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Abstract

In this project we present two mathematical models for the human tympanic mem-

brane. The eardrum can be viewed as an example of the vibrating drum problem.

In the first model, we treat the tympanic membrane as a rectangular region. In the

second model the tympanic membrane is considered as a disk. Both models use a

wave equations. We study the impact of changes in the membrane tension related

to trauma or tumors which cause the frequencies of vibration to either increase or

decrease.

1 Introduction

The human ear serves as a transducer, converting sound energy into mechanical

energy and then mechanical energy into a nerve impulse which is transmitted to

the brain. The ear’s ability to do this allows us to perceive the pitch of sounds by

detection of the wave’s frequencies, the loudness of sound by detection of the wave’s

amplitude and the timbre of the sound by the detection of the various frequencies

which make up a complex sound wave [10].
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The ear consists of three basic parts - the outer ear, the middle ear, and the inner

ear. Each part serves a specific purpose in detecting and interpreting sound. The

outer ear collects and channels sound to the middle ear which transforms the energy

of a sound wave into the internal vibrations of the bone structure of the middle ear

and then transforms these vibrations into a compressional wave in the inner ear.

The inner ear converts the energy of a compressional wave within the inner ear fluid

into nerve impulses which are transmitted to the brain [10].

The outer ear consists of the ear flap and the ear canal. The outer ear channels

sound waves to the tympanic membrane (eardrum) of the middle ear. The tym-

panic membrane converts the mechanical energy of the sound wave into vibrations

which are conducted to the ossicles of the inner ear [10].

The middle ear is an air-filled cavity consisting of the tympanic membrane and the

three ossicles which are called the malleus, incus and stapes. The tympanic mem-

brane is a fibrous membrane which vibrates at the same frequency of the sound

wave. The ossicles of the middle ear act as levers to amplify the vibrations of the

sound wave. Due to a mechanical advantage, the displacements of the stapes are

greater than that of the malleus. Furthermore, since the pressure wave striking the

large area of the eardrum is concentrated into the smaller area of the stapes, the

force of the vibrating stapes is nearly 15 times larger than that of the tympanic

membrane [10].

The inner ear consists of the cochlea, the semicircular canals, and the auditory nerve.

The cochlea and the semicircular canals are filled with endolymph. The endolymph

and nerve cells serve as accelerometers for detecting accelerated movements and as-

sisting in the task of maintaining balance. The cochlea is shaped like a helical spiral.

Its inner surface is filled with fluid and lined with over 20 000 hairlike nerve cells

which start moving if a compressional wave comes in from the interface between the

malleus of the middle ear and the oval window of the inner ear through the cochlea.
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Each cell has a given sensitivity to a particular frequency of vibration. When the

frequency of the compressional wave matches the given frequency of the nerve cell,

then the cell will resonate with a larger amplitude of vibration. This increased vi-

brational amplitude induces the cell to release an electrical impulse which is passed

on by auditory nerve to the brain. In a process which is not clearly understood, the

brain is capable of interpreting the qualities of the sound upon reception of these

electric nerve impulses [10].

There are several causes of hearing loss, conductive hearing loss referring to the type

of hearing loss caused by a mechanical problem in the outer or middle ear which

might block the conduction of sound. Causes can include perforation of the tym-

panic membrane or tumors close to the tympanic membrane, the first of which may

cause a reduction of the membrane’s tension, the latter may cause an increase in

tension [10].

There have been essentially two kinds of approaches in modelling the tympanic

membrane, the first of which does not consider the ultrastructure of the membrane

and a second one which accounts for the fibrous ultrastructure of the eardrum.

The first known model of the tympanic membrane was formulated by Helmholtz in

1873 [8]. He showed that sound waves cause the tympanic membrane to vibrate and

that the ossicles conduct these vibrations to the inner ear. In 1941, Bekesy recorded

the first measurements of the human eardrum and describes the tympanic membrane

as a stiff plate [2]. In the 1979’s, Tonndorf and Khanna used holographic experiments

and a continuous model to study the restoring force within the tympanic membrane

[14]. Laszlo and Funnell modeled the eardrum using a finite element method [6],

ignoring the fibrous structure, but including several kinds of restoring forces. A

continuous model which accounts for the fibrous ultrastructure of the tympanic

membrane has been introduced by Rabbitt and Holmes in 1986 [12].
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2 The General Model

We assume that the tympanic membrane is homogeneous and that one point on the

membrane can move in only one direction.

The tympanic membrane has an approximately constant volume density ρ, some-

where between that of water (1.0gcm−3) and that of undehydrated collagen (1.2gcm−3)

[7].

The tension T of the tympanic membrane has never been satisfactorily measured [6],

therefore, we will restrict ourselves to a qualitative analysis regarding the tension

parameter.

Let D be the region in the x, y-plane along whose boundaries the tympanic mem-

brane is fastened, and let u(x, y, t) denote the location of the point on the membrane

with coordinates x, y at time t. Let ρ denote the constant density of the membrane

[5].

Newton’s second law describes the force F which is acting on a sufficiently small

rectangular piece of D at (x, y) with sides dx, dy as

F = ρ
∂2u

∂t2
(x, y) dxdy. (1)

Let u(x, y) be the initial position of the membrane. The force displaces it by δ(x, y)

to

u(x, y) + δ(x, y) (2)

where δ(x, y) and its derivatives are assumed to be very small. Then the work

performed on the region dxdy by F is given by

F δ(x, y) = δ(x, y) ρ
∂2u

∂t2
(x, y)dxdy (3)
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and the total work for the entire membrane is obtained by

Work =
∫ ∫

D

δ(x, y) ρ
∂2u

∂t2
(x, y)dxdy (4)

The potential energy Epot being stored in the membrane is directly proportional to

the extent to which the membrane is stretched, where the stretching is approximated

by

Epot =
T

2

∫ ∫

D

[
(
∂u

∂x
)2 + (

∂u

∂y
)2

]
dxdy (5)

where T denotes the tension of the membrane which we assume to be constant. The

new potential energy Enew
pot after displacement of the membrane by δ(x, y) can be

determined as follows:

Enew
pot =

T

2

∫ ∫

D

[
(
∂u

∂x
)2 + (

∂u

∂y
)2

]
dxdy+T

∫ ∫

D

[
∂u

∂x

∂δ

∂x
+

∂u

∂y

∂δ

∂y

]
dxdy+

T

2

∫ ∫

D

[
(
∂δ

∂x
)2 + (

∂δ

∂y
)2

]
dxdy

(6)

where the last term can be neglected if δ and its derivatives are sufficiently small.

Under this condition the difference in potential energy is

Enew
pot − Epot = T

∫ ∫

D

[
∂u

∂x

∂δ

∂x
+

∂u

∂y

∂δ

∂y

]
dxdy =

∫ ∫

D

T∇u∇δdxdy. (7)

Now we apply Gauss’ Theorem [5] in the plane to obtain

∫ ∫

D

T∇u∇δdxdy +
∫ ∫

D

Tδ∇∇udxdy =
∫

∂D

Tδ∇uNds. (8)

However, δ vanishes on ∂D, and therefore, the change in potential is given by

−
∫ ∫

D

δ(x, y)T (∇∇u)(x, y)dxdy (9)

Since the work performed is the negative of the potential, we have

∫ ∫

D

δ(x, y) ρ
∂2u

∂t2
(x, y)dxdy =

∫ ∫

D

δ(x, y)T (∇∇u)(x, y)dxdy, (10)

which holds for all δ. Therefore we obtain

ρ
∂2u

∂t2
= T (∇∇u) (11)
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which is equivalent to
∂2u

∂t2
=

T

ρ
∇∇u (12)

or
∂2u

∂t2
= c2 (

∂2u

∂x2
+

∂2u

∂y2
), (13)

which is the wave equation in two dimensions, where c2 := T
ρ
. Therefore the bound-

ary value problem to be solved is:

Find u(x, y, t) such that

1. ∂2u
∂t2

= c2 (∂2u
∂x2 + ∂2u

∂y2 )

2. u(x, y, t) = 0 for (x, y) ∈ ∂D (Dirichlet boundary condition)

3. u(x, y, 0) = g1(x, y) and ∂u
∂t

(x, y, 0) = g2(x, y) (initial conditions)

where D is a bounded region in the (x, y)-plane, ∂D is piecewise smooth and

g1, g2 : D → R are continuous.

In the following two sections, the tympanic membrane is considered as a vibrating

drum and this boundary value problem is solved for a rectangular and a circular

region, thus allowing for two models of the tympanic membrane.

3 Solution Of The Rectangular Model

We now approximate the tympanic membrane by a rectangular region

D := {(x, y) ∈ R2 | 0 ≤ x ≤ a, 0 ≤ y ≤ b} (14)

where the dimensions of the membrane are estimated by a = b = 9mm [6]. Now the

boundary condition becomes

u(0, y, t) = u(a, y, t) = u(x, 0, t) = u(x, b, t) = 0 (15)
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The solution of the boundary value problem using a separation of variables ansatz

is

umn(x, y, t) = sin(
πmx

a
) sin(

πny

b
)[A cos(ωmnt) + B sin(ωmnt)] , m, n ∈ N0 (16)

where

ωmn := c
√
−λmn , λmn := −(

mπ

a
)2 − (

nπ

b
)2 (17)

The general solution is found as a superposition [5] of these solutions

u(x, y, t) =
∞∑

m,n=1

sin(
πmx

a
) sin(

πny

b
)[Amn cos(ωmnt) + Bmn sin(ωmnt)] (18)

and Amn and Bmn are determined from the initial conditions. Assuming that

u(x, y, 0) = u0(x, y) , u′(x, y, 0) = v0(x, y) (19)

we obtain

Amn =
4

ab

a∫

0

b∫

0

u0(x, y) sin(
πmx

a
) sin(

πny

b
) (20)

and

Bmn =
4

ab

a∫

0

b∫

0

v0(x, y) sin(
πmx

a
) sin(

πny

b
) . (21)

The motion of the membrane is the superposition of infinitely many modes, where

the mode umn(x, y, t) oscillates with the frequency

smn =
ωmn

2π
=

1

2π
c
√
−λmn =

1

2π

√
T

ρ

√
(
mπ

a
)2 + (

nπ

b
)2 . (22)

We can see that if the tension T of the tympanic membrane increases, the frequency

of vibration will increase. This suggests that in case of a perforation of the tym-

panic membrane which causes a decrease in tension, the frequencies of vibration de-

crease. As high frequency vibrations of the tympanic membrane are associated with

high-frequency hearing, we would expect a high-frequency hearing loss in patients

suffering from tympanic membrane perforations. Similarly, if a tumor is located in

the middle ear that applies pressure to the ossicles, and therefore to the tympanic

membrane, its tension increases, and we expect an increase in vibration frequencies,

and thus a low-frequency hearing loss.
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Remark: As we can see from the model, if the density ρ of the membrane increases,

the frequency of vibration will decrease. However, the density of the human tym-

panic membrane appears to be rather constant and does not change with age or due

to injuries [10].

4 Solution Of The Circular Model

After changing to polar coordinates by using the identities x = r cos θ and y = r sin θ,

where r is the radius and θ denotes the angle, we can restate the boundary value

problem as:

For 0 < r ≤ 1, θ ∈ R, find u(r, θ) such that

1. 1
r

∂
∂r

(r ∂u
∂r

) + 1
r2

∂2u
∂θ2 = 0

2. u(r, θ + 2π) = u(r, θ) (periodicity)

3. u is ”well-behaved” near r = 0

4. u(1, θ) = h(θ), h ”well-behaved” with h(θ + 2π) = h(θ) (boundary condition)

Using separation of variables, the solution to the boundary value problem is

un(r, θ) = anr
n cos(nθ) + bnr

n sin(nθ) , n ∈ N0. (23)

Therefore, the general solution which satisfies the periodicity condition is

u(r, θ) =
a0

2
+

∞∑

1

(anr
n cos(nθ) + bnrn sin(nθ)), (24)

where a0, a1, ..., b1, ... are constants which can be determined by applying the bound-

ary conditions:

h(θ) = u(1, θ) =
a0

2
+

∞∑

1

(an cos(nθ) + bn sin(nθ)), (25)

i.e. the constants a0, a1, ..., b1, ... are the Fourier coefficients of h.
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We will see that in this model, determining the vibration frequencies and amplitudes

reduces to solving the eigenvalue problem for the Laplace operator [5].

Let

D := {(x, y) ∈ R2|x2 + y2 ≤ R2}, R ∈ R+ (26)

denote the disk with radius R. Using separation of variables, u(x, y, t) = f(x, y)g(t),

leads to two eigenvalue problems

g′′(t) = λg(t) (27)

and

∆f(x, y) = λf(x, y) (28)

where λ ∈ R is a constant and f must satisfy the boundary condition

f(x, y) = 0 for (x, y) ∈ ∂D. (29)

The expression in (28) is the eigenvalue problem for the Laplace operator. We

shall see that its eigenvalues determine the frequencies of vibration of the tympanic

membrane.

We use polar coordinates to compute the eigenvalues of the disk:

1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂θ2
= λf, f(r, θ) = 0 on ∂D (30)

Again, use separation of variables and let f(r, θ) = ϕ(r)ψ(θ), ϕ(R) = 0, ψ(θ+2π) =

ψ(θ), to obtain two ordinary differential equations

∂2ψ

∂θ2
= µψ, ψ(θ + 2π) = ψ(θ) (31)

and

r
∂

∂r

(
r
∂ψ

∂r

)
− λr2ϕ = −µϕ, ϕ(R) = 0 (32)

where µ ∈ R is constant. The only nontrivial solutions of (31) are

µ = 0, ψ =
a0

2
(33)

and

µ = −n2, ψ = an cos(nθ) + bn sin(nθ) (34)
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for n ∈ N. Substitution into (32) and defining x :=
√−λr and y := ϕ leads to

x
∂

∂x

(
x

∂y

∂x

)
+ (x2 − n2)y = 0, y(

√
−λR) = 0 (35)

which is Bessel’s equation. For each n ∈ N, (35) has a one-dimensional space of

solutions which are constant multiples of the Bessel functions of the first kind Jn.

At this point, the eigenvalue problem of the Laplace operator amounts to the study

of zeros of the Bessel functions [5]: the boundary condition y(
√−λR) = 0 requires

√−λR to be a zero of Jn.

Let xn,k denote the k-th positive root of Jn. Then

√
−λR = xn,k (36)

implies

λ = −x2
n,k

R2
(37)

and therefore

ϕ(r) = Jn

(
xn,kr

R

)
(38)

is a solution of (35) which vanishes at r = R. For n ∈ N,

λn,k = −x2
n,k

R2
(39)

is an eigenvalue and

fn,k = Jn

(
xn,kr

R

)
cos(nθ) (40)

or

hn,k = Jn

(
xn,kr

R

)
sin(nθ) (41)

are solutions to the eigenvalue problem. fn,k and hn,k are called eigenfunctions.

The general solution again will be a superposition of these modes of vibration.

To solve the initial value problem, we substitute the eigenvalues λn,k into the equa-

tions for g and obtain

g(t) = K sin(c
√
−λt), c =

√
T

ρ
, K ∈ R (42)
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as solutions.

Each eigenfunction corresponds to one mode of oscillation of the tympanic mem-

brane, i.e. the n,k-th mode vibrates with frequency

sn,k =
1

R

c
√
−λn,k

2π
=

c

R2

xn,k

2π
=

√
T
ρ

R2

xn,k

2π
. (43)

Thus we can see, as in the previous model, that the frequencies of vibration of the

membrane is directly proportional to the tension of the membrane and indirectly

proportional to its density. Therefore we obtain the same results as before regard-

ing the impact of membrane perforation and tumors which are located close to the

eardrum.

Here, the frequencies are also related to the radius R of the membrane, and the

relation is quadratic. This implies that as the radius of the membrane decreases,

the frequencies of vibration increase quadratically. This suggests that the modes of

vibration of the tympanic membrane of a child oscillate at higher frequencies than

the adult one: a child’s tympanic membrane of radius R vibrates at modes of fre-

quencies four times as great when compared to an adults tympanic membrane of

radius 2R. We can conclude that this may partly explain (apart from degeneration

of the basilar membrane with age) why children have better high-frequency hearing

than adults.

5 Conclusions

We have treated the tympanic membrane as a vibrating drum and used wave equa-

tions in both models. From the solutions to the rectangular model we can see that

the tension of the membrane is directly proportional to the frequencies of vibration.

Thus whenever there is an increase in tension, for example caused by a tumor which

is located in the middle ear, the frequencies of vibration increase. Whereas, a re-

duced tension of the tympanic membrane, such as caused by a perforation, leads to

a decrease in frequencies. When tumors of the middle ear and perforation of the
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tympanic membrane are studied from a medical point of view, all of them mention

hearing loss as a symptom, however, they do not specify a high or low-frequency

hearing loss or the impact on the frequencies of vibration of the eardrum. It would

be interesting to compare our results to clinical data from patients in order to see if

this is in accordance with our findings.

From the solutions of the circular model we can see that the radius R of the mem-

brane is inversely proportional to the frequency of its oscillation. Moreover, if the

radius of the membrane is doubled, the frequencies of vibration decrease by a factor

of 4. Therefore a child’s tympanic eardrum of radius R vibrates at higher frequencies

when compared to an adult’s tympanic membrane of radius 2R.

An idea for further work is to use classical plate theory and include elasticity theory

into the model to account for the fibrous ultrastructure of the membrane. This will

result in a fourth order partial differential equation model which will explain more

aspects of the vibrating tympanic membrane, however, it will also be more compli-

cated to analyze.
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