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Abstract

Rapidly mutating HIV strains pose difficulties for effective therapy. By
using a mathematical model, we explore the in-host progression of mu-
tating HIV strains considering both the immune response of the host and
a combination of antiviral drugs. The first drug inhibits the entry of the
HIV virus into CD4+ cells, while the second is a protease inhibitor. We
conduct uncertainty and sensitivity analysis of the parameters in the ef-
fective reproductive number, R0. Deterministic simulations are performed
to illustrate the random behavior of the independent HIV strains on the
progression and severity of the disease.
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1 Introduction

At the end of 2004, joint effort of several HIV/AIDS global research organiza-
tions, estimated about 40 million people are living with HIV, and additional 25
million have died of AIDS [1]. While there is currently no cure for HIV/AIDS,
antiretroviral (AVR) therapy slows the reproduction and progression of HIV pro-
longing the lives of those infected. Presently, there are four groups of AVR treat-
ments: nucleoside/nucleotide reverse transcriptase inhibitors, non-nucleoside re-
verse transcriptase inhibitors, protease inhibitors, and fusion or entry inhibitors
[2]. In order to maximize the reduction of the viral load of severely infected
individuals, determining what types of drug therapies to administer and when
to administer them should be a top priority. Mathematical modeling allows for
predictions to be made which can aid in these determinations.

A major obstacle an effective HIV/AIDS treatment regimen must overcome
is the mutating nature of the virus. The ability of HIV-1 to mutate creates
diversity in the strains of the virus which generate virus resistant to treatment
regimens. As suggested by Rubirio et al., 2000, drug resistance is a result of
a large variance in the viral population existing prior to the initiation of drug
therapy, rather than the evolution of resistant virus occurring as a result of
drug therapy [3]. This suggests single drug therapies will simply apply selec-
tive pressure on the diverse viral population, allowing resistant viral strains to
proliferate unchecked. The ineffectiveness of single drug therapies is discussed
by Nowak et al., 1996,[4] and Bonhoeffer et al., 1997 [5]. To increase the effi-
ciency of a treatment regimen, one should include the use of a variety of drugs.
Therapies usually administer a drug which decreases the virus’ ability to infect
susceptible cells, such as a reverse transcriptase inhibitor or a fusion inhibitor,
in combination with a drug which decreases the ability of an infected cell to
produce new infective viral particles, such as a protease inhibitor.

An additional component which can aid in delaying the progression of HIV
is the immune response of the host. Shortly after the initial infection with
HIV, viral loads in the plasma reach a peak, triggering an immune response
by the host. Without the aid of antiviral drugs, the immune system is able
to decrease this initial peak in viral levels to a minimum level known as the
viral set point, whereafter the asymptomatic phase of infection begins and viral
levels begin to slowly increase [6]. This low level of virus in the plasma is due
to the destruction of infected cells, which are the producers of infective viral
particles, in addition to the low availability of CD4+ cells, the targets for viral
infection. Due to the low viral load at the viral set point, the viral set point
may be an optimal time for initiating drug therapy [7]. The above mentioned
dynamics of the interactions between the host’s immune system and the HIV
virus suggest immune response to HIV should be considered when constructing
a drug treatment plan.

In the past, many models have been constructed in an effort to gain an un-
derstanding of the dynamics of the in-host progression of HIV. Some models are
very simple and only describe the development on HIV at its most fundamental
level. Other works include complications such as multiple genetic variants of
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HIV as in [10],[24] or multiple drug interventions such as in [18]. Still, other
models, for example [11] [12], have incorporated the effects of the host’s im-
mune response on the progression of HIV. In this paper, a mathematical model
of HIV is proposed combining ideas presented separately in previous works. We
consider the effects of a multi-drug treatment plan as well as the host’s immune
response on the progression of two genetic variants of HIV-1. Through mathe-
matical analysis, we are able to suggest what strain of HIV to focus treatment
on in order to reduce the entire viral load. The paper will first give background
on immune response to HIV and HIV treatments, followed by the model and
an explanation of the model. Next we conduct analysis for two scenarios, one
considering viral mutations during the progression of infection and one without
considering viral mutations during the infection. For each case we provide the
effective reproductive number, R0, along with the biological interpretation of
R0. Uncertainty and sensitivity analysis of the effective reproductive number,
that considers viral mutations, is conducted. Deterministic simulations are pro-
vided, showing the affects of treatments, viral mutation, and immune response.
The paper is concluded with results and discussion of analysis and possibilities
for future work.

2 Background

2.1 Immune Response to HIV

Our immune system helps regulate invading pathogens. Leukocytes and lym-
phocytes are produced in the bone marrow. Pre-T, or immature lymphocytes,
leave the bone marrow for the thymus where they will mature into functional T
cells, which are key players in the defense against pathogens. T cells provide im-
munity to extracellular pathogens by signaling antibodies [11]. Helper T cells,
a subgroup of the T cells with surface protein CD4+, stimulate white blood
cells called B cells to produce antibodies that bind to a specific pathogenic anti-
gen and immobilize it. Thus, the invading pathogen is prevented from causing
further infections [12].

For the production of antibodies, there must exist communication of CD4+ T
cells and B cells. Supposing helper T cells are signaling B cells and antibodies
are produced, but pathogens are not being detected by the antibodies, these
pathogens enter and infect cells, forever changing the host cell’s dynamics. In
the case of HIV, once the virus enters the cell, the viral RNA is made into DNA
by the viral reverse transcriptase (RT) enzyme. This DNA is then incorporated
into the host’s DNA by the enzyme integrase, which results in the creation
of more viral RNA during the transcription phase of protein synthesis. Viral
protease then cuts the new RNA into fragments which code for specific viral
proteins. These proteins are then transported to the endoplasmic reticulum
where they fit into grooves on the surface of the human leukocyte antigen (HLA)
molecule. This molecule then travels to the surface of the infected CD4+ T cell
where it is detected by CD8+ T cells. Once HLA is detected by a CD8+ cell,
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the CD8+ cell destroys the infected CD4+ cell [12].
In order for HIV to successfully infect cells, it must bind to CD4+ T cell re-

ceptor as well as co-receptors. It was found that the chemokine receptor CCR-5
is a co-receptor for macrophage-tropic (M-tropic) HIV-1 strains [14]. M-trophic
strains are thought to transmit HIV and predominate during the asymptomatic
phase of infected individuals. Mutant alleles of the CCR-5 chemokine receptor
gene have been found expressed at relatively high frequencies among Caucasian
populations. Even after repeated exposure to HIV, these individuals with the
mutant CCR-5 receptor remain uninfected [14]. The implications of these find-
ings have led to the evolution of pharmacological agents which block the ability
of HIV to use CCR-5 as receptors.

When HIV successfully binds to a CD4+ cell, the infected helper T cell will
signal for killer T cells and antibodies. One of the problems with the persistence
of HIV is its potential for mutation. Even in the early stages of infection, about
1 million virions are made every day of which each will mutate on average once
[13]. No matter how effective our immune response is in killing off infected
helper T cells, viral mutations increase the chances of escaping both antibodies
and killer cells. In the progression of HIV, the immune response inevitably also
depletes the number of available CD4+ T cells necessary to activate CD8+T
cells. The virus infects faster than the CD4+ T cells can replenish. The depletion
of the CD4+ T cells leads to the weakened immune system. Once an infected
individual has a CD4+ T cell count of less than 200 mm−3 cells, he or she is
classified as having clinical AIDS.

2.2 HIV Treatments

There are currently four types of HIV treatments. Two of these treatments affect
the virus once it enters the cell. Once the virus enters the host cell, the viral
RNA is reverse transcribed into DNA. This DNA copy of the virus genome then
goes on to create new RNA and proteins which are used to create new viruses.
Nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) make sure the
reversed transcribed DNA is faulty, disenabling the reproduction of HIV [2].
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) reduce the spread of
HIV by blocking the RT enzyme so it cannot function in the creation of viral
DNA from RNA [2]. This means the cell will not make viral proteins because
the DNA copy of the viral genome will not be made. Although, inhibiting RT
does not stop HIV from entering cell, it does prevent the virus from successfully
infecting the cell.

The third type of treatment is called protease inhibitor. Once the viral DNA,
or provirus, is integrated in the host DNA, the provirus will be duplicated when
a cell is activated and divides. The provirus needs to be cut at specific sites
in order to code for specific proteins. Protease inhibitor treatment blocks the
cleavage resulting in dysfunctional enzymes such as RT, protease and integrase,
which are necessary for the proliferation of the virus. Protease inhibitors will
make noninfectious viral particles, preventing the production of mature, infec-
tious virion. [2].
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The fourth group of treatment is the fusion or entry inhibitors. This treat-
ment can only be administered to patients who have already tried other treat-
ments. These drugs do not allow HIV to bind to human surface CD4 and CCR5
proteins. The fusion inhibitors T-20 must be injected and attach to the HIV
protein gp41. This prevents binding between the HIV surface proteins and hu-
man surface proteins [2]. As a result, HIV which is chemically altered by a
fusion inhibitor is not able to enter a susceptible CD4+ cell.

3 Model

In an effort to describe the dynamics of the interaction between multiple strains
of HIV-1 and the combined antiviral forces of the host’s immune system affected
by multi-drug treatment, we have constructed a six-compartment non-linear
ordinary differential equation model.

Figure 1: Two strain HIV model considering the immune system and combi-
nation drug therapy. T4 are the susceptible CD4+ T cells, T ∗w are the T cells
that are infected by wild-type virus, T ∗m are the T cells that are infected by the
mutated virus, Vw are the wild-type virus, and Vm are the mutated virus. See
Table 1 for parameter descriptions.
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dT4

dt
= s− dT4 − (1− rw)kVwT4 − (1− rm)kVmT4 (1)

dT ∗w
dt

= (1− rw)kVwT4 − βT ∗wT8 − δT ∗w − αT ∗w (2)

dT ∗m
dt

= (1− rm)kVmT4 − βT ∗mT8 − δT ∗m + αT ∗w (3)

dT8

dt
= γ(T ∗w + T ∗m)T8 − µT8 (4)

dVw

dt
= (1− σw)NδT ∗w − cwVw (5)

dVm

dt
= (1− σm)NδT ∗m − cmVm (6)

This model incorporates a class of uninfected CD4+ T cells, denoted T4; two
classes of HIV-1 virus, denoted Vw and Vm for a wild-type and a mutant type
respectively; and two classes of infected CD4+ T cells, T ∗w which are infected
by the wild-type virus and T ∗m which are infected by the mutant-type virus. To
incorporate the host’s immune response to infection, a class of CD8+ T cells,
or killer T cells, is also included. This class is denoted by T8. For convenience,
Table 1 is provided containing a list of all parameters and state variables as well
as their descriptions.

CD4+ T cells, or rather helper T cells, are assumed to be recruited at a
constant rate, s. The recruitment of new, uninfected, helper T cells corresponds
to the maturation of precursors from the bone marrow or thymus into functional
helper cells. The rate of removal of healthy helper T cells due to natural non-HIV
related causes is d. Helper T cells can become infected at the same rate k by one
of two of the genetic variants of the HIV-1 virus. In each case, infection is limited
by an infection inhibiting drug, which can be either a reverse transcriptase
inhibitor or a fusion inhibitor. The efficacy of an infection inhibiting drug is
denoted rw for the wild type strain and rm for the mutant type strain.

The model includes two classes of infected CD4+ T cells, T ∗w and T ∗m, one
class corresponding to each genetic variant of the HIV virus. CD4+ T cells move
into one of the infected classes, T ∗w or T ∗m, when infected by a wild-type virus
or a mutated virus, respectively. Infection rates are reduced by an infection
inhibiting drug. Once infected by a given virus type, infected T cells may be
removed from the plasma by a killer T cell. This process takes place at a rate
β. For simplicity, we assume the removal rate, δ, of both kinds of infected T
cells is the same. This removal of cells from the plasma represents the death
of infected cells whether it be related to viral infection or natural causes. Note
that the rate of removal of infected cells, δ, should be greater than the death
rate, d, of uninfected cells, δ > d. Since viral particles replicate within a cell,
they are subject to in-cell mutation. When a wild type virus within an infected
T cell becomes a mutant type virus, the infected T cell becomes a T cell infected
by mutated-type virus. This process takes place at a rate α.
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The immune response is taken into account through the incorporation of a
CD8+ class of killer T cells denoted by T8. Although killer cells are present
in the plasma which are specific to non-HIV related antigens, we consider only
killer cells produced in response to the presence of the two different kinds of
infected T cells. Killer cells eliminate infected T cells from the cell population.
The number of killer cells produced is related to the total number of infected
cells in the population. For simplicity, we assume that killer cells are produced
at the same rate whether they are produced as a result of the presence of a
either kind of infected T cell. This production rate is denoted by γ. Killer cells
are removed from the cell population due to natural deaths, which occur at a
rate µ.

Viral production takes place in infected T cells. The production of viral par-
ticles is limited by a drug which inhibits viral replication. This drug has efficacy
for wild-type virus and mutated-type virus which are σw and σm respectively.
The burst number, N , is defined as the average number of viral particles pro-
duced by either wild-type infected T cell or mutated-type infected T cell during
its lifetime. The wild type virus class is cleared at a rate cw, while the mutant
type viruses are cleared at a rate cm. Here, cw is always less than cm.

The model is initially analyzed without wild-type viral mutation (α = 0),
and then is analyzed with viral mutation (α > 0).

4 Analysis of Steady States when α = 0

When α = 0, we consider the existence of both wild and mutated virus from
the beginning of the infection. Wild-type infected T cells cannot produce mu-
tated virus since mutations cannot occur in the wild-type infected T cell. We
found seven steady states to our system, one non-infected steady state and six
infected steady states. The non-infected steady state corresponds to a virus
free system.The following points are defined using the reproductive numbers,
Rw and Rm, which are defined later in this section.

The steady states are in the form of Ej=(T4, Tw, Tm, T8, Vw, Vm), where j =
0, 1, ..., 6.

The disease free equilibrium (DFE), where no virus exist, is given by

E0 = DFE =
(

s

d
, 0, 0, 0, 0, 0

)
.

Next we want to determine the criteria for E0 to be locally asymptotically
stable (LAS). We linearize the system around E0 and find the characteristic
equation for the jacobian. This steady state is stable if each of the eigenvalues
have negative real parts. The Routh-Hurwitz Theorem is used to find criteria
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Table 1: Population and parameter definitions
Populations Description

T4 Target or uninfected CD4+ T cells
T ∗w CD4+ T cells infected by wild virus
T ∗m CD4+ T cells infected by mutant virus
T8 CD8+ T cells, immune response to virus
Vw Wild viral concentration
Vm Mutant viral concentration

Parameters Description
s Recruitment rate of CD4+ T cells
d Natural death rate of uninfected cells
rw Efficacy of RT or entry inhibitor on wild viruses
rm Efficacy of RT or entry inhibitor n mutant viruses
k Infectivity rate
β Rate at which CD8 T cells kill infected CD4+ T cells
δ Rate of loss of virus producing cells
γ Rate of activation of CD8+ T cells
µ Death rate of CD8+ T cells
α Rate of mutation from T ∗w to T ∗m
σw Efficacy of protease inhibitor on wild viruses
σm Efficacy of protease inhibitor on mutant viruses
N Ave. no. of virus particles produced by an infected cell during its lifetime
cw Rate of clearance of wild viruses
cm Rate of clearance of mutant viruses

to ensure stability. The general jacobian is as follows:

J =


G 0 0 0 −(1− rw)kT4 −(1− rm)kT4

(1− rw)kVw −βT8 − δ 0 −βT ∗
w (1− rw)kT4 0

(1− rm)kVm 0 −βT8 − δ −βT ∗
m 0 (1− rm)kT4

0 γT8 γT8 γ(T ∗
w + T ∗

m)− µ 0 0
0 (1− σw)Nδ 0 0 −cw 0
0 0 (1− σm)Nδ 0 0 −cm


where G = −d− (1− rw)kVw − (1− rm)kVm.

The jacobian J evaluated at E0 is

J(E0) =


−d 0 0 0 −(1− rw)k s

d
−(1− rm)k s

d

0 −δ 0 0 (1− rw)k s
d

0
0 0 −δ 0 0 (1− rm)k s

d

0 0 0 −µ 0 0
0 (1− σw)Nδ 0 0 −cw 0
0 0 (1− σm)Nδ 0 0 −cm

 .
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By inspection, −d and −µ are negative eigenvalues. We reduce the matrix to
a 4×4 and find the characteristic equation for the new matrix. The characteristic
equation, F (λ), is:

F (λ) = A(λ)B(λ),

where

A(λ) =
(
− (δ + λ)(cw + λ)(1− rw)k(1− σw)Nδ

)
,

B(λ) =
(
− (δ + λ)(cm + λ) + (1− rm)k(1− σm)Nδ

)
.

All eigenvalues have negative real parts when

N < min

(
cwd

(1− rw)k(1− σw)
,

cmd

(1− rm)k(1− σm)

)
. (7)

We define the reproductive number as

R0 := max(Rw, Rm),

where

Rw =
sk(1− rw)

d

N(1− σw)
cw

,

and

Rm =
sk(1− rm)

d

N(1− σm)
cm

.

Then for R0 < 1, Equation 7 holds.
The reproductive number is the average number of secondary virus produced

by one virus in a mostly susceptible population of CD4+ T cells. Since HIV
can be modeled as a host-vector system, there are two types dynamic behaviors
occurring during the progression of HIV: the virus infects the CD4+ T cell
and the infected cells produces more virus. In the equation of Rw, sk(1−rw)

d
denotes the average number of T cells that become infected resulting from the
introduction of one virus, which contribute to creating more wild virus. N(1−σw)

cw

denotes the average number of wild virus that one infected T cell produces. Rm

can be interpreted similarly.
If R0 < 1, then, on average, less than one virus is produced, implying the

disease will disappear. If R0 > 1, then, on average, each virus will produce more
than one virus.

Rw and Rm the individual effective reproductive numbers of a system free of
mutant virus or wild-type virus, respectively. We can see this when we linearize
the system of ODE’s about the non-infection steady state when one of the
viral strains is non-existent. For example, one can consider the system without
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mutant strain virus.

dT4

dt
= s− dT4 − (1− rw)kVwT4

dT ∗w
dt

= (1− rw)kVwT4 − βT ∗wT8 − δT ∗w

dT8

dt
= γT ∗wT8 − µT8

dVw

dt
= (1− σw)NδT ∗w − cwVw

We want to show that when mutant virus does not exist, the effective reproduc-
tive number is Rw. To do this we linearize the new system about the disease
free equilibrium , DFE∗ = ( s

d , 0, 0, 0). The linearization is:

J =


−d 0 0 −(1− rw)k s

d
0 −δ 0 (1− rw)k s

d
0 0 −µ 0
0 (1− σw)Nδ 0 −cw

 .

We find the characteristic equation for this system, and after some calcu-
lation, it can be proved that DFE∗ is LAS when Rw < 1. Similarly, we can
show that Rm is the effective reproductive number for the system when there
are no wild-type virus. However, if both strains of HIV-1 persist, then R0 is the
maximum of the reproductive numbers, Rw and Rm.

Due to the nature of the parameters defining R0, it is reasonable to expect
a value R0 > 1. This means the disease is not eradicated from a person’s
body after the introduction infection. Since R0 depends on the efficacy of both
treatments on both the wild and mutant virus, to reduce R0 to a value less than
one, the efficacy of either one of the treatments would have to be 100%. Thus
far, no single treatment or combination therapy is 100% effective. Our goal
is to determine whether treatment regimens that specify drugs which target
particular subsets of virus are effective.

The infected steady states are defined below.

E1 =
(

s

dRm
, 0,

s− dT4

δ
, 0, 0,

(1− σm)NδT ∗m
cm

)
,

which exists when Rm > 1 and s < (µ
γ

δ
Rm−1 ).

E2 =
(

s

dRw
,
s− T4d

δ
, 0, 0,

(1− σw)NδT ∗w
cw

, 0
)

which exists when Rw > 1 and s < (µ
γ

δ
Rw−1 ).
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E3 =
(

s

d + (1− rm)Vmk
, 0,

µ

γ
,
δ

β

(
RmdT4

s
− 1

)
, 0,

(1− σm)NδT ∗m
cm

)
which exists when s > µ

γ and Rm > sγ
sγ−µ .

E4 =
(

s

d + (1− rw)Vwk
,
µ

γ
, 0,

δ

β

(
RwdT4

s
− 1

)
,
(1− σw)NδT ∗w

cw
, 0

)
which exists when s > µ

γ and Rw > sγ
sγ−µ .

In the case of having both wild and mutant virus infecting, and if

A =
(1− rw)(1− σw)

cw
=

(1− rm)(1− σm)

cm
,

then

E5 =

(
s

dRm
,
s

δ
(1− 1

Rm
)−A, A, 0,

(1− σw)NkδT ∗
w

cw
,
(1− σm)NkδT ∗

m

cm

)

where A is an arbitrary number less than s
δ (1− 1

Rm
). This point exists when

Rm = Rw > 1.

E6 =

( s
d

1 + δRmµ
sδ

,
µ

γ
−A, A,

δ

β
(
dRmT4

s
− 1),

(1− σw)NkδT ∗
w

cw
,
(1− σm)NkδT ∗

m

cm

)

where A < µ
γ .

This point also exists when Rm = Rw > 1
1− δµ

sγ

and δµ
sγ < 1.

The existence and stability criteria for each point is summarized in Table 2
and detailed calculations can be found in the appendix.

This analysis with α = 0, while mathematically informative, is somewhat
unrealistic. This is illustrated by the strict conditions that must be satisfied
to have co-existence of viral strains. From literature we also know that viral
mutations are common [15]. Therefore for the rest of paper, we conduct analysis
for when α > 0.

5 Analysis of Steady States when α > 0

We now analyze the model which considers wild-type mutations. This means
that wild-type virus can mutate at a constant rate α inside a wild-type infected
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Table 2: Conditions for the existence and local stability for each steady state,
considering no mutations.

Steady State Criteria to Exist Criteria to be LAS

DFE always exist R0 < 1

E1 (Vm persist, T8 = 0) Rm > 1 and s < (µ
γ

δ
Rm−1 ) Rm > Rw

E2 (Vw persist, T8 = 0) Rw > 1 and s < (µ
γ

δ
Rw−1 ) Rw > Rm

E3 (Vm persist, T8 6= 0) s > µ
γ and Rm > sγ

sγ−µ Rm > Rw

E4 (Vw Persist, T8 6= 0) s > µ
γ and Rw > sγ

sγ−µ Rw > Rm

E5 (Vw, Vm co-exist, T8 = 0) Rm = Rw > 1

E6 (Vw, Vm co-exist, T8 6= 0) Rm = Rw

T cell. This model yields five steady states. The disease free equilibrium (F0)

is given by F0 = DFE =

(
s
d
, 0, 0, 0, 0, 0

)
and its stability can be found by

linearizing the system about the F0.
The DFE stability can be found by the same method as described in the

the subsection with analysis on steady states when α = 0. The following is the
general jacobian:

J =


G 0 0 0 −(1− rw)kT4 −(1− rm)kT4

(1− rw)kVw −(βT8 + (δ + α)) 0 −βT ∗
w (1− rw)kT4 0

(1− rm)kVm α −(βT8 + delta) βT ∗
m 0 (1− rm)kT4

0 γT8 γT8 γ(T ∗
w + T ∗

m)− µ 0 0
0 (1− σw)Nδ 0 0 −cw 0
0 0 (1− σm)Nδ 0 0 −cm


where

G = −d− (1− rw)kVw − (1− rm)kVm.
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To find the stability of the DFE for α > 0, evaluate the jacobian J at F0

and find the characteristic equation.

J(DFE) = J(F0) =


−d 0 0 0 −(1− rw)k s

d −(1− rm)k s
d

0 −(δ + α) 0 0 (1− rw)k s
d 0

0 α −δ 0 0 (1− rm)k s
d

0 0 0 −µ 0 0
0 (1− σw)Nδ 0 0 −cw 0
0 0 (1− σm)Nδ 0 0 −cm


The characteristic equation is the following:

h(λ) = X(λ)Y (λ)

where

X(λ) =
(

(1− rm)ks(1− σm)Nδ

d
− (δ + λ)(cm + λ)

)
,

and

Y (λ) =
(

(1− rw)ks(1− σw)Nδ

d
− ((δ + α) + λ)(cw + λ)

)
.

For all the eigenvalues to have negative real parts, we derive the following
conditions:

cmδ − (1− rm)ks(1− σm)Nδ

d
> 0

and

cw(δ + α)−
(1− rw)ks(1− σ)Nδ

d
> 0.

From these conditions, we define the effective reproductive number, R∗
0. In

order to satisfy both conditions,

R∗
0 = max

(
R∗

w, R∗
m

)
where

R∗
w =

(
(1− rw)ks

d(δ + α)
(1− σw)Nδ

cw

)
,

and

R∗
m =

(
(1− rm)ks

d

(1− σm)N
cm

)
.

R∗
w has analogous interpretation to Rw. However, α adds to the removal of

wild-type infected T cells. Therefore, (1−rw)ks
d(δ+α) , is the average number of T cells

that become infected with the initiation of one virus. The second fraction of
R∗

w has the same interpretation as Rw. R∗
m can be described similarly as Rm.
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The following points are the infected steady states: two boundary cases, and
two of coexistence.

In the case of the mutant virus persisting, having no immune response to the

virus, F1 =
(

s

d

1
R∗

m

, 0,
s

δ

(
1− 1

R∗
m

)
, 0, 0,

(R∗
m − 1)d

(1− rm)k

)
,

which exists when R∗
m > 1.

We also observe the persistence of the mutant virus, and an immune response,

F2 =
(

s

d

1

1 + δR∗
mµ

sγ

, 0,
µ

γ
,
δ

β

R∗
m

1 + δR∗
mµ

sγ

− 1, 0,
δµ

γ

δN(1− σm)
cm

)
,

which exists when R∗
m > 1

1− δµ
sγ

, and δµ
sγ < 1.

Now, if the case that both strains persist, and we do not observe an immune
response to the virus, F3 =(

s

R∗
wd

,
s

δ
(1− 1

R∗
m

)− T ∗m,
R∗

w − 1
(δ+α)δR∗

w

sα − R∗
mδ2

sα

, 0,
(1− σw)NδT ∗w

cw
,
(1− σm)NδT ∗m

cm

)
,

which exists when R∗
w > R∗

m and R∗
w > 1.

In the case of coexistence and an immune response, F4 =(
s− αµ

γ

d(Ψ)
,
µ

γ
− T ∗m,

αµ
γ Ψ

(1− αµ
sγ )(δR∗

m − (δ + α)R∗
w)

,
δ + α

β
(
d

s
R∗

wT4 − 1),
d(δ + α)

sk(1− rw)
R∗

wT ∗w,
dδ

sk(1− rm)
R∗

mT ∗m

)

where Ψ = 1 + (δ+α)µ
sγ R∗

w. which exists when 1 > αµ
sγ , R∗

m >
(δ+α)R∗

w

δ , and

d
sR∗

wT4 > 1.

Due to time constraints, and the complexity of the system being analyzed,
we did not establish conditions for local stability of each of the above steady
states.

Next, we conduct uncertainty analysis to investigate the variability in the
effective reproductive number due to the uncertainty in the parameter distribu-
tions. Sensitivity analysis is then conducted to find out what parameter, with
a given distribution, affects R0 the most.
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6 Uncertainty and Sensitivity Analysis

This analysis is conducted with α > 0.

6.1 Uncertainty

Uncertainty analysis is a way to evaluate the variability in the value of R∗
0 due

to the uncertainty in the input parameter values. We are interested seeing the
effects of combination drug therapy in two different cases:

1) rw > rm and σm > σw and,
2) rm > rw and σw > σm.

Therefore, we perform this analysis for each case. Then we compare the un-
certainty of R∗

0 and sensitivity of the parameters. In each case, we use Monte
Carlo sampling simulations, in which we assign each parameter a distribution.
To evaluate R∗

0, we sample from each of the parameters’ distributions at ran-
dom. This sampling is carried out 103 times. A histogram for case 1 is provided
(see Figure 2). [25] advises, that when a parameter distribution is unknown, a
triangular distribution should be used for that parameter. Therefore, we create
triangular distributions based on the data provided in the literature of [18], [19],
[20], [21], [5], [22], [23], [17], [16], [15], and [24]. To see the effects of treatment
we assign different distributions for the treatment efficacies corresponding to
case 1) and 2). See Table 4 and 5 for the specific values used in uncertainty and
sensitivity analysis.

From these sampling simulations, we can find the probability of R∗
0 being

than certain values for the particular distributions given to each parameter.
Please refer to Table 3.

Table 3: Results of the R∗
0 histogram showing the probability R∗

0 is less than
given value Q

Q Prob(R∗
0 < Q)

50 0.012
100 0.047
250 0.185
500 0.418

We did not include the histogram for the second case because it is similar to
the histogram of case 1. The results of the histogram agree with the biological
behavior of HIV because R∗

0 will never be less than one after the introduction of
one HIV virus, meaning that the disease will not be rid from the human body.
Once people are infected with HIV, they will always have HIV. In fact, we notice
R∗

0 will very few times even be near 1. We observed a consist low frequency
for values of 5 < R∗

0 < 750. Instead, the effective reproductive number is
concentrated in intervals around magnitude 102and103.
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Figure 2: This is the histogram for R∗
0 in the case of rw > rm and σm > σw.

This shows that upon the introduction of one virus, R∗
0 will never be less than

one, when denotes that the disease will disappear. Biologically, this is correct
because once a person is HIV positive, he or she will always have the virus. The
characteristics of the histogram are as follows: mean = 946, standard deviation
= 1130, and median = 605.
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Table 4: Assigned intervals for each treatment parameter, from which triangular
distributions were constructed. We investigate two cases: 1) rw > rm and
σm > σw and 2)rm > rw and σw > σm.

Parameter Min Value Estimated Mode Max Value
Case 1

rw .51 .75 1
rm 0 .25 .5
σw 0 0.25 0.5
σm 0.51 0.75 1

Case 2
rw 0 .25 .5
rm .51 .75 1
σw 0.51 0.75 1
σm 0 0.25 0.5

6.2 Sensitivity

Sensitivity of R∗
0 is conducted by calculating the partial rank correlation coef-

ficient (PRCC) of each parameter with respect to R∗
0. We consider the cases 1

and 2 as used in uncertainty analysis. To get the PRCC, we first had to use
regression analysis to find both the residuals of R∗

0 with respect to each one
of the parameters and the residuals of each parameter. For example, to find
the PRCC of parameter y, first let R∗

0 denote the response variable and use
regression against all parameters, except for y. The parameters which are used
in the regression are called the predictors. Regression will allow one to see if
the predictors give an accurate prediction of the value of R∗

0. The predictions
are given as the residuals in the regression process. Residuals are the errors in
how the predictor parameters can explain R∗

0. Next, we use y as the response
variable and regress against every other parameter in the expression of R∗

0. If
this plot is random, meaning that y does not have a linear relationship will all
other parameters, then the residuals are high. Therefore, y is an important pa-
rameter to have in the calculation of R∗

0. A linear relationship means that all the
predictor parameters would be yielding the same information as y. Therefore,
since y is redundant information, one can explain R∗

0 using only the predictor
parameters. More random plots lead to higher residuals and less relationship
between the response parameter and predictor parameters. Less random, or
linear relationships, lead to lower residuals and higher correlations between the
parameters.

However, if the regression of R∗
0 on the parameters without y is good, then y

is not needed in the model. Since the model is deterministic, if y is not needed,
then the model is wrong if it includes y as a parameter.

After obtaining both the residuals of R∗
0 with respect to each one of the

parameters and the residuals of each parameter, one can then rank the residuals
and compute the partial rank correlation coefficient(PRCC) of the parameters

17



Table 5: Assigned intervals for non-treatment parameters. These distributions
are the same for both cases: 1) rw > rm and σm > σw and 2) rm > rw and
σw > σm.

Parameter Min Value Estimated Mode Max Value Sources

N 100 550 1000 [18], [19], [20], [21]

k 0.00005 0.500025 1 [18], [19], [20], [21], [5], [22], [23], [17], [16], [24]

s 1 5 10 [18], [21], [5], [22], [23], [17], [16], [15], [18]

d 0.0042 0.0521 .1 [18], [19], [21], [5], [22], [23], [17], [16], [24]

δ 0.172 0.336 0.5 [18], [19], [20], [21], [5], [22], [23], [17], [16], [15]

α 0.74 2.87 5 [18], [15]

cw 0.2 2.6 5

cm 0.2 5.4 10.6

with respect to R∗
0. In order to visualize the value of the PRCC, one can create

a scattered plot of the R∗
0 residuals of one parameter against the residuals of

that same parameter; the slope of the fitted line through the scattered plots will
represent the PRCC.

PRCC’s vary from [-1,1]. Positive PRCC means the parameter and R∗
0 have

a positive correlation. So if the parameter increases, then R∗
0 increases, and

if the parameter decreases, then R∗
0 also decreases. If the PRCC is negative

then the parameter has a negative effect on R∗
0. If the parameter increases, R∗

0

decreases, and if the parameter decreases, R∗
0 increases. PRCC’s close to zero

imply no matter how much a parameter is increased or decreased, R∗
0 will not

be effected.
For the assigned triangular distributions of the parameters, figure 3 depicts

the scattered plots of the R∗
0 residuals against the particular parameter residuals
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when rw > rm and σm > σw. The PRCC is represented as the slope of the fitted
line in the plot (see Table 6 for values).
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Figure 3: Residual Plots of R∗
0 with respect to each parameter vs. Residuals

of each parameter. The Partial Rank Correlation is the slope of a fitted line
through the scattered plots.

The following is a table of the Partial Rank Correlation Coefficients (PRCC)
of each parameter with respect to R∗

0 for the two cases.

In case 1, rw > rm and σm > σw, it is interesting to see that rm, RT
treatment efficacy for the mutated virus, has a stronger correlation to R∗

0, even
though rw, RT treatment efficacy for the wild virus, is higher. This also occurs in
the second case, rm > rw and σw > σm, even though σw > σm, σm has a higher
correlation to R∗

0 than σw. So if one is to make a policy of what treatment
to provide and what virus to target, he or she should focus the resources on
controlling the mutated virus population. This policy would reduce R∗

0 most
efficiently. Another surprising result is that the mutating rate, α, is not sensitive
in the expression of R∗

0. Parameter α has very low correlation to the effective
reproductive number. The highest correlated parameters are N , s, d, and k.
Rather, R∗

0 is sensitive to the beginning number of susceptible T cells, the
infection rate, and the number of virus produced by one infected T cell.
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Table 6: Partial Rank Correlation Coefficients (PRCC) for the parameters with
respect to R∗

0 in two different cases: 1) rw > rm and σm > σw and 2) rm > rw

and σw > σm.
Parameter PRCC PRCC

rw > rm and σm > σw rm > rw and σw > σm

rw -0.070 -0.001
rm -0.222 -0.543
σw -0.021 -0.067
σm -0.551 -0.232
N 0.529 0.510
s 0.577 0.540
k 0.600 0.616
δ 0.054 0.026
d -0.664 -0.620
cw -0.130 -0.078
cm -0.226 -0.167
α -0.092 -0.010

7 Simulations

We are considering a simple model of HIV with immune response, treatments,
two viral strains, and mutation of free virus. Most literature does not include
these dynamics in combination when modeling the mutating nature of HIV and
its progression. Particularly, we are interested in the administration of targeted
treatment towards each strain. Recall rw and rm are the efficacy corresponding
to the treatment aimed at reducing the susceptibility of helper T cells, while
σw and σm are the efficacy corresponding to the treatment that reduces the
infectivity of infected T cells. Now, if we have a regimen with the boundary
cases for the level of efficacy each treatment can have,

rw = 0, rm = 1,
σw = 1, σm = 0

or,

rw = 1, rm = 0,
σw = 0, σm = 1,

we know R∗
w and R∗

m are both equal to zero. Thus, the concentration of both
wild-type and mutant virus will eventually be cleared from the host (see Figure
4.

We explore what happens to the viral concentrations when the efficacy of
treatment is within the boundary. First, we study the effect of the immune
response and mutation rate on the viral load. As expected, we observe that
including the effect of the immune response to infection will decrease the viral
load. Likewise, constant treatment decreases the viral load even further than
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Figure 4: Boundary Treatment for Wild and Mutant Strains
(–) Wild-Type Virus, (-) Mutant Virus

solely considering having an immune response to infection. Parameter values
and initial conditions used in simulations can be found listed in Table 7.

The results for the effect of the mutation on solutions were counterintuitive.
At a mutation rate of α = 0.1 and the given parameter values, the viral load did
not greatly differ from simulations performed with α = 0. The general trajec-
tory of viral concentration for both the wild-type and mutant-type did not alter
with the consideration of mutations, only the levels of viral load achieved where
modified. However, considering an immune response to different regimens of
treatment efficacy resulted in large differences in viral load and trajectory (see
Figure 5. Also, we observed a sustained level of wild virions but extinction of
mutant virions, corresponding to steady state E4. Even though for the parame-
ters used, we observe mutant virus extinction, we know from analysis parameter
α is necessary for a larger region of coexistence.

The steady states of interests are those which sustain coexistence of the wild
and mutant strains when α > 0. The rest of the simulations are with mutations.

Simulations to determine the effect of efficacy in case 1 and case 2 on R∗
0

were performed. For σw < σm, R∗
0 increases almost linearly as we vary the RT

or entry inhibitor efficacy. In this case, low levels of the effective reproductive
number can be sustained by high levels of rm in combination with mostly all
values of rw. in these plots, we include a plane at R∗

0 = 1, to see the level of
efficacy necessary to ensure R∗

0 < 1. The levels of treatment must be extremely
high to reduce R∗

0 below 1.
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Variable Initial Value
T4(0) 100 mm−3

T ∗w(0) 3 mm−3

T ∗m(0) 2 mm−3

T8(0) 1 mm−3

Vw(0) 4 mm−3

Vm(0) 2 mm−3

Parameter Value Unit
rw varies
rm varies
σw varies
σm varies
s 6 mm−3

d 0.1 day−1

k 0.1 mm3 day−1

β 0.35 day−1

δ 0.4 day−1

γ 0.55 day−1

µ 2 day−1

α 0.1 or 0 day−1

N 659
cw 2.4 day−1

cm 10.6 day−1

Table 7: Initial conditions and parameter values used in the simulations per-
formed. The values of the treatment efficacy were varied.
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Figure 6: R∗
0 vs. RT Treament and R0 vs. PI Treatment Efficacy when rw =

0.85, rm = 0.25, σw = 0.15, σm = 0.75, and α = 0.1

For case 1, where we fixed the RT or entry inhibitor efficacy and vary the
PI efficacy, we observe low levels of R∗

0 are maintained for high levels of σw and
σm. In fact, we can maintain R∗

0 below 60, for σm > 0.4 in combination with
any σw. Please refer to ??.

For case 2, minimal levels of R∗
0, less than 50, are achieved when rw > 0.40,

for the PI treatment efficacy of σw = 0.75 and σm = 0.15. When we fix rw = 0.25
and rm = 0.85, and vary PI efficacy, we observe a low level of R∗

0 for σw > 0.50
and all values of σm. Please refer to 7.

While considering ranges of treatments gives allows us to observe the range
for which R∗

0 will be maintained low, it is not reasonable to assume efficacy of
all treatments constant over time. A more realistic approach is to simulate viral
loads after viral set point, and with nonconstant efficacy. To achieve this, we
introduce a time delay for all treatments. We do not initiate treatment for 10
days after infection. When we do, we make it constant for 5 days. After day
15, the level of efficacy behaves according to a sinusoidal curve.

24

.... . . . . . 



0

0.5

1

0

0.5

1

0

50

100

150

r
w

r
m

R
0

0

0.5

1

0

0.5

1

0

100

200

300

400

500

σ
w

σ
m

R
0

Figure 7: R∗
0 varying RT and PI treatment efficacies, where rw = 0.25, rm =

0.85, σw = 0.75, σm = 0.15 and α = 0.1

The combination of time delayed treatment causes an increase in viral con-
centration. When we have a higher RT efficacy on wild-type virus, and low
PI efficacy of wild-type virus, we have high levels of wild-type virus with and
without immune response. Having a time delay on treatment only considers the
problem with constant efficacy, however, also including immune response time
delay would be appropriate in this model.

8 Results and Conclusions

In an effort to gain further understanding of the dynamics of HIV infection, we
have developed a mathematical model which considers the effects of immune
response and multi-drug treatment on the in-host progression of two genetic
variants of HIV. Mathematical analysis was conducted for the case when no viral
mutation occurred as well as for when viral mutations took place. In each case,
multiple equilibria were found. We determined both coexistence and exclusion
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Figure 8: Case 2, (-) Wild Virions, (- -) Mutant Virions, (a) and (c) Do not
consider an immune response and have constant treatment, (c) and (d) Consider
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equilibria as well as existence criteria for each of these points. For the case where
the mutation rate was zero, we determined criteria which ensured the stability
of each exclusion equilibria. In both the mutation and the non-mutation case,
the conditions for stability of F0 and E0, the non-infected steady states, were
used to derive the effective reproductive numbers R0 and R∗

0, which are defined
as the average number of secondary viruses produced by the introduction of a
single virus into a pool of uninfected CD4+ cells.

Once the effective reproductive number was determined, we carried out un-
certainty and sensitivity analysis. The uncertainty analysis gave insight to how
uncertain the value of R∗

0 was given the uncertainty of the parameters in R∗
0,

while sensitivity analysis revealed which parameters had the greatest relative ef-
fect on the value of R∗

0. Through uncertainty analysis, it was found that, given
a number, Q, the probability that R∗

0 is less than Q is positively correlated with
Q. In particular, for very low values of N, the probability that R∗

0 is less than
N is extremely low. This agrees with the fact that once a person is successfully
infected with HIV, it is highly improbable for viral levels to decrease to zero.
The results of the sensitivity analysis were somewhat surprising. We discov-
ered that, in both treatment cases, R∗

0 was least sensitive to the mutation rate.
The T cell infection rate, the recruitment and death rates of CD4+ cells, and
the burst number were among the parameters to which R∗

0 was most sensitive
in both treatment cases. Finally, considering only treatment parameters, the
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effective reproductive number was most sensitive to treatment efficacy for the
mutant type virus. These results suggest that it is crucial to have drugs which
can decrease the susceptibility of T cells and reduce the infectivity of the virus.

In addition to mathematical and sensitivity analysis, numerical simulations
were conducted to provide further insight to the model. In these simulations,
we considered two separate cases. In one case, the infection inhibiting drug
had a high efficacy for the wild type virus and a low efficacy for the mutant
type virus, while the viral replication inhibiting drug had high efficacy for the
mutant type virus and a low efficacy for the wild type virus. In the other
case, the infection inhibiting drug had a high efficacy for the mutant type virus
and a low efficacy for the wild type virus, while the viral replication inhibiting
drug had high efficacy for the wild type virus and a low efficacy for the mutant
type virus. In each of these cases, a specific type of drug is used to target a
specific genetic variant of the HIV virus. We found that only a small range of
treatment parameter values would yield an effective reproductive number less
than unity, which would result in eradication of the viral population. These
parameter values correspond to very high efficacy of treatments. Furthermore,
our model suggests using specific types of drugs to target specific strains of HIV
is an ineffective way to treat HIV. In order to keep the progression of HIV to
a minimum, at least one drug should have high efficacy for multiple genetic
variants of the virus.

9 Future Work

Due to complexity of the HIV, we made assumptions of the nature of the pa-
rameters to simplify our calculations. To improve on the amount of information
captured by the model, one alteration to our model would be the inclusion of
the β, effectiveness of CD7 cells in killing infected helper T cells, in the dVw

dt and
dVm

dt terms. This would assure the β term would appear in the effective repro-
ductive number in order to consider immune response in maintaining R∗

0 at a
minimum level. While this model accounts for immune response and treatment
on two strains of HIV, it does not account for the time delays associated with
immune response and treatment. Formulating a time delay model could aid in
determining the role of responses of immune to infection and to treatment. Not
only are parameters associated with immune response and treatment efficacy
time dependent, but other parameters such as supply of CD4 T cells, mutation
rate, and infectivity rate among others should also be made time dependent.
This would provide a framework for understanding the balancing of immune
response and treatment to viral load, helper T cell count and killer T cell count.
We notice results vary due to parameter estimations used during simulations.
Finding ways to make more accurate estimations of parameters would improve
the quantitative results presented in this paper.
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10 Appendix

10.1 Routh-Hurwitz Theorem

1. Find Jacobian Matrix (J) of system at the steady point (p) of interest,
(J(p)).

2. Find characteristic equation for system jacobian by takeing the determi-
nate of (J(p) − λI), where J is the system Jacobian matrix and I is the
identity matrix.
To ensure eigenvalues have real negative part, use Routh-Hurwitz Method
as follows:

• For λ2 + λa1 + a2 = 0
a1, a2 > 0

• For λ3 + λ2a1 + λa2 + a3 = 0

a1, a3 > 0

and
a1a2 > a3

• For λ4 + λ3a1 + λ2a2 + λa3 + a4 = 0

a1, a2, a4 > 0

and
a3(a1a2 − a4) > a2

1a4

10.2 Local stability criteria for each steady point when
α = 0

Stability For Steady Point E1

J(E1) =


−d− (1− rm)kVm 0 0 0 −(1− rw)kT4 −(1− rm)kT4

0 −δ 0 0 (1− rw)kT4 0
(1− rm)KVm 0 −δ βT ∗m 0 (1− rm)kT4

0 0 0 γT ∗m − µ 0 0
0 (1− σw)Nδ 0 0 −cw 0
0 0 (1− σm)Nδ 0 0 −cm
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Characteristic Equation: Det(J(E1)− λI) = ABC
where

A =
(
λ− γT ∗m + µ

)
B =

(
λ2 + (δ + cw)λ + δcw −

Rwδcw

Rm

)
C =

(
λ + δ + (1− rM )kVm

)(
λ2 + (δ + cm)λ

)
+

(
dcmδ(Rm − 1)

)

Stability For Steady Point E2 This point is symmetric to Point E1.

Stability For Steady Point E3

J(E1) =


−d− (1− rm)kVm 0 0 0 −(1− rw)kT4 −(1− rm)kT4

0 −βT8 − δ 0 0 (1− rw)kT4 0
(1− rm)kVm 0 −βT8 − δ βT ∗m 0 (1− rm)kT4

0 γT8 γT8 γT ∗m − µ 0 0
0 (1− σw)Nδ 0 0 −cw 0
0 0 (1− σm)Nδ 0 0 −cm


Characteristic Equation:

Det(J(E3)− λI) = AB

where

A =
(
λ2 + (βT8 + δ + cw)λ + (βT8 + δ)cw −

dRwcwδT4

s

)
and

B =
(
−s

T4

(
−λ(λ+βT8+δ)(λ+cm)+

RmcmdδT4

s
λ−βµT8λ+cm)

)
+

Rmcmdδλ(s− dT4)
s

)
Stability For Steady Point E4 is similar.
Stability for E5 and E6 is difficult due to the nature of the system. Only

a range of numerical results were obtained to show the stability of the steady
states.
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