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Abstract 

Chagas' disease, caused by certain strains of the parasite Trypanosoma cTUzi, is 
a vector-borne disease, previously thought to be transmitted solely through the· fecal 
matter of the triatomine vectors after feeding on the mammalian host. However, this 
mode of transmission is inefficient in the vectors, Triatoma Sanguisuga a subspecies of 
the reduviid family, prevalent in the Southeastern United States, due to the significant 
delay between feeding and defecation times. The prevalence in this region, 40-60% 
thus necessitates an alternative explanation. The hosts in the sylvatic cycle of this 
region, including opossums, raccoons, and armadillos, to name ~ few, are known to 
consume the vectors, although this is a traditionally inefficient way of transmitting the 
parasite. Recently, vector behavior has been observed to be modified during infection, 
termed differential behavior, such as feeding more frequently and wandering into broad 
daylight. The extent to which this affects the disease dynamics warrants investigation 
and could explain the persistence of T. Gruzi in the sylvatic cycle of this region. 
To include both modes of transmission, a deterministic model of the disease dynamics 
has been developed, incorporating both vector-host and predator-prey dynamics. This 
model is studied to examine how the differential behavior affects the disease dynamics, 
threshold of infection, and the current endemic equilibrium which is presently the 
case. Numerical simulations are carried out to verify the theoretical results. We have 
shown that elevation of consumption of the vector decreases infection levels and could 
possibly drive the vector population to extinction. Vectors increased vulnerability to 
predation increases consumption of infected vectors, which decreases prevalence levels 
but only slightly affects the total population size. Also, increased feeding frequency of 
the vectors boosts infection levels significantly, and could explain the high prevalence 
of T. Gruzi in the southeastern United States. 
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1 Introduction 

Chagas' disease is a widely underdiagnosed parasitic infection caused by some strains 
of Trypanosoma Cruzi, or T. Cruzi, known to afflict about 16 to 18 million people per 
year with an estimated 100,000 of these in the United States [5], [6]. Of these, about 
50,000 die of the disease [5], typically of cardiac or respiratory complications after chronic 
infection. This well-established parasite, perhaps predating the arrival of humans [1], [2], 
is largely prevalent in Latin America and other sufficiently warm climates, and has evolved 
to establish multiple transmission modes. 

The vector-borne disease is transmitted through many species of mammals, including 
opossums, raccoons, and armadillos as well as humans. Having so many carriers aids the 
parasite in maintaining high prevalence levels (about 30-60 % in Latin America [3]). In 
addition to being prevalent in Latin America, some species of the parasites' vector, the 
reduviid bug which is a member of the Triatominae family, are prevalent throughout the 
southeastern and in parts of the southwestern United States. This vector is typically found 
in dark, cool places and feeds on their mammalian hosts, usually during sleep, and passes 
the parasite through defecation, shed on the host soon after finishing a meal. A host then 
typically scratches the irritated area, rubbing the fecal matter into its bloodstream by 
way of broken skin. As a consequence of the vector characteristics, infection is spread to 
humans via this transmission cycle typically in areas of urban sprawl and/or where there 
are many buildings and housing establishments of poor construction. 

The parasites typically thrive in a sylvatic vector-host transmission cycle - meaning 
that they are transmitted from the vectors to an animal indigenous to a wooded area 
and vice versa. This system is largely unstudied, although it has the potential to shed 
substantial light on this incredibly tenacious parasite. The sylvatic cycle has proven to be 
a major player in the story of Chagas' disease, with observed prevalence levels of about 40 
- 60% [8] in the southeastern United States. This is puzzling, however, since the vectors 
prevalent in this region have a large delay between feeding and defecation times [9], [10], 
and merits investigation. One possible explanation is that of'vector consumption, and 
another is the role of differential behavior, any vector behavior modified or adjusted by 
the infection, on the spread of infection. Specifically, we consider the increased frequency 
of feeding times of vectors whose salivary glands may be swollen and affecting the vectors' 
ability to swallow. Also, in the southeastern United States, T. Sanguisuga, T. Cruzi's 
primary vector in this region, has been observed wandering around in broad daylight, 
which is in contrast to the cool, dark hiding places where it usually resides. This behavior 
increases its vulnerability to predation by a host, and may be a result of any number of 
things, including perhaps neural dysfunction, or desperation in its search for food due to 
difficulty in feeding as a result of the first type of differential behavior discussed. 

We use a deterministic mathematical model to examine the relationships in this system 
between vectors and hosts, revealing a system rich in dynamics. Sensitivity analysis is 
performed on this complex system to identify key factors in the maintenance of T. Cruzi 
in the sylvatic cycle. The significance of both types of differential behavior are examined 
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and compared. And finally, the role of vector consumption and its impact on the epidemic 
is discussed. 

2 The Model 

We focus on the infection ofa single host species by a single vector species and vice 
versa. Since the size of the host population is effectively larger than that of the vectors, 
and the time scale does not permit significant variation in births and deaths, we assume 
the host population to be constant, or equivalently, that the birth and death rates are 
equal. This allows a reduction in model equations and the explicit examination of only the 
infected hosts, h, where the susceptible hosts can be readily obtained by the relationship 
Sh(t) = Nh - h(t). Mortality due to infection is not included in our model as it has not 
been observed in either the mammalian hosts or the vectors. Once infection is acquired 
by either host or vector, it persists throughout its lifetime and therefore, no recovery has 
been included in our model. 

Hosts can be infected by two modes of transmission - consumption of infected vec­
tors and the traditional mode which is through the feces of the vector. Infections due to 
defecation following a bloodmeal are enhanced by any increased frequency in feeding of 
,the infected vector upon the host, accounted for by the factor 1'1. Also, the probability 
of being bitten by an infected host is given by Sv1~~Iv' Consumption of vectors is taken 
as a monotone increasing and saturating density-dependent relationship, represented by 
Eh(Nv) = f+ljyv with N v = Sv + Iv· Infected vectors, which may tend to unwittingly 
wander into unprotected areas, are consumed at a greater rate than uninfected vectors. 
Therefore, the consumption rate is evaluated at Sv + 1'2Iv and the probability of encoun­
tering an infected vector is then s !Iv I' Setting either 1'1 or 1'2 equal to 1 would be 

v 1'2 v 
the exclusion of either type of differential behavior of vectors due to infection of T. Cruzi. 
Therefore, in all further analysis it is assumed that 1'1,1'2 ;::: 1. The model is given by: 

(1) 

(2) 

(3) 

Susceptible vectors are lost to natural death, death due to consumption, and infection 
due to biting an infected host. Vector growth is assumed to have a logistic form with rv 
representing the intrinsic growth rate, K the carrying capacity, and /l-v the natural death 
rate. Infected vectors are assumed to die from only natural death and consumption by 
hosts. All other parameters are defined in table 1. 
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Parameter Interpretation 
(3 per capita traditional transmission from vectors to hosts 

!J per capita traditional transmission from hosts to vectors 
p per capita transmission rate of hosts due to consumption of infected vectors 

1'1 increased feeding frequency of vectors due to infection 

1'2 vectors' increased vulnerability to consumption by hosts as a result of infection 

/-hh natural death of hosts 

/-hv natural death of vectors 
Tv growth rate of vectors 
K carrying capacity of vector population 
A vector density at half-maximal consumption 
B maximal vector consumption rate 

Table 1: Model Parameters 

3 Analysis 

3.1 Existence of Disease-Free Equilibria 

It is important to first consider the dynamics of the hosts and vectors in the absence of 
infection before the introduction of an infection is logical. To find a disease-free equilib­
rium, we set the system of differential equations as well as the infective classes equal to 
zero. To begin, we consider the dynamics of the vectors without consumption by hosts. 

(4) 

Solving equation (4) for Sv gives Sv = (1- 't:;; )K. We require that Tv > /-hv for Sv > O. 
Since with the inclusion of vector consumption by hosts, the nontrivial equilibria S~ :S Sv, 
we require this condition for the rest of the model analysis. For the full vector dynamics 
we begin by finding the equilibria of the following equation: 

. Sv 
Sv(t) = Tv Sv(l- K) - /-hvSv - Eh[Sv]Nh 

These roots are S~o = 0 and 

S~1,2 = H K (1 - 't:;; ) - A ± V"( K-(l---r;.-:-) -_-A-)-2-_-4rC:-:~:-( B-N-h-+-(/-h-v---T-v )-A-) with S~l :S S~2' 

For these equilibria to be positive, and hence of biological relevance, A < K(l - 't:;;), 
otherwise, the vectors go extinct since only the zero equilibrium exists in that case. If, 
however, A < K(l - 't:;;), (rv~~V)A > 1 and (K(l - 't:;;) - A)2 > 4~ (BNh + (/-hv - Tv)A), 
then both equilibria exist and are positive. It is also possible for the positive equilibria to 
coalesce, and this occurs when (K(l - 't:;;) - A)2 = 4~ (BNh + (/-hv - Tv)A), and then the 
vector-host system, in the absence of infection would have only 2 possible equilibria, S~o 

and S~l = S~2' 
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3.2 Stability of Disease-Free Equilibria 

The stability of the vector population in the absence of infection can be discussed via the 
examination of the following set of equations: 

To examine the local stability of S~o = 0 we consider the sign of 
1'(0) = Tv - J.Lv - B;:h. This expression is positive for r'J3Nh > 1, and thus extinction of 

J.Lv+-:;;r 
the vector population is unstable. Similarly, 1'(0) < 0 for r~ < 1, and then S~o = 0 is 

J.Lv+ A 

then locally asymptotically stable. This quantity can be interpreted as the ratio of vector 
births to death due to natural causes and consumption. So it agrees with our intuition 
that if the dynamics of the population are such that this ratio is larger than 1, the vectors 
will not become extinct, and if this ratio is less than 1, the vectors will become extinct. 
Therefore, we assert that Rd = r~ is the demographic reproduction number of the 

J.Lv+ A 

vector population. 
I(Sv) and f'(Sv) are both continuous and smooth functions. Therefore, when Rd > 1 

we have that 1'(0) > 0 and when I(Sv) reaches the next zero, S~2' (S~l < 0 here) it is 
decreasing, or equivalently, f'(S~2) < O. This implies that S~2 is locally asymptotically 
stable. Similarly, if Rd < 1, 1'(0) < 0, so extinction becomes a stable equilibrium and 
the function I (Sv) is increasing when it reaches S~l' and hence I' (S~l) > 0 and this first 
equilibrium is unstable. In this case, S~2 is locally asymptotically stable due to I' (S~2) < O. 

The demographic reproductive number is a threshold parameter, which can be inter­
preted as describing the likelihood of the extinction of the population. Typically, Rd < 1 
represents the case where S~o = 0 is stable and therefore extinction is likely. When Rd 
increases and becomes greater than 1 S~o = 0 undergoes transcritical bifurcation and be­
comes unstable, and a positive equilibrium becomes stable. However, for this model, there 
exists a range of parameters where Rd < 1 and the population reaches a stable positive 
equilibrium. Figure 1, which displays this backward bifurcation, plots the equilibria for 
the specified set of parameters versus their corresponding Rd values as the vector growth 
rate varies between 0.5 and 2 births per year. 

As shown in Figure 1 it is possible to have Rd < 1, but if (K(l - 't:;;) - A)2 > 
4~ (BNh + (J.Lv - Tv)A) and Sv(O) > S~l' the population will go to S~2 instead of dying 
out as would be predicted from the reproduction number alone. Specifically, when R'd = 

K ((K(l-~ )_A)2 
1 - - BN ~ A ,the positive equilibria coalesce, and we observe that if Rd > Rd* and 

rv h J.Lv . 
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Figure 1: Bifurcation of Vecto1- Equilibria versus Rd 

Sv (0) > S~l the vector population will go to S~2. If, however, Rd < 1 and (K (1 - ~) -

A)2 > 4~ (BNh + (/-Lv - rv)A) but now Sv(O) < S~l the vectors will become extinct as 
predicted. Thus, in this system, Rd fails as the sole threshold parameter, predicting the 
outcome of the steady state vector size, and it is necessary to consider the initial conditions 
as well. 

Figure 2 shows the disease-free vector population dynamics, including consumption by 
a constant host population, for varied rates of growth. These different rates of growth 
were chosen to demonstrate the behavior illustrated in Figure 1. For rv = 0.5, Rd < 1 and 
the vector population quickly dies out as expected. However, when rv is increased to 0.8, 
Rd remains less than one, but the vector population reaches a positive steady state. In 
this case, the initial condition of the system is such that it falls between the two equilibria, 
S~l and S~2· When rv is sufficiently increased to achieve a Rd > 1, this parameter again 
becomes an indicator of the vector population level, which reaches a positive steady state 
as expected. 

Figure 3 further demonstrates the situation where although the threshold parameter 
indicates vector extinction as a stable steady state, a positive vector population is the 
long-term result. This is a result of both roots being positive in this parameter regime 
and also the initial condition Sv(O) > S~o. 

3.3 Basic Reproductive Number, Ro 

The basic reproductive number of the infection, Ro, interpreted as the average number 
of secondary infections, is a threshold parameter, indicative of the onset of an epidemic 
as a result of the introduction of an infection to a disease-free population. From the 
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Figure 3: Positive Equilibrium with Rd < 1 

disease-free analysis it is evident that it is possible to have two positive stable vector 
population sizes, although not simultaneously. Therefore, by the method discussed in [4], 
we calculate this parameter as a function of the relevant stable vector size depending on 
the initial conditions and parameter values. 
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Ro= 

R1 is the number of vector infections produced per infective host for the time they 
are infective, which is ;h since hosts die only due to natural causes. R2 represents the 
secondary host infections produced per infective vector introduced for the duration of the 
time that they are infective. This period is represented by in. since vectors can 

JLv+'Y2 s. Eh[S;] 
die due to natural causes or through consumption by hosts. v 

It is worthwhile to compare the reproductive numbers and hence, compare the sever­
ity of a possible epidemic, corresponding to each stable disease-free vector size. Since 
Ats. 2: Ats. , .1 B:S ; B . Also, since Eh[Svl is a monotone increas-

VI v2 JLv+'Y2 N h A+S' JLv+'Y2 h A+S' vI v2 

ing function, P'Y2Eh[SZll :S PI'2Eh[SZ2], and we have that 

/3 /31'1 + PI'2E h[S;ll < 
fLh fLv + 1'2f.h Eh[S;ll 

VI 

For any given set of parameters, an epidemic grows much more quickly if the vector 
population size is larger. However, since the two population sizes are not stable simulta­
neously, or bistable, further investigation into this question is warranted. While in most 
cases it is clear how the parameters will affect Ro, it is not clear which of these have the 
strongest effect, either positive or negative. 

3.4 Sensitivity of no to parameters 

In an effort to quantify the effect of changes in parameters on the value of R o, we compute 
the sensitivity indices of Ro with respect to certain key parameters from the model. For 
the sensitivity of a solution u to a parameter, p, its sensitivity index is defined as 

8
u
u p au 

S ----­P-8p-uap 
P 

provided u oF O. This definition was used to compute all of the indices displayed in Table 
2. While the indices displayed in the table are as simplified as much as possible, they still . 
do not lend themselves readily to quantitative analysis. Therefore, numerical estimates 
for model parameters, Table 3, were used to determine which parameters had stronger 
effects on Ro, and thus the spread of the epidemic. 

The parameter A is shown to have the largest (in magnitude) positive sensitivity index 
of Ro, indicating that Ro increases the most by the least change in A relative to the other 
parameters. This, taken together with the fact that the most negative sensitivity index of 

306 



p 

1'1 

1'2 

(J 

p 

A 

B 

1 
'2 

-#tr,~[Z] 

~ ~ [.!:-!-.!l.h _p'Y_2_E~~ [_S_;1_-_n_6.",.(1_+_'Y2_N_h_B_ln_I_A_+_S_; I)] 
2no 8J.Lv ·J.Lv+'Y2~Eh[S;;1 

A i!!:&.[Z] 
mJ8A 

B ~[Z] 
mJ8B 

Table 2: Sensitivity Indices Sp of no to model parameters, p, where Z 

-!;.P'Y2E~[S;1-nh2NhBlnIA+S;1 
J.Lv+'Y2}.Eh[S;;1 

v 

Parameter Estimate Range Sensitivity of no Range 
(J 0.2 0.05-0.3 157 3.65 - 268.05 
jJ 0.5 0.3-0.7 1 1 

'2 '2 
P 0.002 0.000001 - 1 0.008 0.00000403 - 0.4447 

1'1 1 1-5 322 322-715 

1'2 1 1-5 -0.9613 -0.9- (-3.3) 

/-Lh 0.000685 0.000548-0.000913 -1.70 x 10-6 -1.13 X 10-6 - -2.92 X 10-6 

/-Lv 0.00588 0.00526-0.0066 322 322 - 715 
rv 1.176 0.5-2 0.00958 0.005-0.332 
A 1000 500-2000 2.47 x lOlD 0.6-9 
B 2 1-15 -5510 -1583 - - 10380 

Table 3: Model Parameters 

no is with respect to B, indicates that consumption dynamics play the most important 
role in the spread of an epidemic. Specifically, A, which is the vector population size at 
which the consumption rate is half-maximal, affects the threshold parameter in a positive 
way. A small increase in B, the maximal consumption rate of vectors by hosts, is then 
predicted to have the effect of greatly decreasing the threshold parameter. In other words, 
if hosts eat fewer vectors at smaller population levels, onset of an epidemic is less likely, 
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and this mode of transmission is being slowed. Seemingly in contrast, the sensitivity 
index of B indicates that less vector consumption has a positive effect on the spread of an 
epidemic. However, too great of an increase in B is shown to deplete the vector population 
in simulation, and therefore not a realistic scenario. 

When comparing the sensitivity indices of ')'1 with ')'2, we notice /'1 seems to have a 
positive efFect on no, indi~ating that an increase in this parameter, or increased frequency 
of bloodmeals due to infection of vectors, enhances the onset and/or likelihood of an epi­
demic. In contrast, the sensitivity index of no with respect to ')'2 indicates that an increase 
in vectors' vulnerability to predation hinders the spread of infection, due to the infected 
vectors being depleted from the vector population at a preferential rate as compared to 
the susceptibles. 

4 Numerical Results 

While the reproductive number usually provides a good indicator of the onset of an epi­
demic, the full numerical solution to a system provides a more direct approach for exam­
ining differential behavior and consumption dynamics. 

With the parameters set as given in Table 3, a typical solution of the system is shown 
below. The system reaches endemic equilibrium at about 40 days, with the susceptible 
vector population at significantly lower levels than the infective vector population. In 
the endemic state, the infective hosts approach the total number of hosts, indicating that 
almost all the hosts are infective. The disparity in these prevalence levels with those 
observed can be explained by the lack of reliability and in many cases of measurability 
in parameter values. However, the current model and parameters provide us with a reli­
able platform to study the dynamics of the system as well as the effects of consumption 
dynamics and differential behavior. 

4.1 Sensitivity of Solutions to Parameters 

Using Berkeley Madonna, we were able to numerically calculate ~~ as a function of time 
for all of the parameters. This partial derivative was multiplied by the parameter and 
divided by the numerical solution at the same time step. In this way, a time course of the 
sensitivity index was calculated and is displayed for several parameters of interest below. 
All parameters are the same as those shown in 4 unless otherwise stated. 

In Figures 5 through 7, relative changes in the solution are displayed as a result of small 
changes in the initial conditions. Notice that shortly after 50 days, changes in the initial 
conditions have no effect on the solution, and in other words, the equilibrium reached by 
the system does not change drastically if we use slightly different initial conditions. This 
effect we would expect from the notion of a stable steady state. We notice that an increase 
in h(O) seems to have the strongest effect on all three variables and for a longer period of 
time. These figures show that an increase would serve to initially increase the number of 
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Figure 5: Sensitivity of h to Initial Conditions 

infective vectors, which would reinforce an increase in the number of infective hosts, and 
of course this would then deplete the number of susceptible vectors. 

The effects of differential behavior on the full solution of the system are quantified and 
compared in Figure 8 and Figure 9. These results agree with our sensitivity analysis of 
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Figure 7: Sensitivity of Sv to Initial Conditions 

Ro previously, in that small positive changes in 1'1 produce positive changes in the time 
courses of both infective hosts and vectors, while small positive changes in 1'2 produce 
negative changes in the time courses of infective populations. The quantitatively opposite 
effect was observed in the susceptible vector population, and hence was omitted as no 
additional insight was gained. 

Figures 10 and 11 display the sensitivities of the infectives' solutions to small changes 
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in parameters governing vector population dynamics. These include the growth and death 
rates of the vectors and hosts as well as the constants determining the consumption rates 
of the vectors. Changes in the mortality rates of both vectors and hosts seem to not 
affect the gain or loss of infective vectors and hosts significantly. In direct contrast, 
increasing B slightly, the maximal consumption rate, would greatly decrease the infective 
hosts, although not affect the population level present at equilibrium. Not surprisingly, 

311 



0.4 ,--------r-----,-------,------,------, 

~--IB 

-1 

-1.2 

-1.4 '------'------'-------,-':.,-----,-'-:-----:-' 
o 50 100 150 200 250 

Time (days) 

Figure 10: Sensitivity of h to Parameters Governing Population Dynamics 

" Q) 
""0 

Sensitivity of Iv to consumption, births and deaths' 

A 

/ 
k',Jv 

o~~~/~~~~~~~~~~~~~~ 

0.5 
oc 

v 

.s -0.5 "h 

~ 
.~ -1 
Q) 

en 

B 

_3'------'------'------~----J-----:-' 
o 50 100 150 200 250 

Time (days) 

Figure 11: Sensitivity of Iv to Parameters Governing Population Dynamics 

the infective vectors are also most affected by small increases in B, and in a negative 
way. However, the vectors' steady state population is also decreased by these changes. 
Increasing slightly the growth rate of the vectors, r v , and the population level at which 
the consumption rate is half-maximal A, results in increasing infective vectors and hosts. 
The stable population level of the hosts again is unaffected, while the steady state vector 
level is decreased. Increasing the growth rate would serve to increase the pool of vectors 
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that could get infected and then infect hosts. Given that the prevalence level in the host 
population is near saturation, the elevated infection in the host populations will not be 
observed. Increasing A effectively slows down the consumption rate, increasing the vector 
population size at which greater consumption rates occur. This effect is similar to that of 
an increased growth rate since both serve to increase the pool of vectors. 

4.2 Effect of Vector Consumption 

After having determined which parameters will affect the solutions of the system most sig­
nificantly with small relative changes, we explore the parameter space fOr greater changes 
in these parameters. 
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Figure 12: A=5000, B=5, 1'1 = 1'2 = 1, Rd = 5.71 

As A increases, the vector population required for greater consumption rates, increases. 
This increases the pool of vectors to carry infection initially, since they are consumed at 
a lower rate. However, as the vector size increases, the consumption rate increases until 
a steady state is reached. This greater total vector population at endemic steady state is 
reached more quickly than that at lower levels of A. The rate at which the system reaches 
endemic equilibrium is a result of the rate of initial spread of infection, related to the 
magnitude of Ro, which we have seen increases with increasing values of this parameter. 
The prevalence levels, however, are unchanged, as the increased infective vector levels are 
accompanied by a similar increase in susceptible vectors. 

Increasing the maximal consumption rate slightly results in significantly less infective 
vectors, and more susceptible vectors at steady state, resulting in lower prevalence levels, 
and a slightly lower total vector population. If B is increased slightly more, by only 
one vector per day, initially the infection is suppressed , but consumption becomes a 
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Figure 14: B=4, A=1000, 1'1 = 1'2 = 1, Rd = 0.586 

dominating factor in vector population dynamics, pushing Rd below the threshold for a 
stable positive equilibrium according to Figure 1. While it seems unnatural to consult a 
diagram of disease-free equilibria for a system in the presence of infection, it is possible 
if the plotted equilibria are taken as representing the total vector population when the 
system is in the endemic state. 

In fact, upon inspection of Figures 16 and 17, we see that if the susceptible and 
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Figure 15: B=5, A=1000, 1'1 = 1'2 = 1, Rd = 0.469 
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Figure 16: A typical time course of the total vector population to reach endemic equilib­
rium. 

infective vectors are summed during the course of a typical infection (Figure 16), the 
result is identical to that of the susceptible vector population in the disease-free case 
(Figure 17). This is due to the lack of deaths as a result of infection (according to model 
assumptions). Thus, in the discussion of the effects of the population dynamics on this 
system it is worthwhile to consider the demographic reproductive number, Rd. 
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Figure 17: A typical time course of the vector population to reach the disease-free equi­
librium. 

4.3 Differential Behavior Effects 

We have shown with sensitivity analysis of Ro and the solution of the full system that the 
outcome of the disease is sensitive to changes in small changes in ')'1 and ')'2, the measures 
of differential behavior. The question of how the system behaves if the vectors are affected 
substantially by the parasite is addressed in this section. 
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Figure 18: ')'2 = 10, B = 2, ')'1 = 1 
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Figure 19: "{2 = 50, B = 2, "{I = 1 

Increasing "{2, or simulating the situation of the vectors being exposed to predation 
as a result of infection, results in lower levels of infective vectors and a corresponding 
increase in susceptible vectors at the endemic state. Any increase in "{2 > 1 effectively 
increases the consumption rate of vectors affecting the population dynamics of the vectors 
and reducing their steady state level. However, infectives are preferentially consumed, 
indicating that it is no longer useful to discuss the disease-free situation as a predictor for 
the total vector population. However, it is clear that increasing "{2 and B, the maximal 
vector consumption rate, similarly affect the population and disease dynamics. However, 
since the susceptibles are not consumed at a greater rate, the system is not as sensitive 
to changes in this parameter. Also, even for unrealistically high values of this parameter, 
the system is not driven to extinction. 

"{I measures the increased feeding frequency in response to the vectors' difficulty in 
swallowing when infected withT. Cruzi, increasing the contact rate between the hosts 
and vectors that results in infection of hosts. In Figures 20 and 21, we see that increasing 
this parameter increases the infected vectors and decreases the susceptible vectors at the 
endemic level. The rate at which endemic equilibrium is reached is accelerated, as is 
expected since small changes in this parameter had the effect of increasing Ro. 

5 Conclusions and Discussion 

In this discussion of the sylvatic cycle of T. Cruzi, we have explored the roles of vector con­
sumption and two types of differential behavior and their implications for disease dynam­
ics. Previous modeling efforts on Chagas' disease have focused on the host-vector system 
involving humans as hosts. This system does not take into account the high prevalence 
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Figure 20: 11 = 10, B = 2,,2 = 1 
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levels observed in other mammals and clearly does not include any vector consumption, 
which we have shown very significantly affects the dynamics of disease spread. 

A smooth saturating curve was used to estimate the rate of vector consumption as 
a function of vector population size. The two parameters, A and B, that determine 
the shape of this curve have been shown to be the most influential in determining both 
the initial spread of infection, and the endemic equilibrium. A represents the vector 
population size at which the vectors are consumed at half of the maximum rate. Increasing 
or decreasing this value has been shown to affect how quickly the system reaches the 
endemic state, although it does not affect the total vector population size. An increase 
in the maximal vector consumption rate, B, has been shown to decrease the number of 
vectors present at equilibrium, both disease-free and endemic. Through simulation, we 
have seen that increasing the rate at which vectors are consumed more strongly induces 
the extinction of vectors than boosting infection levels of hosts, likely due to the low 
probability of transmission. Since increasing B reduces the demographic reproductive 
number, if Rd < R'd this could induce extinction of the vectors. This rate, however, is an 
intrinsic property of the animal consuming the vectors, and as such will not be affected by 
external means. Realistically, in any region, there are many mammals that consume this 
vector, and this result suggests that if a host with a high maximal consumption rate were 
present in the system at sufficiently high levels, the vector population could be driven to 
extinction. 

Part of the motivation for this research was to determine how the differential behavior 
of the vectors induced by infection affected the spread of disease. Additionally, we would 
like to ascertain if this was enough to induce and maintain the otherwise unexplainable 
relatively high prevalence levels observed in the southeastern United States. Increasing 
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Figure 21: 'Y1 = 50, B = 2, 'Y2 = 1 

the rate at which infective vectors are consumed, or in the context of the model, increasing 
'Y2 to be greater than one, serves not to increase the prevalence levels of infection, but to 
decrease the pool of infective vectors, thus hindering the spread of disease. This consump­
tion increase is not strong enough to drive the vectors to extinction, but does serve to 
slightly decrease the population size at endemk equilibrium. Increased feeding frequency 
of vectors has been shown to not only significantly increase the threshold parameter for 
the existence of an epidemic, Ro, but also increases the prevalence levels once an endemic 
state is reached. Therefore, we can conclude that increased feeding frequency is aiding in 
the maintenance of the high prevalence levels observed, while increased consumption of 
infective vectors is actually decreasing these levels. 
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6 Appendix 

Additional quantities used in the calculation of sensitivity of Ro to model parameters: 

Disc = 
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