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Abstract
Third political parties are influential in shaping American politics. In this work we study the

spread of third parties ideologies in a voting population where we assume that party members are

more influential in recruiting new third party voters than non-member third party voters. The study

is conducted using an epidemiological model with nonlinear ordinary differential equations as applied

to a case study, the Green Party. Through the analysis of our system we obtain the party-free and

member-free equilibria as well as two endemic equilibria. We identify two threshold parameters in

our model that describe the different possible scenarios for the political parties and their spread.

Our system produces a backward bifurcation that helps identify conditions under which a third

party can thrive. We perform a sensitivity analysis to the threshold conditions in order to isolate

those parameters to which our model is most sensitive. We explore all results through deterministic

simulations and refer to data from the Green Party in the state of Pennsylvania as a case study.
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1 Introduction

The 2000 United States presidential election was for many a testimony to the im-
pact of third parties in a traditionally bipartisan government. Ralph Nader, the
presidential candidate for the Green Party, won 2% of the popular vote, a percent-
age that many attribute to the defeat of Democratic candidate Al Gore [18]. The
Green Party captured a seemingly insignificant number of votes relative to majority
percentages, yet its presence in the election ultimately served to shape American
politics for the years following. This incident demonstrates how third parties, often
emerging as grassroots movements (i.e., movements at the local level rather than at
the center of major political activity), can ultimately impact at the national level,
hence prompting the need to study their emergence and spread within a voting
population.

Third parties are defined as political parties operating along with two major par-
ties in a bipartisan system over a limited period of time (where we define a limited
period of time as a range of a few years). For the purposes of this paper we apply
this definition to all minor parties. Traditionally, third parties have served as venues
of political dissent for voting individuals dissatisfied with the major candidates in
an election. They often tackle specific issues otherwise ignored by major political
parties, thus relinquishing popular support nationwide. As Supreme Court Justice
Black wrote in 1968, “History has amply proved the virtue of political activity by
minority, dissident groups, which innumerable times have been in the vanguard of
democratic thought and whose programs were ultimately accepted” [22]. Hence,
while third parties rarely capture the majority vote, their agendas, often incorpo-
rated into major party platforms, are significant nonetheless.

Given the potential relevance of third parties to national politics, we strive to
qualitatively and numerically study the dynamics of the emergence and spread of
third parties on a local level where growth is measured in terms of the number of
third party voters and members. We restrict our study to a local level because
third parties usually originate in a small group and, via a ‘bottom-up’ method of
diffusion, spread within a population by acquiring local official positions and then
expanding to higher levels of government [16]. We use an epidemiological paradigm
to translate third party emergence from a political phenomenon to a mathematical
one where we assume that third parties grow in a similar manner as epidemics in a
population. We take this approach following in the steps of previous quantitative
studies that model social issues via such methods [7].

While our model is designed to pertain to all third parties, we consider the Green
Party as a case study. Although formally united under the Association of State
Green Parties in 1996 (then the nationalized Green Party of the United States in
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2001), state-based green parties have thrived at the local level since 1984 where they
seek to continue the Populist’s fight for citizen empowerment and progressive reform
via a set of ten core values (See Appendix C)[14]. Our particular study focuses on
the Green Party of Pennsylvania where we observe the party’s growth from 2001
to 2005. In comparing deterministic simulations of our model to particular data,
we consider a short time frame so that we can assume that social structure within
the state in question does not change drastically, a necessary condition for assuming
voting population heterogeneity.

We apply a system of nonlinear differential equations to a population of vot-
ing individuals that, according to certain demographic factors, are heterogeneously
susceptible to third party ideology. We consider susceptible movement into voting
and member compartments and possible regressions back from the third party vot-
ing phase into the susceptible class. In order to facilitate analysis of the two-track
model, we initially consider a simplified version that does away with voting popula-
tion heterogeneity and then explore analysis for the more complex system. We solve
for equilibria, identify those conditions for the instability of both the party-free equi-
librium (analogous to a disease-free equilibrium in an epidemic) and member-free
equilibrium, identify two thresholds, and explore the resulting backward bifurca-
tion at which our endemic equilibrium associated with party survival exists and is
stable. Via sensitivity analysis we identify those parameters that most impact the
recruitment of third party voters and rewrite these quantitative findings in political
terms. Additionally, we run deterministic simulations of the model for conditions
that guarantee the existence of all four expected equilibria.

We organize our paper as follows: Section 2 introduces the two-track model, Sec-
tion 3 reduces the complex version into the one-track model on which we perform
analysis (i.e., equilibria analysis, bifurcation plots, deterministic simulations), Sec-
tion 4 references an individual case study and applies data for parameter estimation,
Section 5 performs a similar yet more limited analysis of the complex model and
Section 6 concludes with recommendations and advice to help third parties better
strategize voter recruitment.
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1.1 A Population Model for the Spread of a Third Party

Our model considers a population of all voters, N , divided into two classes or sub-
populations whose susceptibility to third party ideology is based on the following
demographic factors: education, socioeconomic status, race, gender, age, political
orientation and professional occupation. We assume that individuals do not move
from one susceptible class to the other. See Assumption 3 in Section 2.3 (hereon
refer to all assumptions in Section 2.3). Inherently, certain demographic factors,
labelled as high affinity, make an individual more likely to subscribe to a third party’s
ideology that, as detailed in Assumption 4, targets a more specific audience than
alternative majority agendas. For this reason we consider population heterogeneity
vital to this study. When an individual enters the voting system that person, due
to his/her characteristic demographic factors, is more statistically inclined to vote a
certain way. For example, a progressive environmental activist is statistically more
likely to agree and vote for the Green Party agenda, that stresses communal based
economics, local government, and gender and racial equity, than a conservative
corporate executive whose economic philosophy directly conflicts with that of the
Green Party.

We apply the following method of dividing the entering voting population into
two susceptible classes: if an individual has more high affinity factors than low affin-
ity factors then that person directly enters the high affinity class and similarly for
low affinity susceptibles. We define high affinity factors as features of the individual
based on his/her demographic profile that make him/her more inclined to vote for
the third party; conversely, low affinity factors make the individual less statistically
likely to subscribe to the party’s platform. Each party has its own agenda that
appeals to certain sectors of the voting population. Hence different parties target
voting populations that are more inclined to subscribe to their ideology. While one
party, for example, may target individuals from a certain educational background
that we, in our model, label as high affinity and that other parties may overlook, all
parties nonetheless recognize that education factors into an individual’s likelihood
to support or refute that party’s platform. It is true that individuals from varied
backgrounds comprise the main parties yet, when dealing with the specific agendas
of third parties that do not strive to sway the majority vote, we assume that third
parties appeal to individuals of certain demographic backgrounds more than others.
See Assumption 4. Therefore, we account for the aforementioned standard set of de-
mographic factors that parties look at when spreading their ideologies. In our paper
we apply our model to an individual case study of the Green Party of Pennsylvania;
however, the same methodology of distinguishing susceptibles can be applied to all
third parties.
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All voters enter the voting system either to the low affinity, L, or high affin-
ity, H, susceptible class. Our Susceptible/Infected-based model then considers two
susceptible and three infected classes, VH , VL, and M , third party voters from the
high affinity class, third party voters from the low affinity class and party members
respectively. We define party members as voters of the third party who pay dues to
the party; often such members officiate, volunteer and actively campaign for voter
recruitment. We apply epidemiological terminology, specifically ‘infectious’, when
referring to susceptibles who transition to the voting and, possibly, member classes.
In biological terms, VH and VL correspond to voters of a lower degree of infection
and individuals of the M class are voters infected to a higher degree. Once an indi-
vidual is susceptible he/she can become ‘infected’ (either VH or VL) through direct
contact with the VH , VL, and M classes. We do not consider a linear term weighing
the influence of media coverage from the third party (i.e., secondary contact factors)
in the forward transition from both susceptible classes to third party voting classes.
See Assumption 5. Instead, we focus on the nonlinear terms considering the effects
of voters from the VH , VL, and M classes where voters from VH and VL bear an equal
influence β1 (from H to VH) and β2 (from L to VL) in third party voter recruitment;
members from M influence susceptibles at a rate proportional to voter influence,
embodied in the multiplicative factors αβ1 and αβ2. See Assumption 6.

We consider the transition back from the third party voting to the susceptible
classes that involves the linear terms, ε1VH and ε2VL, and nonlinear terms, φ1(τH +
L)VH

N
and φ2(τL + H)VL

N
, contributions by secondary contacts with the opposition

(i.e., media from well-funded majority voters) and direct contact with the susceptible
classes respectively. See Assumption 7. Similar to α in the forward transition, we
designate τ as the augmentation factor. Therefore, in regressing back from VH to
H, τH represents the greater influence that H individuals exert on voters from VH

than susceptibles from L, the lower affinity class (similar reasoning applies to the
VL to L transition). See Assumption 10.

Once voting for the third party, individuals can become party members. They
enter this higher state of infection via the nonlinear terms γVH

M
N

and γVL
M
N

, where
we only consider the effects of party membership on bringing about this transition
embodied in the general parameter γ. See Assumption 5. Given that we are studying
the spread of the party we assume that party members stay in M and do not regress
to other classes. See Assumption 9.

Finally, we consider natural exits from all classes as a result of death or moving.
The sum of the equations of the model, for both the complex and simple versions,
dN
dt

= 0, verifies that our population stays constant, a safe assumption by which
the number of people entering the voting system (i.e., coming of age, moving in)
counterbalances the number of people leaving the system (i.e., dying, moving out).
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2 The Two-Track Model

We introduce a two-track model to study the dynamics between a heterogeneously
mixed population of susceptible voters, third party voters, and party members.

Figure 1: The two-track model
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2.1 Equations

We apply the following set of ordinary differential equations to model voting dy-
namics.

dH

dt
= pµN + ε1VH + φ1(τH + L)

VH

N
− β1(VH + VL + αM)

H

N
− µH, (1)

dL

dt
= (1− p)µN + ε2VL + φ2(τL + H)

VL

N
− β2(VH + VL + αM)

L

N
− µL, (2)

dVH

dt
= β1(VH + VL + αM)

H

N
− ε1VH − φ1(τH + L)

VH

N
− γMVH

N
− µVH , (3)

dVL

dt
= β2(VH + VL + αM)

L

N
− ε2VL − φ2(τL + H)

VL

N
− γMVL

N
− µVL, (4)

dM

dt
=

γMVH

N
+

γMVL

N
− µM, (5)

N = H + L + VH + VL + M. (6)

where N is the total population. Adding equations (1), (2), (3), (4) and (5) we
obtain dN

dt
= 0, showing that the total population N is constant over time.

2.2 Compartments and Parameters

Refer to Table 1.

2.3 Model and Background Assumptions

We preface our description with a list of assumptions essential to our model:

(1) A party exists only if it has members where we define members as those who
pay dues, volunteer, and preside over party affairs.

(2) We assume that our population is a heterogeneous mix of individuals who
belong to different backgrounds according to certain demographic factors. See
model description for more detail.

(3) We limit our model to tracing the expansion of the third party; hence, we
refer to a shorter time period over which we assume social structure remains
constant and individuals do not travel directly between H and L.

(4) In addition to being more specific than major party agendas (i.e., more specific
in their goals and less geared to moderacy), third party platforms tend to be
more consistent over time. Third parties are not pressured to constantly adjust
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Table of Parameters and Compartments
H high affinity susceptibles (i.e. voters highly susceptible to third party ideology)
L low affinity susceptibles (i.e. voters barely susceptible to third party ideology)
VH third party voting individuals deriving from H
VL third party voter individuals deriving from S
M third party members (i.e. party officials, donors, volunteers)
p proportion of the voting population N entering H
β1 peer driven recruitment rate of H into VH by individuals in VH , VL and M
α factor by which the recruitment rate of H and L into VH and VL by individuals

in M exceeds the recruitment rate by individuals in VH and VL

ε1 linear recruitment rate of VH back into H
via secondary contacts (i.e., media and campaigning from opposing parties)

φ1 recruitment rate of VH into H
by direct contact with individuals in the opposition classes (i.e., individuals in H and L)

β2 peer driven recruitment rate of L into
VL by individuals in VL, VH , and M (analogous to β1).

τ factor by which the recruitment rate of VH and VL

by members of the same susceptible
class exceeds the recruitment rate by susceptibles of the other class

ε2 linear recruitment rate of VL back into L
via secondary contacts (i.e., media and campaigning from opposing parties)

φ2 recruitment rate of VL into L by direct contact with individuals
in the opposition classes (i.e., individuals in H and L)

γ recruitment rate of VH and VL into M by individuals in M
µ rate at which individuals enter or leave the voting system

Table 1: Compartments and parameters of the two-track model.

to the shifting demands of the populace since they do not seek the majority
vote. Consequently, they do not target the majority voting population.

(5) We assume that third parties, due to a lack of funding and resulting lack of
media exposure to the general population, spread mainly via primary contacts
among susceptibles, H and L, third party voters, VH and VL, and members,
M , at the rates β and αβ respectively. We define such direct interaction as
personal meetings, phone conversations, and personally addressed emails.
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(6) We assume that third party voters from VH and VL equally influence H and L
into becoming third party voters. However, since party members correspond
to the higher degree of ‘infection,’ members have a greater effect in voter
recruitment, embodied in the augmentation parameter α.

(7) We consider both primary contacts and secondary contacts in the regression of
third party voters to the susceptible class via the φ (nonlinear) and ε (linear)
terms. Compared to primary contacts, described in assumption (5), secondary
contacts include mass emails, media, and circulating literature.

(8) We assume that all other parties exert equal influence in discouraging third
party voting.

(9) Party members do not resign their memberships. We reason that once an
individual feels strongly enough to join a party he/she retains his/her loyalty
to the party; the only way a person can exit M is by leaving the voting system.

(10) Voters from a certain susceptibility class (with its own set of demographic
factors) address issues that usually appeal more to third party voters deriving
from the same class. Therefore, susceptibles from H bear a greater influence,
embodied in the parameter τ , in recruiting VH voters back into the susceptible
class than L susceptibles.

3 Analysis

3.1 A Simplification: The Decoupled System

In order to facilitate analysis we assume a homogeneous susceptible population and
reduce the two-track model into one susceptible class, S, and two infected classes,
third party voters, V , and party members, M , respectively. In the one-track model
we omit unnecessary parameters from the heterogeneous version.
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Figure 2: The one-track model

3.2 Equations

In this case the model reduces to the following two-dimensional model since N is
constant:

dS

dt
= µN + εV + φS

V

N
− β(V + αM)

S

N
− µS, (7)

dV

dt
= β(V + αM)

S

N
− εV − φS

V

N
− γMV

N
− µV, (8)

dM

dt
=

γMV

N
− µM, (9)

N = S + V + M. (10)

where N is the total population. Adding equations (7), (8), and (9) we obtain
dN
dt

= 0, showing that N is constant over time.

3.3 Compartments and Parameters

The S class comprises susceptible individuals (i.e., those people who vote, but do
not vote for the third party). The V class comprises the third party voters and the
M class has third party members (i.e., party officials, donors, volunteers). Refer to
Table 2.

3.4 Equilibria Analysis

We approach our analysis by calculating equilibria and determining conditions of
equilibria existence and stability.
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β peer driven recruitment rate of S into V by third party voters and members
ε recruitment rate of V back into S

via secondary contacts (i.e., media and campaigning from opposing parties)
φ recruitment rate of V into S by direct contact with susceptibles
α factor by which the recruitment rate of S into V by

third party members exceeds the recruitment rate by individuals in V
γ recruitment rate of V into M by third party members
µ rate at which individuals enter or leave the voting system

Table 2: Parameters of the one-track model.

3.4.1 Reducing and Proportionalizing the System of Equations

The decoupled system contains three equations and, since our total population is
constant, we can reduce our system to two dimensions via the substitution S =
N − V −M into equation (8). Therefore, dV

dt
becomes

dV

dt
= β(V + αM)

N − V −M

N
− εV − φ(N − V −M)

V

N
− γMV

N
− µV. (11)

which allows us to ignore dS
dt

so that we now have a reduced system of equations.
As for proportionalizing the system (i.e., defining our variables as proportions

of the total voting population N) let s = S
N

, v = V
N

and m = M
N

. Similarly, let
s∗ = S∗

N
, v∗ = V ∗

N
and m∗ = M∗

N
where (S∗, V ∗, M∗) is an equilibrium point for the

unreduced system. Dividing equation (10) through by N we get 1 = s + v + m.
Dividing equations (11) and (9) through by N and substituting in s, v and m, we
find that:

dv

dt
= β(v + αm)(1− v −m)− εv − φ(1− v −m)v − γmv − µv, (12)

dm

dt
= (γv − µ)m. (13)

In order to analyze stability we linearize the system and compute partial first deriv-
atives with respect to each of the variables, v and m:

Jacobian for the Reduced System:
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J2 =(β − φ)(1− 2v −m)− αβm− (µ + ε)− γm αβ(1− v − 2m)− (β − φ)v − γv

γm γv − µ


3.4.2 E1: Party-Free Equilibrium (PFE)

The party-free equilibrium (PFE) for the reduced system occurs at (0,0), the steady
state achieved when the entire population resides in the S class (i.e., the third
party has neither voters nor members and, by definition of party existence, does not
exist). The PFE is essentially analogous to the disease-free equilibrium in biology
and always exists as a possible outcome for the voting population.

Applying the above reduced Jacobian matrix to our PFE, (0,0), where we only
consider the v and m terms, we determine PFE stability:

J2(0, 0) =

(β − φ)− (µ + ε) αβ

0 −µ


The equilibrium point (0,0) will be locally asymptotically stable (LAS) if all the
eigenvalues of the matrix are negative. Assuming µ > 0, the eigenvalue −µ of the
Jacobian is always negative, whereas the second eigenvalue (β − φ)− (µ + ε) < 0 if

and only if (β−φ)
µ+ε

< 1. Therefore, in order to meet this criterion for stability of the

PFE we assign R1 = (β−φ)
µ+ε

< 1.
We discuss the relevance of this threshold value in section 3.6, Threshold Para-

meters R1 and R2.

3.4.3 E2: Member-Free Equilibrium (MFE)

This situation occurs when M = 0 but V, S 6= 0, (i.e, the voting population sub-
divides between susceptibles, S, and third party voters, V ). While mathematically
possible, this outcome is politically unrealistic given that voters cannot vote for a
party that does not exist (we assume that party existence depends on the presence
of an M class). See Assumption 1. For mathematical consistency, however, we con-
sider the equilibrium point (s∗2,v

∗
2,m

∗
2), where m∗

2 = 0. Note that the subscript of the
equilibria values refers to the equilibrium point in question (we distinguish between
the endemic equilibria values ahead via the ± subscript). (We discuss the situation
where m 6= 0 in section 3.5.4, Endemic Equilibria).

If m∗
2 = 0, then s∗2 + v∗2 = 1 which, in turn, implies that s∗2 = 1− v∗2.
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Rearranging equation (12) of the decoupled system together while substituting
in m∗

2 = 0 and v∗2 we have:

(β − φ)v∗22 + (µ + ε + φ− β)v∗2 = 0 (14)

This implies that either v∗2 = 0 or (β − φ)v∗2 = β − (µ + ε + φ).
We consider the situation where v∗2 6= 0, solve for v∗2 and simplify the results as

follows:

v∗2 = 1− µ + ε

β − φ
= 1− 1

R1

where v∗2 retains political value only if R1 > 1 or else v∗2 < 0 which is a contradiction
given that 0 ≤ 1 and is a politically irrelevant number of individuals.

Similarly we solve for s∗2 and obtain s∗2 = 1− v∗2 = µ+ε
β−φ

= 1
R1

which makes sense

politically only if β > φ (i.e, s2 > 0). From solving for s∗2 and v∗2 above, we express
our member-free equilibrium as E2 = ( µ+ε

β−φ
, 1− µ+ε

β−φ
, 0).

Expressed in terms of R1, the MFE is ( 1
R1

, 1 − 1
R1

, 0) and exists if and only if
R1 > 1, since ignoring this condition leads to an otherwise negative third party
voting population. If R1 > 1, then 1

R1
< 1 (i.e., the entire population does not

reside in the susceptible class). This implies that the population has moved out of
S into the V and M classes. Since M = 0, the left over proportion (i.e., 1 − 1

R1
)

resides in V .
The above situation makes mathematical sense but not political sense since par-

ties, by our original assumption, do not exist without members and in this member-
free case we deal with voters that vote for a non-existent party.

Regardless of the political likelihood of MFE existence, we consider its stability.
Again, we apply the method of using the reduced system Jacobian matrix in deter-
mining the stability of the member-free equilibrium (where v∗ 6= 0):

J2(1− µ+ε
β−φ

, 0) =(β − φ)(1− 2(1− µ+ε
β−φ))− (µ + ε) αβ(1− (1− µ+ε

β−φ))− ((β − φ) + γ)(1− µ+ε
β−φ)

0 γ(1− µ+ε
β−φ)− µ


which, expressed in terms of R1 is
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J2(1−
1

R1

, 0) =

(β − φ)(1− 2(1− 1
R1

))− (µ + ε) αβ( 1
R1

)− (β − φ + γ)(1− 1
R1

)

0 γ(1− 1
R1

)− µ


The reduced system equilibrium point (1− 1

R1
, 0) is locally asymptotically stable

if all the eigenvalues of the above matrix are negative. We know that, since β > φ,
one of the eigenvalues, (β − φ)(1− 2(1− µ+ε

β−φ
))− (µ + ε) < 0 if and only if

1− 2

(
1− 1

R1

)
<

1

R1

1− 1

R1

< 2

(
1− 1

R1

)
1 < 2

which is always true so long as R1 > 1.
The second eigenvalue of the Jacobian is γ(1− 1

R1
)−µ. This eigenvalue is negative

if and only if γ
µ
(1− 1

R1
) < 1.

We define the left hand side of the inequality as R2 = γ
µ
(1− µ+ε

β−φ
) = γ

µ
(1− 1

R1
).

Hence we have derived two threshold parameters R1 and R2 that determine equilibria
stability depending on relative parameter values.

3.4.4 E3 and E4: Endemic Equilibria

In the event of the endemic equilibria, the voting population subdivides between
susceptibles, S, third party voters, V , and members, M . We regard this as a suc-
cessful state of coexistence and, given certain conditions, the point at which the
party thrives. Since dm

dt
= (γv∗ − µ)m∗, v∗ = µ

γ
when m∗ 6= 0. At this point we

do not use a particular subscript in order to leave room open for the possibility of
two endemic equilibria E3 and E4 (we will apply subscripts when dealing with each
specific case). Also we impose the condition µ < γ so that m∗

2 is not negative and
h∗ = 1− v∗ −m∗ = 1− µ

γ
−m∗ for the endemic equilibria.

We rearrange equation (16) and substitute in v∗ = µ
γ

in order to solve for m∗:

dv

dt
= (β−φ)

(
µ

γ

)(
1− µ

γ
−m∗

)
+αβm∗

(
1− µ

γ
−m∗

)
− (µ+ ε+γm∗)

(
µ

γ

)
= 0

After simplification and dividing through by αβ dv
dt

reduces to a quadratic expression
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f(m∗) in terms of m∗

f(m∗) = m∗2+

[(
β − φ

αβ

)
µ

γ
−
(

1− µ

γ

)
+

µ

αβ

]
m∗−µ

γ

[
β − φ

αβ

(
1− µ

γ

)
− µ + ε

αβ

]
= 0

We prove the coexistence of two positive endemic equilibria, where m∗ = m∗
±

by showing that f(m∗) has two solutions in (0, 1) whenever B < 0, C > 0 and
B2 − 4AC > 0 are true, as defined below. (See appendix section A.1 for proof).
From this point on we use the subscripts ± to distinguish the two endemic equilibria.

In order to show the coexistence of two member states, we solve for m∗
± using

the quadratic formula:

m∗
± =

1

2

2
4− ��β − φ

αβ

�
µ

γ
−
�

1−
µ

γ

�
+

µ

αβ

�
±

s��
−

β − φ

αβ

�
µ

γ
+

�
1−

µ

γ

�
−

µ

αβ

�2
+ 4

�
µ

γ

��
β − φ

αβ

�
1−

µ

γ

�
−

µ + ε

αβ

�35

Where
A = 1,

B =

(
β − φ

αβ

)
µ

γ
−
(

1− µ

γ

)
+

µ

αβ
,

C = −µ

γ

[
β − φ

αβ

(
1− µ

γ

)
− µ + ε

αβ

]
.

After establishing conditions for the existence of two endemic equilibria, E3 = (1−
γ
µ
−m∗

+, γ
µ
, m∗

+) and E4 = (1− γ
µ
−m∗

−, γ
µ
, m∗

−), we discuss equilibria stability.
The reduced Jacobian matrix for the endemic equilibria follows:

J2(
µ
γ
, m∗

±) =(β − φ)
(
1− 2µ

γ
−m∗

±

)
− αβm∗

± − (µ + ε)− γm∗
± αβ

(
1− µ

γ
− 2m∗

±

)
− (β − φ)µ

γ
− µ

γm∗
± 0


and its characteristic equation is:

p(λ)=

λ2+
[
−(β − φ)

(
1− 2µ

γ
−m∗

±

)
+ αβm∗

± + µ + ε + γm∗
±

]
λ−αm∗

±

[
αβ

(
1− µ

γ
− 2m∗

±

)
− (β − φ)µ

γ
− µ

]
= 0
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The solutions of the characteristic equation are the eigenvalues of J2(
µ
γ
, m∗

±), and
the stability of the endemic equilibria depends on the signs of the real parts of the
eigenvalues. If the real parts of both eigenvalues are negative then we conclude that
the endemic equilibrium in question is locally asymptotically stable. Based on this
criterion, we find that E3 is always LAS when it exists while E4 is never LAS when
it exists. (See appendix A.2 for details).

3.4.5 Equilibria, a Summary

Table 3 summarizes and classifies the equilibria of the decoupled system.

Equilibria Existence Stability

E1 Party-Free (1,0,0) always exists LAS if R1 = β−φ
µ+ε

< 1

E2 Member-Free ( 1
R1

, 1− 1
R1

, 0) exists ↔ R1 > 1 LAS ↔
R2 = ( γ

µ
)(1− 1

R1
) < 1

E3 Coexistence/Endemic (1− µ
γ
−m∗

+, µ
γ
, m∗

+) exists ↔(1) R2 > 1 or LAS

(2)R2 < 1**
E4 Coexistence/Endemic (1− µ

γ
−m∗

−, µ
γ
, m∗

−) exists ↔ (1) R2 < 1** unstable

**AND conditions (a) and (b) are met

Table 3: Equilibria of one-track model.

Conditions and defined variables:

(a) µ
αβ

+ (β−φ
αβ

+ 1)µ
γ

< 1

(b) µ
γ
≤ µ

αβ
+ β−φ

αβ
µ
γ
− 2

√
µ

αβ

(
1 + ε

γ

)
+ 1

(c) m∗
± = −1

2

[
( µ

αβ
+ (β−φ

αβ
+ 1)µ

γ
− 1)±

√
( µ

αβ
+ (β−φ

αβ
+ 1)µ

γ
− 1)2 + 4µ

γ
(β−φ

αβ
(1− µ

γ
)− µ+ε

αβ
)
]

Conditions (a) and (b) derive from the restrictions B < 0, C > 0 and B2−4AC ≥ 0
in order to avoid complex values within the square root of the quadratic expres-
sion while solving for m∗

±, the m∗ component of the endemic equilibria (i.e., the
proportion of members of the total voting population when all three classes coex-
ist). Here, as when solving earlier for m±, A = 1, B = µ

αβ
+ (β−φ

αβ
+ 1)µ

γ
− 1,

C = −µ
γ
[β−φ

αβ
(1− µ

γ
)− µ+ε

αβ
].
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3.5 Threshold Parameters, R1 and R2

Our system contains two local thresholds or tipping points where population out-
comes, measured as S, V , and M , depend on parameter values. By tipping point we
refer to the sociological term that describes the point at which a stable phenomenon
turns into a crisis, which in a political context, corresponds to the extreme states
of the party: death and growth [11]. In the context of our model, for example, the
party can very well die out up until parameter conditions reach R1 = 1 after which
point the third party voting and member classes gain individuals. We distinguish
between the aforementioned thresholds, R1 and R2, by analyzing them qualitatively
in a political context.

3.5.1 Interpreting R1 and R2

1. R1 = β−φ
µ+ε

: We interpret this threshold value as the net peer pressure, β − φ,

on susceptibles by individuals of V multiplied by the average time, 1
µ+ε

, spent
in the voting class V . The numerator couples those factors that bear a direct
influence (i.e., personal contacts) on the transition between S and V , whereas
indirect factors (i.e., secondary contacts such as opposition media and natural
exits from the system), µ and ε, comprise the denominator. R1 denotes the
average number of susceptibles an individual in V or M would convert if
dropped in a homogeneous population of susceptibles.

2. R2 = ( γ
µ
)(1 − 1

R1
): We interpret this threshold value as the product of the

average time in the voting system, 1
µ
, the rate of recruiting voters from V into

M via influence from party members, γ, and the proportion of the population
N in V , (1− 1

R1
). Similar to R1, R2 measures the average number of V to M

conversions per individual in the M class; hence, R2 is essentially a measure
of how effective party members are in recruiting third party voters to become
members once there are enough individuals in V .

3.5.2 An Analysis of the Various Conditions of R1 and R2

(i) When R1 < 1 the member-free equilibrium, E2, does not exist since V < 0, an
unrealistic population. Rather, under such conditions, E1, the PFE, not only
exists but is locally asymptotically stable and the party dies out. However,
under certain initial conditions (i.e., a substantial number of M individuals)
we note that the party can survive even when R1 < 1 since, for R2 = γ

µ
(1− 1

R1
),

R1 < 1 also implies R2 < 0. (See related explanation (iii)).
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(ii) When R1 > 1 each individual in V and M is converting more than one person
in S into V , thus allowing the V class to thrive. In other words, while R1 > 1
renders the PFE unstable it also implies the existence and stability of the MFE
(given that R2 < 1) which, as described earlier, does not exist in the political
world since a party cannot exist without members. However, as with the case
when R1 < 1, we can ensure the coexistence of the S, V and M classes when
R1 > 1 under sufficient initial conditions.

(iii) R2 < 0 occurs when R1 < 1 due to the special relationship between R2 and R1

where R2 = γ
µ
(1− 1

R1
); such a relationship denotes the existence of a negative

voting population in the MFE (i.e., no real population in the V class). Since
R2 signifies the conversion of V to M , R2 < 0 implies that M is converting a
negative or non-existent V population into the M class, which initially does not
make sense in a political context. R2 < 0 seems to correspond to the stability
of either the PFE or to the existence of a state where we have individuals M
and S and a non-existent or negative V class. However, R2 < 0 can still lead
to the stable endemic equilibrium E3 via a backward bifurcation if there exists
a sufficient initial number of individuals in M .

(iv) The condition R2 < 1 guarantees local asymptotic stability of the member-free
equilibrium, MFE. For this reason, the condition is not typically conducive to
party growth but, as we mentioned before, R2 < 1 may imply the coexistence
and stability of E3. This suggests that R2 is the more important of the thresh-
old transitions in political terms since it is primarily concerned with the V to
M transition where M individuals are more influential in third party voter
recruitment by the factor α.

(v) The condition R2 > 1 explains the case where the V and M classes grow by
recruiting members from the S and V populations respectively. In other words
this condition guarantees that the larger endemic equilibrium exists without
the additional conditions (a) and (b) imposed by the quadratic expression of
m∗

±. In a biological analog, this condition describes how M successfully invades
both the S and V classes.

3.6 Simulations

After discussing the equilibria for the homogenous one-track model we simulate its
various outcomes. We change β to show the various equilibria while fixing the rest
of the parameters and initial conditions as follows: S0 = 3600, V0 = 1250, M0 = 150,
α = 1.25, γ = 0.2, ε = 0.25, µ = 0.05 and φ = 0.15. Note that we employ an ideal
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set of parameters that we retain for the bifurcation plots in section 3.7.

Figure 3: (a) β = 0.44. (b) β = 0.49.

Figure 3(a) shows the system approaching the party-free equilibrium (E1) for
β = 0.44. For this scenario, all individuals eventually return to S and the third
party has neither voters nor members.

Figure 3(b) shows the system approaching the member-free equilibrium (E2) for
β = 0.49. In this case, there are no third party members and all individuals end up
in either S or in V .

We can observe the system approaching the stable endemic equilibrium, E3,
in Figure 4(a) where β = 0.55. Note the coexistence of individuals in each of
the three classes, S, V and M . Figure 4(b) shows the system approaching the
unstable endemic equilibrium (E4) for β = 0.50. Again, individuals exist in all
classes; however, due to its unstable nature, the numbers of the individuals in the
three classes will stay steady at this equilibrium only if the initial conditions, S0, V0

and M0, equal the values of this equilibrium. For any other initial conditions, the
population will never approach this equilibrium (i.e, individuals will only exist at
the unstable equilibrium E4 if they always exist at it, a condition that assumes no
net changes in the compartment populations).
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Figure 4: (a) β = 0.55. (b) β = 0.5.

Parameter Values
β φ µ α ε γ

variable 0.15 0.05 1.25 0.25 0.20

Table 4: Parameter set for bifurcation of one-track model.

3.7 Backward Bifurcation

In order to analyze the behavior of our system under varying threshold conditions,
we plot M vs. R2 in Figure 5. To create this plot, we fix all parameter values and
vary β as outlined in Table 4.

Figure 5 shows backward bifurcation beginning with R2 = 1. It is important
to note the following feature: whenever R1 < 1, R2 < 0, a condition that would
normally lead to the death of the party given local asymptotic stability of the PFE,
in this case shows the existence of two endemic equilibria, one of which is stable (E3).
In other words, the party can thrive in conditions under which it would normally die
out, given that we have the necessary parameters and sufficient initial number of M
individuals. Additionally, we qualify our definition of R2 as the number of third party
voter-to-member conversions each M individual realizes. A priori, R2 < 0 seems like
a contradiction since we cannot exactly interpret a negative number of conversions,
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Figure 5: Bifurcation diagram using Table 4 parameter values.

but, for these conditions, V has zero or negative individuals and our traditional
definition of R2 does not apply (see earlier discussion on threshold parameters for
more details). Therefore, in political terms, the great surprise to learn is that the
party can survive and approach a stable steady state under conditions that would
otherwise lead to the death of the party (R1 < 1).

Another interesting scenario is when R1 > 1 but R2 < 1. This situation corre-
sponds to the existence and stability of the MFE, a situation that does not make
political sense. However, similar to R2 < 0, these conditions can lead to the coexis-
tence and stability of E3, given sufficient initial M .

Of course, when R1 > 1 and R2 > 1, we have a stable endemic equilibrium at
E3 and we obtain the ideal conditions needed for the party to thrive.
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3.8 Sensitivity Analysis

We apply sensitivity analysis in order to determine the parameters to which our
model is most sensitive, in effect allowing us to analyze the effect of the peer-pressure
driven recruitment rates of M and V individuals on susceptible transitions to third
party voting (i.e., S-to-V transitions) and third party voter transitions to party
membership (i.e., V -to-M transitions). This requires that we devise a set of ideal
parameter values that produces the desired backward bifurcation for which there
exists a stable endemic equilibrium describing the coexistence of the susceptible,
voting, and member classes.

We define the sensitivity index of J for a given parameter p as

Sp =
∂J

∂p

p

J

where p is the parameter in question and J denotes a differentiable functional that
depends on the parameter p [1]. In this study we assign the two threshold parameters
R1 = β−φ

µ+ε
and R2 = γ

µ
(1− 1

R1
) as our functionals for which we want to test parameter

sensitivity. We find the sensitivity index via the product of the the partial derivatives
of the system’s threshold values with respect to each of the parameters and the
proportion p

J
. In this particular case we are not concerned with α since it appears

in neither functional, nor with τ since τ emerges only at the two-track level.
Table 5 contains the analytic representations of the sensitivity indices of the

parameters with respect to the thresholds R1 and R2.

Sensitivity Indices Expressed Analytically

Parameter Sp for R1 = β−φ
µ+ε

Sp for R2 = ( γ
µ
)(1− 1

R1
)

β β
β−φ

β
(R1−1)(R1)

φ - φ
β−φ

- φ
(R1−1)(R1)

µ - µ
µ+ε

-
R1− ε

µ+ε

R1−1

ε - ε
µ+ε

ε
(R1−1)(µ+ε)

γ 0 1

Table 5: Sensitivity indices for R1 and R2 of the one-track model.

We apply the set of parameters from Table 4 and vary β in order to produce the
sensitivity indices for three conditions of the threshold R2 (we consider conditions
for R2 since it deals with V -to-M conversion and new individuals in M play a large
role in the acquisition of new V individuals during the spread of the party). (See
appendix B for sensitivity index values).
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We conclude that, regardless of which of the conditions R2 < 0, 0 < R2 < 1,
or R2 > 1 we deal with, the most sensitive parameter is β, followed by φ and γ.
Recall that β is the peer driven recruitment rate of susceptibles into the third party
voting class, V , by individuals in V while αβ is the rate at which individuals in
S transition into V by persuasion from members. Given the high sensitivity of β
we then assume that these recruitment processes dominate the system, and, as a
political recommendation, we advise third parties to focus on the degree of these
recruitment rates for bringing about third party voting and membership.

Initially, when the party is small, members should first focus on recruiting S into
the V class in order to acquire V individuals that, in turn, will become members;
these members then recruit susceptibles at an increased factor of αβ. Given this
augmented member efficacy in converting individuals in S to V , our advice is nat-
urally to focus the party’s endeavors on member recruitment since an increase in
the M class will result in a heightened increase in both V and M . In this artificial
parameter system φ is also very sensitive; however, it is also more difficult to control
since it signifies the effects of contacts between third party voters and S individuals
in regressing from the V to S classes. We also observe that ε is difficult to control
since it deals with secondary influences (i.e., the media) on V -to-S regression and
third parties can intervene little in opposition advertisements by well funded major-
ity parties. Therefore, to conclude, we advise emphasizing S-to-V transitions until
a substantial V population forms at which point the party should focus on γ (i.e.,
increasing member recruitment that, in turn, bears an even larger impact on voter
recruitment).

4 The One-Track Model: A Graphic Summary

We construct Figure 6 by considering the curves specific to R1 = 1, R2 = 1, B = 0,
and B2 − 4AC = 0 (refer to section 3.4.4 for definitions of A, B, and C). We define
q as q = β−φ

αβ
, a substitution that facilitates interpretation. We remind the reader

that (a) B < 0, (b) B2 − 4AC > 0, and R2 < 1 are necessary conditions for the
existence of both endemic equilibria E3 and E4. Consider the follow regions where
we observe equilibria existence and stability:

Refer to section E in the appendix for explanation of figure 6

I In region I where R1 < 1, R2 < 1, and conditions (a) and (b) are satisfied, E1

and E3 are stable; depending on the initial conditions the solution tends to
one state or the other.

II In region II where R1 > 1, R2 < 1 and conditions (a) and (b) are met, E2 and
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Figure 6: Regions of Equilibria Stability

E1 E2 E3 E4

I Stable does not exist Stable Untable
II Unstable Stable Stable Unstable
III Stable Unstable does not exist does not exist
IV Unstable Stable does not exist does not exist
V Unstable Unstable Stable does not exist

Table 6: Regions of Equilibria Stability

E3 coexist as stable equilibria but, if placed in a political context, E2 is not a
realistic outcome for the party.

III In region III E1 is the only stable equilibrium; the party will always approach
the party-free equilibrium.

IV In region IV where R1 > 1, R2 < 1, and conditions (a) and (b) are not met,
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E2, the member-free state, is the only stable equilibrium.

V In region V where both R1 > 1 and R2 > 1 and conditions (a) and (b) are not
met, E3 is the only stable equilibrium; the party will inevitably approach an
endemic state.

5 The Green Party of Pennsylvania: A Case Study

After discussing hypothetical parameters in backward bifurcation and sensitivity
analysis, we employ real world data from the Green Party to derive parameters and
further analyze the model.

5.1 Parameter Estimation for the One-Track Model

In our discussion, we estimate the model’s parameters based on the data from the
Green Party of Pennsylvania. We use voter registration for the Green Party in place
of party membership to distinguish between V and M because we could not obtain
data concerning Green Party membership. We initially restricted our complex model
to party membership in order to incorporate the 22 states in which voters cannot
register to specific parties; however, in the case where access to membership data is
limited we measure party registration. In other words, we replace membership with
party registration in this particular case study and, for purposes of consistency, we
refer to registered voters as M individuals.

After contacting the national Green Party directly, we obtained (1) the number
of registered voters in the Green Party of Pennsylvania sampled over the years
2001 to 2005 and (2) access to the number of votes received by all Green Party
candidates running in Pennsylvania since the state party’s founding. However, due
to the lack of data on the net votes cast for Green Party candidates we referenced a
particular campaign to obtain parameters dependent on the number of individuals
in V . Due to limited data we also roughly approximated certain parameters (i.e.
the augmentation factor α).

We justify our motivation in choosing the state of Pennsylvania because (1) the
total population of Pennsylvania has increased only 1.01 % from 2000 to 2004, a low
enough increase that allows us to assume constant population, N , and consistency of
social structure (i.e., no resulting movement between H and L) [20] and (2) the data
offered from Pennsylvania was free of drastic changes in M that might be associated
with exceptional candidates or highly specific events. Our parameter estimations
follow:
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(1) µ = 0.014: µ, the exit rate from the system, is essentially the average death
rate of people in the voting age population. We calculate the parameter by di-
viding 128,010, the number of deaths in the voting age population in 2002(ages
18 and above since individuals become eligible to vote at 18), by 9,358,833,
the number of individuals in the voting age population in 2002 [20]. We apply
a unit of time−1 to µ.

(2) γ = 115.16: We assign γ, the recruitment rate of V individuals into the regis-
tered class, M , a numerical value by using the relationship ∆M

∆t
= γ V M

N
where

∆M is the increase in M per unit time, M
N

is the the proportion of M individ-
uals in the N voting population and V is the total number of voters excluding
registered voters. We use the following data to calculate γ : (1)∆M

∆t
is esti-

mated by the increase in Green Party registration over a specific time period
(i.e., one year), (2) M

N
is derived by dividing the number of Green Party reg-

istered individuals by the total voting population N and (3) the total number
of Green Party voters, V , is measured by the votes received in a particular
election subtracted by the number of registered Green Party voters in the same
year (we find the difference in order to isolate simply those who vote Green
but are not registered for the party).

Even though we received data of the number of registered Green Party voters
in the state of Pennsylvania from 2001 to 2005, we did not have access to the
total number of Green Party voters excluding registered voters. We avoided
this obstacle by referencing the gubernatorial campaign of Michael Morrill on
11/05/2002 in Pennsylvania in which he received 38,030 votes (i.e., 1.1 % of
the total votes) and, after subtracting the 3266 registered green party voters
at the time [13], we arrive at a voting population V of 34,814 individuals.
Note that we assume that all registered Green Party voters voted for Morrill,
a relatively safe assumption given the higher level of commitment by registered
voters to the party and the relative importance of a gubernatorial election.

In order to determine the proportion M
N

we calculated N , the number of vot-
ers in the voting age population in 2002, by multiplying 9,358,833, the total
number of individuals in the voting age population (ages 18 and up), by the
voter turnout for this particular election, 37.39 % (close to the average voter
turnout of 38.4 % [21]). We combine these elements in the following quotient:
γ = (∆M

∆T
)( V

M
N

). Substituting in the appropriate values, γ = 3742
(0.00093)(34814)

.

After performing the calculation we find that γ = 115.16, an exceptionally
high value implying that the third party will soon become a majority party
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via such a high initial recruitment rate of members, a rather improbable sit-
uation. In other words, this value of γ bodes too well for the third party.
However, the prediction of an outcome as unlikely as the rapid increase of the
third party to the ranks of a majority party provides support for the necessity
of the two-track model, which assumes heterogeneous mixing of susceptibles
with different affinities to the third party ideology. Therefore, while γ may
be initially high due to the availability and high susceptibility of individuals
in H, L susceptibles will be particularly resistant to the ideology, in effect,
reducing the recruitment into V and thus into M . Over time, a depletion in
the H class due to the conversion of its individuals into the V class along with
the resistance from the L class will cause γ to decrease with time as the initial
fervor of member and voter recruitment decreases. We apply a unit of time−1

to γ.

(3) α: We referenced literature regarding the methods and hourly commitment
of party members to voter recruitment and approximated that registered vot-
ers are roughly three times as effective in recruiting Green Party voters as
individuals from V [10]. We do not apply units to α given that α is a scalar.

(4) τ : We do not consider τ for the one-track model since we assume homogeneity
of the susceptible population (i.e., we do not have two classes with different
recruitment rates from V to S). We do not apply units to τ given that τ is a
scalar.

(5) ε: We regard ε as the linear term representing the role of secondary sources (i.e.,
the media) in affecting a voter’s decision. In the case of the Democratic vote,
studies show that during a period of low political information, the predicted
probability of a Democratic vote drops from about 0.65 to about 0.55 while at
high levels of information (i.e., just prior to elections), there is an independent,
media-influenced movement from a 0.4 to 0.6 probability of voting Democrat
in 1994 [15]. Assuming that such a phenomenon can be observed in any
individual who votes and assuming a medium information flow, we average
the difference of the changes in probability during low and high information
flow and obtain 0.05 as the value for ε. We apply a unit of time−1 to ε.

It is very difficult to obtain politically realistic projections of the endemic state if
we apply these data-derived parameters of which only µ does not incorporate some
degree of approximation. With such a high γ value, the one-track model bifurcation
plot projects an immediate rise of the third party to majority status. Therefore,
while it is useful to derive parameters from actual data, we avoid unrealistic projec-
tions for the one-track model by considering the aforementioned ideal set of parame-
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ters used in both the backward bifurcation and sensitivity analysis sections. From
these idealized parameters we offer advice as to how third parties can strategize and
grow by changing their recruitment efforts to match the ideal set of parameters.

6 The Two-Track Model

After thoroughly examining the one-track model, deriving conclusions and provid-
ing recommendations, we perform analysis on the original, heterogenous two track
model. We begin by obtaining the party free equilibrium (PFE) and the first tip-
ping point, R′

1, which is analogous to R1 in the one track model. We find that
determining any other equilibria or thresholds analytically is too complicated and
we cannot extract anything politically relevant from further analysis; therefore, we
look at equilibria stability numerically by fixing parameter values in the Jacobian
matrices. We then present deterministic simulations to observe the outcomes of the
various equilibrium conditions. Finally, we offer bifurcation diagrams for the model
and analyze the outcomes.

6.1 Analysis

6.1.1 The Party-Free Equilibrium (PFE) and the Threshold/Tipping
Point R′

1

In this section, we determine the PFE and calculate the first threshold of the two-
track model. Substituting in zero for VH , VL, and M in the system of equations we
solve for the party-free equilibrium such that E1 is (pN, (1− p)N, 0, 0, 0). We then
use the next generation operator method [4] to solve for the first threshold where

R
′
1 =

1

2

2
64 (β1 − φ1τ)p

µ + ε1 + (1 − p)φ1
−

(β2 − φ2τ)(1 − p)

µ + ε2 + pφ2
+

vuut" (β1 − φ1τ)p

µ + ε1 + (1 − p)φ1
+

(β2 − φ2τ)(1 − p)

µ + ε2 + pφ2

#2
+ 4

pβ1β2(1 − p)

(µ + ε1 + (1 − p)φ1)(µ + ε2 + pφ2)

3
75

(From this point on we use prime superscripts to denote thresholds for the two-track
system). See Appendix D for calculations.

R′
1 is the first threshold of the two-track model with tracks deriving from the

susceptible classes H and L that do not intersect until the M compartment (i.e, no
interaction between individuals of different susceptibilities until subscribing mem-
bership to the third party). We refer to R1 when defining R′

1 as the number of
susceptibles an individual in VH or VL converts into either voting class if dropped
in a population of H and/or L. In the expression for R′

1 we try to make sense of

the recurring terms 1
2

[
(β1−φ1τ)p

µ+ε1+(1−p)φ1

]
and

[
(β2−φ2τ)(1−p)

µ+ε2+pφ2

]
. With the exception of a

few differences, each term assumes the form of R1 of the one-track system where
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R1 = β−φ
µ+ε

; for that reason, we designate the first recurring term as R′
H (concerned

with the dynamics of the H track) and the second term R′
L (concerned with the

dynamics of the L track). We treat these tracks separately because R′
1 is primarily

concerned with the susceptible transition to the third party voting stage at which
the tracks remain independent (i.e., individuals from different tracks do not .

The expressions’ numerators are (β1−φ1)p and (β2−φ2)(1−p), each representing
the net influence of direct contacts in converting p susceptibles in H to VH and con-
verting (1− p) individuals in L to VL respectively. Additionally, both denominators
incorporate the terms (µ + ε1 + (1− p)φ1) and (µ + ε2 + pφ2); these terms describe
the net rate at which voters leave the voting class due to secondary influences (i.e,
natural death rate, µ, and the media, ε). Unlike R1, the denominators also incorpo-
rate an additional φ term. In the case of R′

H the additional term (1− p)φ1 accounts
for the rate at which opposition voters influence VH to regress back into H. We
multiply φ1 by the proportion of N , (1 − p), since it accounts for the influence of
L on third party voter regression. In the case of R′

L, pφ2 accounts for the rate at
which direct contacts with members of the opposition, specifically those from H,
drive voters in VL back into L (hence the factor p since H enters the population at
a proportion p of the toting voting population N).

Having explained the main differences between RH/L and R1 we conclude that
both terms independently describe the thresholds for each track H and L respec-
tively in addition to special components in terms of φ that account for cross-track
influences specific to the two-track model. Despite these simplifications we still face
a complicated expression in interpreting R′

1 term-by-term; however, we bypass this
obstacle by bounding R′

1 and interpreting these bounds which are easier to translate
into political terms. Observe how we avoid analysis of the

√
B2 − 4AC term by

interpreting R′
1 via the following bounds:

1

2

"
(β1 − φ1τ)p

µ + ε1 + (1 − p)φ1
+

(β2 − φ2τ)(1 − p)

µ + ε2 + pφ2

#
+

1

2
|
"

(β1 − φ1τ)p

µ + ε1 + (1 − p)φ1
−

(β2 − φ2τ)(1 − p)

µ + ε2 + pφ2

#
| ≤ R

′
1

and

R
′
1 ≤

1

2

"
(β1 − φ1τ)p

µ + ε1 + (1 − p)φ1
+

(β2 − φ2τ)(1 − p)

µ + ε2 + pφ2

#
+

1

2
|
"

(β1 − φ1τ)p

µ + ε1 + (1 − p)φ1
−

(β2 − φ2τ)(1 − p)

µ + ε2 + pφ2

#
|+

s
pβ1β2(1 − p)

(µ + ε1(1 − p)φ1)(µ + ε2 + pφ2)

Applying what we now know of R′
H and R′

L we evaluate the terms in the lower
bound. Depending on which of the terms is greater (largely dependent on the
proportion of the voting population entering each track) one set of terms will cancel,
leaving either R′

H or R′
L. In a political context this translates to the dominance of a

certain susceptible population over the dynamics of the entire system. We interpret
R′

H or R′
L as the lower bound by reasoning that R′

1 must be at least as large as the
dominant threshold R′

H or R′
L.
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The upper bound considers both (1) the dominant threshold term of the lower

bound and (2) an additional expression
√

pβ1β2(1−p)
(µ+ε1(1−p)φ1)(µ+ε2+pφ2)

. Similar to the ad-

ditional φ terms in the denominator of the R′
H and R′

L, (2) is a cross-track term
that accounts for interaction between the two tracks. Analytically, it translates to
the geometric mean of both thresholds that, when added to the dominant threshold,
constitutes the upper bound of R′

1.
In order for the PFE to be unstable we need R′

1 > 1. In other words, using the
threshold definition from the one-track model, if an individual from either VH , VL

or M is introduced in a population of H and L, he/she must convert more than
one susceptible into third party voters in order to establish the V class. Similar to
the one-track model, a sufficient initial number of members can bypass stability of
the PFE as can be observed in the backward bifurcation section for the two-track
model. (See section 5.3). Due to the parallels between the one and two-track R1

and R′
1 thresholds most recommendations on voter recruitment made earlier in the

sensitivity analysis section of the one-track model pertain to the two-track model.

6.1.2 The Threshold/Tipping Point R′
2

We now find the threshold parameter R′
2. Assuming the same interpretation of

R2 from the one-track model, we define R′
2 as the number of voting individuals a

member can convert into M if dropped in a population of VH and/or VL. Since R′
2

is primarily concerned with the transition from third party voting to membership
we conveniently regard M as the only infectious class, in effect facilitating the next
generation operator method in determining this threshold.

The following method solves for threshold parameter R′
2.

dM

dt
= γ

(VH + VL)

N
− µM

The Jacobian is

J = γ

(
V ∗

H + V ∗
L

N

)
− µ

Therefore, we define

M = γ

(
V ∗

H + V ∗
L

N

)
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and

D = µ

MD−1 =
γ

µ

(
V ∗

H + V ∗
L

N

)
Since the matrix only has one eigenvalue we conclude that

R′
2 = MD−1 =

γ

µ

(
V ∗

H + V ∗
L

N

)
Note the similarity of R′

2 to R2 of the one-track model from which we expected
something of the form γ

µ
(1− 1

R1
). While R′

2 is not expressed explicitly, given the use
of the terms V ∗

H and V ∗
L , we can still make conclusions about the two-track model

numerically.

6.1.3 Stability of Equilibria Given Fixed Parameters

We require that the Jacobian of the proportionalized two-track model be:

J =
0
BBBBBBBB@

φ1τvh − β1I − µ φ1vh ε1 + φ1(τh + l)− β1h −β1h −αβ1h

φ2vl φ2τvl − β2I − µ −β2l ε2 + φ2(τl + h)− β2l −αβ2l

β1I − φ1τvh −φ1vh β1h− ε1 − φ1(τh + l)− γm− µ β1h αβ1h− γvh

−φ2vl β2I − φ2τvl β2l βl − ε2 − φ2(τl + h)− γm− µ αβ2l − γvl

0 0 γm γm γvh + γvl

1
CCCCCCCCA

where I = vh + vl + αm.

As in the one-track case, the two-track model produces two endemic equilibria,
a member-free equilibrium and a party-free equilibrium for the ideal set of parame-
ters of Table 7. Note the following unit for β1, β2, φ1, φ2, µ, ε1, ε2, and γ: time−1

(α, τ , p are scalars).

Parameter Values
p β1 β2 φ1 φ2 µ α ε1 ε2 γ τ

0.4 0.6 0.3 0.14 0.175 0.05 3 0.16 0.24 0.22 1.25

Table 7: Parameter set 1 for two-track model.
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We arrive at the following proportionalized equilibrium points:

ei = (
H∗

N
,
L∗

N
,
V ∗

H

N
,
V ∗

L

N
,
M∗

N
),

e1 = (0.242, 0.484, 0.144, 0.106, 0.024),

e2 = (0.030, 0.100, 0.106, 0.144, 0.620),

e3 = (0.381, 0.589, 0.019, 0.011, 0),

e4 = (0.4, 0.6, 0, 0, 0).

After substituting in e1, e2, e3 and e4 into the Jacobian we get the eigenvalues as
listed in Table 8.

e1 e2 e3 e4

λ1 -0.52 -1.48 -0.05 -0.05
λ2 -0.21 -0.94 -0.05 -0.05
λ3 0.016 -0.05 -0.69 0.010
λ4 -0.05 -0.08 -0.90 -0.45
λ5 -0.05 -0.15 -0.05 -0.05

Table 8: Eigenvalues of equilibria found with parameter values of Table 7.

In order to have local asymptotic stability for an equilibrium point we require that
all eigenvalues have negative real parts. Since λ3 is positive for e1 and e4, then these
equilibria points are unstable. The eigenvalues of the other two equilibria, e2 and e3,
are all negative and thus e2 and e3 are LAS. Thus we have two endemic equilibria,
e2 and e1, one LAS and the other not, one LAS member-free equilibrium and one
unstable party-free equilibrium.

Additionally, employing a different set of parameters in Table 9, in order to ob-
serve changes in equilibria behavior

we get the following equilibrium points:

e1 = (0.068, 0.770, 0.017, 0.067, 0.078),

e2 = (0.008, 0.157, 0.009, 0.074, 0.752),
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Parameter Values
p β1 β2 φ1 φ2 µ α ε1 ε2 γ τ

0.1 0.4 0.2 0.15 0.1875 0.05 3 0.3 0.45 0.6 1.2

Table 9: Parameter set 2 for two-track model.

e3 = (0.1, 0.9, 0, 0, 0).

Note the following unit for β1, β2, φ1, φ2, µ, ε1, ε2, and γ: time−1 (α, τ , and p are
scalars).

When we substitute e1, e2 and e3 into the Jacobian we get the eigenvalues of
Table 10.

e1 e2 e3

λ1 -0.70 -1.46 -0.05
λ2 -0.58 -1.26 -0.05
λ3 0.034 -0.34 -0.40
λ4 -0.06 -0.05 -0.60
λ5 -0.05 -0.15 -0.05

Table 10: Eigenvalues of equilibria found with parameter values of Table 9.

Since λ3 is positive for e1, then this equilibrium point is unstable. The eigenvalues
of the other two equilibria, e2 and e3, are all negative and so are LAS. Thus we have
two endemic equilibria, e2 and e1, one LAS and the other not, and one LAS party-
free equilibrium.

6.2 Simulations

We apply the following initial conditions and parameters to all four simulations:
H0 = 1210, L0 = 2420, VH0 = 720, VL0 = 530, M0 = 120, p = 0.4, α = 3, β2 = 0.3,
γ = 0.2, ε1 = 0.16, ε2 = 0.24, µ = 0.05, φ1 = 0.14, φ2 = 0.175 and τ = 1.25.
Note the following unit for β1, β2, φ1, φ2, µ, ε1, ε2, and γ: time−1 (α, τ , and p are
scalars and initial conditions have units of individuals). We shaped the parameters
to suit the condition that R1 > 1 because this condition guarantees existence of
E2 in addition to the other equilibria; therefore, we can plot all four equilibria of
the system. In the following simulations we vary β1 in order to show the various
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equilibria that we expect to exist as based on the one-track model.

Figure 7: (a) β1 = 0.55. (b) β1 = 0.59.

Figure 7(a) shows the system approaching a party-free equilibrium (similar to
E1) for β1 = 0.55. In this case, all individuals end up in the susceptible classes
and the third party has neither voters nor members. Figure 7(b) shows the system
approaching a member-free equilibrium (similar to E2) for β1 = 0.59. In this case,
there are no third party members and all individuals end up in either the susceptible
or third party voting classes.

Figure 8(a) shows the system approaching a stable endemic equilibrium (analo-
gous to E3 in the one-track model) for β1 = 0.65. This state describes a successful
coexistence among individuals of all five classes H, L, VH , VL, and M . Figure 8(b)
shows the system approaching the unstable endemic equilibrium (similar to E4) for
β1 = 0.60. Again, in this case there are individuals in all classes. Note, however,
that the numbers of the individuals in the five classes will stay steady at this equi-
librium only if the initial conditions, H0, L0, VH0 , VL0 and M0, equal the values of
this equilibrium. Given any other set of initial conditions this equilibrium will not
be reached (i.e., individuals will only exist at the unstable equilibrium E4 if they
always exist at it, a condition that assumes no net changes in the compartment
populations).
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Figure 8: (a) β1 = 0.65. (b) β1 = 0.6.

It is important to note several considerations when looking at the simulations.
First of all, since we were unable to analytically determine all of the equilibria and
we did not set out to prove the existence of more equilibria, we cannot be sure
that we have considered all possible equilibria. Additionally, we required fractional
values for the initial conditions in order to demonstrate the E4 analogue but, since
we cannot realistically have fractions of individuals, we rounded the values to the
integers listed above.

6.3 Bifurcation Diagrams

(a) We created the set of parameters in Table 11 in order to maintain backward
bifurcation for the two-track system. Note the following unit for β1, β2, φ1,
φ2, µ, ε1, ε2, and γ: time−1 (α, τ , and p are scalars)

Parameter Values
p β1 β2 φ1 φ2 µ α ε1 ε2 γ τ

0.1 0.4 0.2 0.15 0.1875 0.05 3 0.3 0.45 variable 1.2

Table 11: First set of bifurcation parameter values.
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In order to create the above parameter set we varied β, ε, and φ, approxi-
mating the degree by which the corresponding parameters varied. We used
intuition in order to approximate the relative factor by which, for example,
β1 exceeds β2. As it turns out, our approximations of the relative differences
between corresponding parameters still maintained backward bifurcation.

We started off by assuming that the portion of the population entering the
H class, p, was 0.1. This decision was motivated by (1) the consideration
that the Green Party, given its highly progressive, typically youth-catering
agenda directly appeals to about 10 percent of the total voting population
(i.e, individuals in a young, educated, progressive social sphere) and (2) the
parameter value 0.1 gives us a more reasonable endemic equilibrium that does
not approach majority status (approximately 1) as quickly as larger values for
p. In determining relative β parameters we assumed that H susceptibles are
twice as likely to become voters as L susceptibles; this lower relative value is
appropriate given that our methodology of placing individuals into H and L
via the number of low versus high affinity factors of the individual lessens the
magnitude of difference between the susceptible classes. For ε we assumed that
opposition media and other secondary influences would factor 1.5 times more
in VL regression back to L than in the transition of VH back to H. Likewise, φ2

is 1.25 times greater than φ1 because, as with ε, φ is greater for L susceptibles
who are more resistant to third party ideology.

Figure 9, the bifurcation diagram for this parameter set, shows the possible
behaviors of the member class M by varying γ. We observe that the minimum
value of γ that would give hope to the party is 0.28 because neither endemic
equilibrium exists for γ < 0.28. However, given γ > 0.28 and a certain initial
number of members M , the party can approach a stable endemic equilibrium.
We observe the general trend that the larger our value of γ the larger the values
of the endemic equilibrium. An important conclusion we make concerning
the parallels between the one-track and two-track models is how, even when
R1 < 1, the party can thrive in both tracks given that γ is large enough.

(b) A second set of parameters in Table 12 considers the case when p = 0.05, a
condition in which the third party targets a high affinity class that comprises
only 5 percent of the total voting population:

We start off by assuming that the portion of the population entering the H
class, p, is 0.05, a situation pertaining to third parties with highly specific,
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Figure 9: Bifurcation diagram using parameters of Table 11

Parameter Values
p β1 β2 φ1 φ2 µ α ε1 ε2 γ τ

0.05 0.2 0.09 0.15 0.19 0.05 3 0.5 0.7 variable 1.25

Table 12: Second set of bifurcation parameter values.

somewhat extreme agendas that do not target the majority vote. As with
before, we define relative parameter values aiming to maintain backward bi-
furcation. We establish these relations such that β1 exceeds β2 by a factor of
2.2, ε2 affects VL 1.4 times more than ε1 influences VH , and φ2 is 1.25 times as
large as φ1.

Figure 10 shows the bifurcation diagram for this parameter set. If we apply
the above parameters to our expression of R1 we find that R1 = 0.1013 which,
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Figure 10: Bifurcation diagram using parameters of Table 12

given that the PFE is locally asymptotically stable for R1 < 1, describes the
death of the party. Not only does the initial high-affinity susceptible popula-
tion comprise 5 percent of the total voting population, the rate of susceptible
transition to third party voting embodied in the β parameters is very low. The
fact that we produce a bifurcation plot showing endemic equilibria existence,
however, shows that even when transition rates from the susceptible to voting
classes are low, the party can still survive if γ is large enough.

7 Conclusion

We created a deterministic model in order to represent the effects of member and
third party voter recruitment of voters in opposing parties in the spread of a third
party. Given its initial complexity we simplified the model to see how analysis of
the one-track version sheds insight into the two-track model system. We used data
to estimate parameters but, due to the lack of available information concerning

38



net votes cast for Green Party candidates, our estimated parameters provided little
valuable information. Therefore, instead we created ideal sets of parameters for
both the one and two-track systems in order to obtain a state of class coexistence
and translated these ideal parameters into political terms via strategies that parties
can take to initiate growth. Many of our recommendations derive from considering
several scenarios the party might take in terms of the thresholds or tipping points R1,
R2, and R′

1 (analogous to R1 of the simple model). We regard these tipping points as
decisive factors in the behavior of the party since they explain how voter recruitment
and opposition efforts, embodied in the values of the system’s parameters, can drive
a voting population to death, growth, or unstable stagnancy (i.e., the steady state
E3) depending on the parameters used. Hence, we translate parameters of relative
magnitude into strategies that politicians can use in spreading a third party.

For example, consider a voting population N . Mathematically speaking, the
population can assume four different outcomes: the party dies out, members die out
but opposition voters and party voters remain, and all classes coexist in either an
unstable or stable state. In the political context, however, we only consider two of
the possible outcomes since (1) a member-free equilibrium implies that voters vote
for a party that does not exist (where we assume that parties require members for
existence) and (2) the population cannot tend to and stay at the unstable endemic
equilibrium unless the number of individuals in each compartment stays fixed (a
highly unlikely scenario given the local dynamics of the system where individuals
travel between classes).

We now have two possible outcomes: party death or party growth. For the first
option, the party dies out if R1 < 1 and the population will always tend to this
state given that the net flow into V , measured as β − φ is less than opposition
from the media and the natural exit rate of voters from the system embodied in
µ + ε. Therefore, the party dies out unless a stable endemic equilibrium also exists
that guarantees a stable state of class coexistence at which susceptibles, voters, and
members exist (i.e., the party grows because it has voters and members needed to
recruit susceptibles). Backward bifurcation plots of both the one and two-track sys-
tems demonstrate the coexistence of the PFE and endemic equilibrium. Therefore,
the party can assume two tracks: death or growth where the deciding factor is the
initial number of members in the system that, if large enough, can overcome the
party’s tendency to death.

The case where R1 > 1 and R2 < 1 is similar to the previous case except that
there is an additional stable member-free equilibrium. However, as we stated earlier,
we will not be considering this scenario in a political context.

On the other hand, if R2 > 1, then only the endemic equilibrium will be stable.
Then, so long as there is at least one member, the result will be coexistence of all
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classes. However, this does not seem likely since all bifurcation diagrams that show
this case would imply that a majority of the voting population would become third
party members. Given that we study a third party, this outcome seems unrealistic.

In addition to running deterministic simulations of both systems that show the
tendency of the population to all four equilibria states, we performed sensitivity
analysis to determine those parameters to which our system was most sensitive.
Not surprisingly, β, the recruitment rate of susceptibles into the voting class by
voters and members (with the augmentation factor α), emerged as the most sensi-
tive parameter, followed by φ and γ. This indicates that the S-to-V transition is
most important initially since it builds up the population of V . Only after V has
accumulated a substantial number of individuals should the party focus on the V
to M transition by accruing members with an effort γ. Then, once more members
have joined, the party grows even faster since members recruit opposition voters at
an increased factor α.

Even though we used available data to estimate parameters, we ultimately used
ideal parameters to model the desired state of endemic coexistence among all classes.
Our model does not aim to predict the future of third parties, but rather to offer
recruitment strategies to parties so that they might grow and spread within a voting
population. We conclude with the final advice that parties should build up the
number of initial members in the party since, if R1 < 1, this value ultimately
determines the fate of the party: death or growth.
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Soto, and Carlos Castillo-Chávez. Additionally, we thank Linda Gao, Baojun Song,
Armando Arciniega, Leon Arriola, and all other MTBI participants and LANL af-
filiates for their help and advice.

This research has been partially supported by grants from the National Security
Agency, the National Science Foundation, the T Division of Los Alamos National
Lab (LANL), the Sloan Foundation, and the Office of the Provost of Arizona State
University. The authors are solely responsible for the views and opinions expressed
in this research; it does not necessarily reflect the ideas and/or opinions of the
funding agencies, Arizona State University, or LANL.

40



References

[1] Arriola, L. and J. Hyman, Summer 2005. Forward and Adjoint Sensitivity
Analysis: With Applications in Dynamical Systems, Linear Algebra and Opti-
mization. 3.

[2] Bass, L., and L. Casper, 2001. Impacting the political landscape: who registers
and votes among naturalized Americans? Political Behavior,23(2),103-130.

[3] Bettencourt, L., Cintrón-Arias, A., Kaiser, D., and C. Castillo-Chávez, 2005.
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A Equilibria

A.1 Proving the Existence of Two Endemic Equilibria

(a) First we verify that f(1) > 0 where

f(m∗) = m∗2+

[(
β − φ

αβ

)
µ

γ
−
(

1− µ

γ

)
+

µ

αβ

]
m∗−µ

γ

[
β − φ

αβ

(
1− µ

γ

)
− µ + ε

αβ

]
= 0

f(1) = 1 +
β − φ

αβ

µ

γ
−
(

1− µ

γ

)
+

µ

αβ
− µ

γ

β − φ

γβ

(
1− µ

γ

)
+

µ

γ

µ + ε

αβ

Note that, earlier we required µ < γ and β > φ; therefore
β−φ
αβ

µ
γ
− µ

γ
β−φ
γβ

(1 − µ
γ
) > 0 holds true since (1 − µ

γ
) < 1 and the expression

essentially subtracts from the first term a fraction of itself.

Therefore,

f(1) = 1−
(

1− µ

γ

)
+

µ

αβ
+

µ

γ

µ + ε

αβ
+ P

where we define P = β−φ
αβ

µ
γ
− µ

γ
β−φ
γβ

(1− µ
γ
) > 0. After simplifying,

f(1) =
µ

γ
+

µ

αβ
+

µ

γ

µ + ε

αβ
+ P

which is the sum of positive parameters, thus verifying that f(1) > 0.

(b) Now we aim to show that f ′(1) > 0 where f ′(m∗) = 2m∗+(β−φ
αβ

)µ
γ
−(1− µ

γ
)+ µ

αβ
:

f ′(1) = 2 +
β − φ

αβ

µ

γ
− 1 +

µ

γ
+

µ

αβ

= 1 +
β − φ

αβ

µ

γ
+

µ

γ
+

µ

αβ

which is a sum of positive terms since β > φ. Therefore, f ′(1) > 0.

Since f ′(1) > 0 and f(1) > 0, then the roots of f(m∗) are less than 1.

(c) Using the quadratic formula we get

m∗
± = 1

2
(−B ±

√
B2 − 4AC)
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where
A = 1

B =

(
β − φ

αβ

)
µ

γ
−
(

1− µ

γ

)
+

µ

αβ

C = −µ

γ

[
β − φ

αβ

(
1− µ

γ

)
− µ + ε

αβ

]
Assuming B < 0 then the vertex, −B

2
, of f(m∗) is positive and, assuming

that B2 − 4AC > 0 so that f(m∗) has two real solutions, we infer that at
least one solution of f(m∗) is positive. We continue noting that since C > 0
then f(0) > 0 and therefore both solutions are positive. Given two positive
solutions that are less than 1 we then claim that both solutions are in (0, 1);
hence the existence of two positive endemic equilibria under the conditions:
B < 0, C > 0 and B2−4AC > 0. Now that we have shown that B < 0, C > 0
and B2− 4AC > 0 support the existence of two positive solutions, we need to
find under what conditions those statements are true.

(d) B < 0, C > 0 and B2 − 4AC > 0 will be true under the following conditions:

C > 0

if and only if

−µ

γ

[
β − φ

αβ

(
1− µ

γ

)
− µ + ε

αβ

]
> 0

(β − φ)

(
1− µ

γ

)
< (µ + ε)

β − φ

µ + ε

(
1− µ

γ

)
< 1

1− µ

γ
<

µ + ε

β − φ

1− µ + ε

β − φ
<

µ

γ

R2 =
γ

µ

(
1− µ + ε

β − φ

)
< 1

We then impose B < 0 as an additional condition for the existence of endemic
equilibria.

B < 0
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if and only if
1

αβ
+

(
β − φ

αβ
+ 1

)
1

γ
<

1

µ

which, again, translates to B < 0 where B is defined on the previous page.

We require that B2 − 4AC ≥ 0 for the existence of m∗ (in order to avoid
complex values of m∗

±). Substituting in the values of A, B and C we get:[
µ

αβ
+

(
β − φ

αβ

)
µ

γ
− 1

]2

− 4
µ

γ

[
µ + ε

αβ
− β − φ

αβ

(
1− µ

γ

)]
≥ 0

Expansion and summing like terms yields(
µ

αβ

)2

+

(
µ

γ

)2

− 2

(
µ

γ

)2
β − φ

αβ
+

(
µ

γ

)2(
β − φ

αβ

)2

+ 1−

2
µ

αβ

µ

γ
+ 2

µ

αβ

µ

γ

β − φ

αβ
− 2

µ

αβ
− 2

µ

γ
+ 2

µ

γ

β − φ

αβ
− 4

µ

γ

ε

αβ
≥ 0

Then by completing the square we get the following equations[
µ

αβ
−
(

1− β − φ

αβ

)
µ

γ
+ 1

]2

≥ 4
µ

αβ

(
1 +

ε

γ

)
Next we take the square root of both sides,∣∣∣∣ µ

αβ
−
(

1− β − φ

αβ

)
µ

γ
+ 1

∣∣∣∣ ≥ 2

√
µ

αβ

(
1 +

ε

γ

)
Since we require µ < γ and β > φ, then

µ

αβ
−
(

1− β − φ

αβ

)
µ

γ
+ 1 =

µ

αβ
+

β − φ

αβ

µ

γ
+

(
1− µ

γ

)
> 0

and so ∣∣∣∣ µ

αβ
−
(

1− β − φ

αβ

)
µ

γ
+ 1

∣∣∣∣ =
µ

αβ
−
(

1− β − φ

αβ

)
µ

γ
+ 1

Then replacing the absolute value terms and rearranging we get

µ

γ
≤ µ

αβ
+

β − φ

αβ

µ

γ
− 2

√
µ

αβ

(
1 +

ε

γ

)
+ 1
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A.2 Determining the Stability of E3 and E4

Let
A′ = 1

B′ =

[
−(β − φ)

(
1− 2µ

γ
−m∗

)
+ αβm + µ + ε + γm∗

]
C ′ = −γm∗

[
αβ

(
1− µ

γ
− 2m∗

)
− (β − φ)µ

γ
− µ

]
The solutions of the characteristic equation are the eigenvalues of J(µ

γ
, m∗

±), and
the stability of the endemic equilibria depend of the signs of their real parts. If the
real parts of both eigenvalues are negative then the we conclude that the endemic
equilibrium is locally asymptotically stable.

The eigenvalues are given by

λ± =
1

2
(−B′ ±

√
B′2 − 4C ′)

We note that if B′2−4C ′ < 0, then the endemic equilibrium is locally asymptotically
stable if B′ > 0. On the other hand, if B′2 − 4C ′ ≥ 0 then the endemic equilibrium
is locally asymptotically stable if B′ > 0 and C ′ > 0.

We now prove that B′ > 0 always holds given m∗
± > 0 (i.e., given m∗

± exists).

B′ > 0 holds when[
−(β − φ)

(
1− 2µ

γ
−m∗

±

)
+ αβm∗

± + µ + ε + γm∗
±

]
> 0

m∗
±((β − φ) + αβ + γ) > (β − φ)− 2

µ

γ
(β − φ)− (µ + ε)

m∗
± >

(β − φ)− 2µ
γ
(β − φ)− (µ + ε)

(β − φ) + αβ + γ

m∗
± >

β−φ
αβ
− 2µ

γ
β−φ
αβ
− µ+ε

αβ

β−φ
αβ

+ 1 + γ
αβ

=
− γ

µ
C − µ(β−φ)

γαβ

β−φ
αβ

+ 1 + γ
αβ

Recall that C = −µ
γ
[β−φ

αβ
(1− µ

γ
)− µ+ε

αβ
].
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Note that C > 0 (for the condition that R2 < 1), β > φ, and m∗
± > 0 (refer to

the Appendix A.1, where we show that m∗
± is contained in (0,1)). Therefore,

− γ
µ
C − µ(β−φ)

γαβ

β−φ
αβ

+ 1 + γ
αβ

< 0

and so B′ > 0 whenever m∗ is greater than a negative expression. Since this always
holds, then B′ > 0 is always true.

We now verify the C ′ > 0 criterion for local asymptotic stability of the endemic
equilibria where R2 < 1 whenever m∗ > −B

2
.

Recall that B = (β−φ
αβ

)µ
γ
− (1− µ

γ
) + µ

αβ
.

C ′ > 0 on condition that

−γm∗
[
αβ

(
1− µ

γ
− 2m

)
− (β − φ)µ

γ
− µ

]
> 0

−αβ +
µ

γ
γβ + 2mαβ + (β − φ)

µ

γ
+ µ > 0

m∗ >
αβ
(
1− µ

γ

)
− (β − φ)µ

γ
− µ

2αβ

m∗ >
1

2

(
1− µ

γ
− µ(β − φ)

γαβ
− µ

αβ

)
= −B

2

Therefore C ′ > 0 whenever m∗ > −B
2
.

We now try to tie together our findings to distinguish the two endemic equilib-
ria. Having shown that B′ > 0 and C ′ > 0 where R2 < 1, we establish the necessary
criteria for LAS for E3 and E4 where m∗ > −B

2

Recalling that
m∗
± =

1

2

2
4− ��β − φ

αβ

�
µ

γ
−
�

1−
µ

γ

�
+

µ

αβ

�
±

s��
−

β − φ

αβ

�
µ

γ
+

�
1−

µ

γ

�
−

µ

αβ

�2
+ 4

�
µ

γ

��
β − φ

αβ

�
1−

µ

γ

�
−

µ + ε

αβ

�35

=
1

2
(−B ±

√
B2 − 4C)

Since m∗
+ > −B

2
, E3 is LAS.

And since m∗
− < −B

2
, then E4 is unstable.
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B Sensitivity Indices

Parameter Parameter value Sensitivity Index for R1 Sensitivity Index for R2

β 0.4 1.6 -9.6
φ 0.15 -0.6 3.6
µ 0.05 -.016 -0.16
ε 0.25 -0.83 -0.83
γ 0.20 0 1

Table 13: Sensitivity Indices for R2 < 0.

Parameter Parameter Value Sensitivity Index for R1 Sensitivity Index for R2

β 0.2 4 -4.8
φ 0.15 -3 3.6
µ 0.05 -0.16 -0.16
ε 0.25 -0.83 -0.83
γ 0.20 0 1

Table 14: Sensitivity Indices for R2 < 0.

Note above that we consider two β values to satisfy R2 < 0. We do so in order to
observe whether or not β remains the most sensitive parameter in the region R2 < 0
which it does, as the relative indices suggest.

Parameter Parameter Value Sensitivity Index for R1 Sensitivity Index for R2

β 0.5 1.43 8.57
φ 0.15 -4.28 -2.57
µ 0.05 -0.16 -0.16
ε 0.25 -0.83 -0.83
γ 0.20 0 1

Table 15: Sensitivity Indices where 0 < R2 < 1.
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Parameter Parameter Value Sensitivity Index for R1 Sensitivity Index for R2

β 0.6 1.3 2.6
φ 0.15 -0.3 -0.6
µ 0.05 -0.16 -0.16
ε 0.25 -0.83 -0.83
γ 0.20 0 1

Table 16: Sensitivity Indices for R2 > 1.

C Ten Key Values of the Green Party[14]

1. Grassroots Democracy
Every human being deserves a say in the decisions that affect their lives and
not be subject to the will of another. Therefore, we will work to increase
public participation at every level of government and to ensure that our public
representatives are fully accountable to the people who elect them. We will also
work to create new types of political organizations which expand the process of
participatory democracy by directly including citizens in the decision-making
process.

2. Social Justice and Equal Opportunity
All persons should have the rights and opportunity to benefit equally from the
resources afforded us by society and the environment. We must consciously
confront in ourselves, our organizations, and society at large, barriers such as
racism and class oppression, sexism and homophobia, ageism and disability,
which act to deny fair treatment and equal justice under the law.

3. Ecological Wisdom
Human societies must operate with the understanding that we are part of
nature, not separate from nature. We must maintain an ecological balance
and live within the ecological and resource limits of our communities and our
planet. We support a sustainable society which utilizes resources in such a
way that future generations will benefit and not suffer from the practices of
our generation. To this end we must practice agriculture which replenishes
the soil; move to an energy efficient economy; and live in ways that respect
the integrity of natural systems.

4. Non-Violence
It is essential that we develop effective alternatives to societys current patterns
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of violence. We will work to demilitarize, and eliminate weapons of mass
destruction, without being naive about the intentions of other governments.
We recognize the need for self-defense and the defense of others who are in
helpless situations. We promote non-violent methods to oppose practices and
policies with which we disagree, and will guide our actions toward lasting
personal, community and global peace.

5. Decentralization
Centralization of wealth and power contributes to social and economic injus-
tice, environmental destruction, and militarization. Therefore, we support a
restructuring of social, political and economic institutions away from a system
which is controlled by and mostly benefits the powerful few, to a democratic,
less bureaucratic system. Decision-making should, as much as possible, remain
at the individual and local level, while assuring that civil rights are protected
for all citizens.

6. Community Bases Economics and Economic Justice
We recognize it is essential to create a vibrant and sustainable economic sys-
tem, one that can create jobs and provide a decent standard of living for all
people while maintaining a healthy ecological balance. A successful economic
system will offer meaningful work with dignity, while paying a living wage
which reflects the real value of a persons work.

Local communities must look to economic development that assures protection
of the environment and workers rights; broad citizen participation in planning;
and enhancement of our quality of life. We support independently owned and
operated companies which are socially responsible, as well as co-operatives
and public enterprises that distribute resources and control to more people
through democratic participation.

7. Feminism and Gender Equity
We have inherited a social system based on male domination of politics and
economics. We call for the replacement of the cultural ethics of domination
and control with more cooperative ways of interacting that respect differences
of opinion and gender. Human values such as equity between the sexes, inter-
personal responsibility, and honesty must be developed with moral conscience.
We should remember that the process that determines our decisions and ac-
tions is just as important as achieving the outcome we want.

8. Respect for Diversity
We believe it is important to value cultural, ethnic, racial, sexual, religious and
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spiritual diversity, and to promote the development of respectful relationships
across these lines.

We believe that the many diverse elements of society should be reflected in
our organizations and decision-making bodies, and we support the leadership
of people who have been traditionally closed out of leadership roles. We ac-
knowledge and encourage respect for other life forms than our own and the
preservation of biodiversity.

9. Personal and Global Responsibility
We encourage individuals to act to improve their personal well-being and, at
the same time, to enhance ecological balance and social harmony. We seek to
join with people and organizations around the world to foster peace, economic
justice, and the health of the planet.

10. Future Focus and Sustainability
Our actions and policies should be motivated by long-term goals. We seek to
protect valuable natural resources, safely disposing of or unmaking all waste
we create, while developing a sustainable economics that does not depend on
continual expansion for survival. We must counterbalance the drive for short-
term profits by assuring that economic development, new technologies, and
fiscal policies are responsible to future generations who will inherit the results
of our actions.

D Solving for R′
1 of the Two-Track Model

We calculate the reproductive number R′
1 of the two track model using the next

generation operator method where R′
1 is analogous to R1 of the one-track model.

The party-free equilibrium is (pN, (1 − p)N, 0, 0, 0). After linearizing our system
around the PFE and differentiating with respect to the system’s variables VH , VL,
and M , we formulate the following Jacobian matrix.

J =

(β1 − φ1τ)H∗

N
− (µ + ε1 + φ1

L∗

N
) β1

H∗

N
αβ1

H∗
N
− γ

V ∗
H

N

β2
L∗

N
(β2 − φ2τ)L∗

N
− (µ + ε2 + φ2

H∗

N
+ γ M∗

N
αβ2

L∗

N
− γ

V ∗
L

N

γ M∗

N
γ M∗

N
γ

V ∗
H+V ∗

L

N
− µ


Note that J = M −D, where the entries of M are nonnegative and D is a diagonal
matrix. Separating J into M and D, we get the following matrices:

M =

(β1 − φ1τ)H∗

N
β1

H∗

N
αβ1

H∗
N

β2
L∗

N
(β2 − φ2τ)L∗

N
+ γ M∗

N
αβ2

L∗

N

γ M∗

N
γ M∗

N
γ

V ∗
H+V ∗

L

N


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and

D =

(µ + ε1 + φ1
L∗

N
) 0 γ

V ∗
H

N

0 (µ + ε2 + φ2
H∗

N
) γ

V ∗
L

N

0 0 µ


We multiply MD−1 such that

MD−1 =


(β1−φ1τ)p

µ+ε1+φ1(1−p)
(β1p)

µ+ε2+φ2p
αβ1

p
µ

β2(1−p)
µ+ε1+φ1(1−p)

(β2−φ2τ)(1−p)
µ+ε2+φ2p

αβ2
1−p
µ

0 0 0


The final step of the next generation method involves determining the maximum

eigenvalue of the of the product MD−1 where the three eigenvalues are 0, (β1−φ1τ)p
µ+ε1+φ1(1−p)

,
(β2−φ2τ)(1−p)

µ+ε2+φ2p
. We analytically solve for the characteristic polynomial and assign the

maximum solution of the quadratic expression as follows:
R′

1 =

1

2

2
4 (β1 − φ1τ)p

µ + ε1 + (1− p)φ1
+

(β2 − φ2τ)(1− p)

µ + ε2 + pφ2
±

s�
(β1 − φ1τ)p

µ + ε1 + (1− p)φ1
+

(β2 − φ2τ)(1− p)

µ + ε2 + pφ2

�2
+ 4

pβ1β2(1− p)

(µ + ε1 + (1− p)φ1)(µ + ε2 + pφ2)

3
5

The expression above should, in theory, be the general version of the specific
homogeneous one-track version. Therefore, we substitute in p = 1 and arrive at R1:

For p = 1

R′
1 =

(β1 − φ1τ)p

ε1 + µ + φ1(1− p)

where τ = 1 since we are dealing with only one susceptible class; additionally,
subscripts are unnecessary for the homogeneous case. After applying these simplifi-
cations R′

1, as expected, reduces to R1 = β−φ
ε+µ

.

E Explanation to graphic summary

We now go through the process of plotting figure 6. We first make the following
substitutions:

y =
γ

µ

x =
αβ

µ + ε
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q =
β − φ

αβ

r =
µ

µ + ε

Note that q < 1 and r < 1. Making the appropriate substitutions, we derive an
expression for the curve on which R1 = 1:

R1 =
β − φ

µε
=

β − φ

αβ

αβ

µ + ε
= qx = 1

such that

x =
1

q

Additionally, now we obtain an expression for the curve on which R2 = 1:

R2 =
γ

µ

(
1− 1

β−φ
µ+ε

)
= 1

1 = y

(
1− 1

qx

)
such that

y =
qx

qx− 1

Note that this curve has a horizontal asymptote y = 1 and a vertical asymptote at
x = 1

q
.

Now we find identify those curves for which B = 0 and B2 − 4C = 0
Recall that

B =

(
β − φ

αβ

)
µ

γ
−
(

1− µ

γ

)
+

µ

αβ
,

C = −µ

γ

[
β − φ

αβ

(
1− µ

γ

)
− µ + ε

αβ

]
.

where, applying our substitutions B = 0 implies that q
y
− 1 + 1

y
+ r

x
= 0

Therefore, we define the curve on which B = 0 as y = x(q+1)
x−r

Note that this curve has a horizontal asymptote at y = q + 1 and a vertical as-
ymptote at x = r.
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Additionally, B2 − 4C = 0 implies that
(

q
y
− 1 + 1

y
+ r

x

)2

+ 4
y

(
q
(
1− 1

y

)
− 1

x

)
= 0

such that the curve on which B2 − 4C = 0 is redefined as

y =
−x(qx + r − x− 2 + qr + 2

√
(qr − 1)(qx + r − 1− x))

(r − x)2

Note that this curve has a vertical asymptote at x = r and a horizontal asymptote
at y = 1− q.

Via the asymptotes of the redefined functions, we define regions for which B < 0,
B2 − 4C > 0, and R2 < 1. We find that the region where B2 − 4C > 0 is a subset
of the region where B < 0. Therefore we only need to consider the region where
B2 − 4C > 0 in order to define the special region of backward bifurcation.
Applying the same method of using bounds to define regions of equilibria stability,
we study the system’s local dynamics.
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