear trend (See Figure 5). A linear fit is appropriate for the log-transformed data,
with R% = 98.5%. Since each initial host city represents a point on this graph, we can sort the list
of cities in order of descending importance in Figure 5, and this tells which cities spread disease to
the rest of the network the fastest or slowest (see Table 2).

Fastest Spreaders | Slowest Spreaders
Las Vegas Philadelphia
Orlando Pittsburgh
San Francisco Cleveland

Denver Cincinatti
Ft. Lauderdale San Antonio

Dallas Milwaukee

Seattle Miami

Table 2: Fastest and Slowest Spreaders-Partitioned Model
We also looked at a theoretical homogeneous system (N; = N V i and aj; = o V (4,5) such

that 4 # j, where NV and o are constants). We varied migration rates by scaling the matrix {a} by
different scalars and observing system response.-As can be seen in Figure 6, the theoretical system
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Disease Spread vs. Time and Migration Rate—Partitioned Model’

proportion of secondary population infected

proportional migration (days™)

time (days)

Figure 4: The Effect of Proportional Outward Migration Rate (Z}‘zl %ﬁ) on Initial Disease
Spread over Multiple Time Steps in the Partitioned Model

responded to changes in migration rate in a logarithmic manner, much as the real-world 34-city
system is sensitive to the migration rate of the initial host city. We have no explanation as yet for
the small dip in the curve around proportional migration = .01, but would like to study it further
if we can determine that it is not due to numerical error.
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w10t Disease Spread vs: Migration Rate—-Partitioned Model
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Figure 5: The Effect of Proportional Outward Migration Rate (3 ] %ﬁ) on Initial Disease
Spread in the Partitioned Model
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x 10° Disease Spread vs. Migration for Homogeneous Partitioned System
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Figure 6: The Effect of Migration Rate in a Homogenous System in the Partitioned Model
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We were also interested at looking at the effect of connectivity upon initial disease spread.
Here we consider connectivity of city i to be the number of cities to which it is adjacent by air
traffic (that is, the number of integer values j € [1,34] for which aj; > 0). We expected there
to be a loose correlation between connectivity and disease spread from city ¢ (defined as above).
Upon creating a scatter plot of the disease spread from city ¢ at day 35 versus its connectivity (see
Figure 7), we see a vague positive trend; however, an ANOVA test shows that this trend is not
statistically significant (p = .065).

w10t Disease Spread vs. Connectivity-Partitioned Model
11 T T T T T T T T T
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g T
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connectivity (number of cities connected to intial host)

Figure 7: The Effect of Connectivity on Initial Disease Spread in the Partitioned Model

7.2 Non-Partitioned Model Results

While the non-partitioned model acts fairly similarly to the compartmental model, there are several
interesting differences to be highlighted. Using the same methods as those for the compartmental
model, we look at disease spread vs. migration throughout time (Figure 8), disease spread vs.
migration at day 35 for both the real network (Figure 9) and the homogenous network (Figure 10),
. which cities spread disease the fastest and slowest (Table 3), and disease spread vs. connectivity
(Figure 11). Of interest is how neither the real nor the homogeneous systems respond exactly
the same way to the non-partitioned model as they do to the partitioned; namely, the growth of
disease spread does not slow down as quickly, and almost fits a linear curve rather than a log-linear
curve. Also of interest is that some of the cities in the fastest/slowest spreaders list are slightly
interchanged, and that the tenuous correlationi between disease spread and connectivity is even
less significant (an ANOVA test yields p = .325) in the non-partitioned model.
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Disease Spread vs. Time and Migration Rate--Non-Partitisned Model

10

time (days)

71 7o) on Initial Disease
k3

Spread Over Multiple Time Steps in the Non-Partitioned Model

Fastest Spreaders

Slowest Spreaders

" Las Vegas
San Francisco
Orlando
Denver
Ft. Lauderdale
Seattle
Dallas

Pittsburgh
Philadelphia
Cleveland
Cincinatti
San Antonio
Milwaukee
Miami

Table 3: Fastest and Slowest Spreaders in the Non-Partitioned Model
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A

As in the partitioned model, the homogeneous system responds similarly to the real-world
system in regards to proportional migration rates (Figure 10). (Note that while in the real-world
system we are looking only at the migration rate of the initial host city, in the homogeneous
network we are looking at migration rate of the initial host city and that of the rest of the system.
Increasing the migration rates for the entire system may increase disease spread faster than just
the rate for the initial host city, since secondary cities can also spread the disease to one another
faster). Note how secondary infections increase almost linearly (rather than logarithmically) with
respect to increasing migration rate, showing that the effects of migration saturate more quickly
in the partitioned system than in the non-partitioned.
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Figure 10; The Effect of Migration Rate in a Homogenous System in the Non-Partitioned
Model

Much like the partitioned model, there is a tenuous trend in the non-partitioned model for
disease spread to increase with number of connections (Figure 11); however, this trend is statis-
tically insignificant (p = .325). While the biggest spreaders have high connectivity, the reverse is
not always true.
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7.3 Ry

Numerically computing Rg for different scalar multiples of the migration matrix shows that Rp
is virtually insensitive to changes in migration. While we know analytically that Ry depends on
migration, we also know that because of the structure of Ry (see the two-city Ry for example) and
because m;; terms are relatively small (orders of magnitude smaller than all other parameters),
other terms in the calculation of Ry should dominate. This is exemplified in our numerical work.
‘We consider thousands of scalar values uniformly distributed between 0 and 2, and for each scalar
value ¢ we calculate Ry with a new migration matrix that is given by ¢M;, where M is the original
migration matrix. All Ry values found were identical to the thirteenth decimal place. The difference
between any two adjacent Ry values (that is, [Ro(ci+1) — Ro(c;)] for any ¢) has an absolute value
bounded by 8x1074, and appears to be random with normal distribution around mean 0. This
seems to suggest that numerical error of the algorithm is more responsible for numerical changes
in Ry than migration is, and thus that migration is effectively insignificant in the calculation of Ry
for the system defined by our data.

& Discussion

While the partitioned and non-partitioned models have some slight differences (for instance, many
cities experience a time lag between their behavior in the two models, and when looking at disease
spread, some cities become more important in one model than in the other) the general behavior of
the epidemic over both models is very similar. This suggests that although the partitioned model
may be more realistic, simplifying to the more general non-partitioned model does not cause any
drastic losses of information or accuracy.

The results of looking at disease spread vs. migration rate in both the partitioned and non-
partitioned models strongly suggest that the proportional outward migration rate of the initial host
city is the determining factor in the speed of disease spread, at least in the initial period before the
epidemic hits is peak. This seems fairly intuitive, as secondary cities can only be infected by the
initial host city, and the rate of migration of infected individuals from the host city is determined
by Z;'L=1 C\!ji'j{‘]i:. Of interest, however, is the difference in the behavior of the two models regarding
this outward migration rate: while the effect of migration rate quickly saturates in the partitioned
model, it saturates much more slowly in the non-partitioned model. This is probably due to the
fact that since Nr; is significantly smaller than IV;, %}: in the partitioned model can increase more
quickly than —]6— in the non-partitioned model, so the effect of migration rate is overshadowed more
quickly by the infection term.

The result that connectivity of the initial host city does not have any obvious correlation with
disease spread is quite interesting. This result most likely stems from the fact that although highly-
connected cities are more likely to have large migration rates than are cities with lower connectivity
numbers, it .is not a perfect correlation, and such highly-connected cities are most likely large, so
Z?=1 ozjﬁ{,i; may actually be lower than that of a city with fewer connections. Since it is clear that
proportional outward migration of the initial host city is the main determinant of secondary disease
magnitude in early initial periods, it is intuitive that if there is only a weak correlation between
connectivity and migration, then there would only be a weak correlation between connectivity and
initial disease spread.

Our finding that Ry is numerically insensitive to migration is intuitive, since disease dynamics
should be the determining factor in reproductive ratio. This finding does not imply, however, that
migration is unimportant; while it does not affect reproductive ratio, it can determine which cities
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are most at risk and when, and which cities can spread the disease the fastest. When one takes
into account the fact that behavioral effects and quarantine can play a significant role in later
behavior, such initial differences can become quite important to overall behavior of the disease.

9 Future Work

Further study is required to better understand the effect of connectivity as well as migration on the
system. For-the models presented here sensitivity analysis on Ry %, and other quantities with
respect to the migration parameters would more fully explain how changes on migration would
effect the diseases ability to propagate through the system. Also the issue of how the number of
connections would distribute the disease would be best studied by generating random graphs with
n connections between a set number of cities. For each value of n a large sampling of random graphs
would be required to generate an average behavior. Since behavioral change after the discovery
of the disease would most likely decrease migration rates (and probably 8 as well), an adaptation
of these models could be considered where the migrations (and other parameters) would be a
decreasing function of time. Here it was also assumed that each class had an equal opportunity to
migrate to another city. This is an unrealistic assumption that was made for simplicity. It would
be more likely for a more violent disease that the infectious class would travel less and that the
disease would be spread by the latent persons who become infectious at their new destination.

Due to the large difference in size between the populations of the cities and the number of
people who travel in one day, and due to the fact that numbers of infected individuals will most
likely be low at the beginning of an epidemic, stochastic or agent based models may be a more
accurate method of modeling these kind of systems. Some method of randomly sampling the city
population for migration could cause variations in the number of infected persons who move from
one city to another. If the infectious persons travel at a slower rate then random sampling and
stochastic models may result in an entire migratory group being disease free in one or more time
intervals. In a deterministic model a large quantity of infected persons must be introduced in
order to accurately while in the case of SARS moving from Hong Kong to Toronto only a single
individual was involved. This further suggests that stochastic and agent based models would result
in behaviors in the disease that would not be seen in a deterministic model.

Lastly the disease parameters and characteristics can change the entire multi-city system. If the
disease requires close continuous contact with a person, then a transitive population would not be
the deciding factor on how the disease spreads, but rather the number of contacts per individual
at each city. Similarly the rate of infection may not be linearly proportional to population, in
which case it would be different in each city—for instance, cities with higher population densities
would probably have a higher contact rate. If the disease had a short time of incubation and a
high mortality rate, then behavioral effects would more quickly change the migrations. All these
possible effects could be taken into consideration, if not with a deterministic model, perhaps with
stochastic or agent-based methods.
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