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Abstract
Amphibious species around the world are experiencing catastrophic decline and

extinction. Chytridiomycosis, a newly recognized emerging infectious disease, is now
thought to be a major contributor to observed rapid decline. Chytridiomycosis is
a skin disease caused by the Chytrid fungus, a water-borne pathogen prevalent in
Neotropical habitats. The Harlequin Frog, Atelopus Varius, native to the montane
regions of Costa Rica, is one of the hundreds of species threatened by this epidemic
disease. We study the dynamics (primarily through numerics) of this host-pathogen
system in a spatial-explicit setting. In order to gain qualitative understanding on the
nature of this system, we conduct a mean field approximation, pair approximation,
and computer simulation.

1 Introduction

Amphibian is a classification of organisms that includes four-legged vertebrates and all
tetrapods. Amphibians generally spend part of their life span on land; although, some have
entirely adapted to terrestrial or aqueous habitat. Amphibians are not amniotic, usually
undergoing a metamorphosis from waterborne tadpoles to four legged, air breathing adults.
There are four main groups of amphibians: the salamanders, caecilians, frogs and toads
[9].

There is an increasing concern for amphibious populations around the world. More
than one third (1,187) of all amphibious species are facing the threat of extinction [12].
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The number of threatened amphibious species exceeds that of both mammal and bird
species. There are also 500 species classified as critically endangered i.e. on the brink
of extinction [12]. Numerous studies suggest this population decline is not localized to
a specific area but is widespread. The majority of threatened amphibious species are
primarily concentrated in areas of Mexico, Panama, Guatemala, the Andes of Colombia
and Ecuador, Costa Rica and Brazil [9].

Since the early 1980s scientists and conservationists have concluded that amphibious
declines are the result of natural fluctuations intrinsic to their ecology. Although am-
phibious species are known to exhibit oscillation in population size overtime, they cannot
explain the observed widespread and rapid decline of the amphibious species in the 1990’s
[8]. The magnitude of the documented fluctuations have stirred debate on the possible
factors leading to this decline. An enigmatic agent responsible for the sudden catastrophic
declines has been identified [1], but the belief that a single factor maybe driving the am-
phibian population to extinction is not universal. Some studies subscribe to the view that
several causative agents are responsible for the alarming levels of precipitous amphibious
population decline. Habitat destruction and recently discovered epidemiological factors
are two of the leading suspects [16, 17]. Other factors include environmental pollutants,
new predators, and international trading [8, 9].

The Harlequin Frog (Atelopus Varius) is a Neotropical montane, stream-breeding
species native to Monteverde, Costa Rica and western Panama [9]. It can be found in
the Cordilleras de Tilaran on both the Atlantic and Pacific slopes. It inhabits Tropical
lowland and lower montane regions. These environmental landscapes include both wet
and dry areas interspersed with stream routes. Its Neotropical habitat has a wet season
(May-November) and dry season [12]. Although the Harlequin frog is a stream-breeding
amphibian, it is mainly terrestrial, rarely entering water, and spending most of its time
near wetlands.

There has been controversial debate over the causative factor for the sudden decline
of the species population in relatively undisturbed habitat. Recent studies have observed
mysterious decline to regions of high elevation in the tropics [1, 17] . A newly discovered
infectious disease (Chytridiomycosis) has been sited in several amphibious species and is
considered a major contributor to catastrophic decline [5]. The virulence of the fungal
disease is increased among species inhabiting streams of high elevation. Atelopus Varius
is one of hundreds of amphibious species threatened to extinction due to disease.

The pattern of the Harlequin Frog’s mortality and population decline is attributed
to the pathogenic Chytrid fungus (Batrachochytium dendrobatidis), the causative agent
of Chytridiomycosis. The appearance of the Chytrid fungus was synchronous with the
initial decline of the frog population [5, 15]. The fungus is known to be endemic to several
countries including Costa Rica, but may have recently become more virulent or the frog
population may have increased its susceptibility to such infections. Reduced frog resistance
to infection may be due to environmental or climate changes that have facilitated increased
fungal outbreaks population becoming less resistant thus more susceptible or with the
increased fungal outbreak and persistence in the environment. These factors of increased
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pathogenicity are ascribed to the climatic fluctuation [6].
Global climate change seems to be the leading culprit associated with the changes in

the dynamics of this infectious disease [2, 5, 10, 6]. Part of the rational is based on the facts
that rising temperatures create a distinct effect specific to a geographical locale. The local
region of the frog responds to the climate change with increased cloud cover and humidity.
This effectively creates the necessary conditions for optimal growth of the Chytrid fungus.
Of the nearly 500 amphibious species currently listed as critically endangered, nearly 50
percent of the declining population trends have been directly attributed to the skin disease
Chytridiomycosis [12].

Chytridiomycosis was first discovered and diagnosed in dead amphibians in 1998. Tis-
sue samples of epidermal skin collected from these mass deaths contained developing spo-
rangia of the Chytrid fungus [4]. The fungus penetrates the surface or epidermal layer of
skin, which causes damage to the keratin layer. It is not known exactly how the fungus
kills the frog. Upon invasion of the skin, it may release toxins and disrupt the respiratory
track. Clinical signs of infection include lethargy, hemorrhaging of the skin, muscle and
eye [4].

There is a high mortality rate for the victims of the disease which is causing devastating
population declines and even extinction [14, 15]. While such levels of mortality may
normally create a disease free state this is not the case since the tadpoles act as a reservoir
population creating a situation where the disease may persist. According to a recent
study, there will be hundreds of amphibious species becoming extinct over the next few
decades [8]. The consistency in outbreaks and persistence of the disease has been a cause
for alarm for the countries of the affected regions. Several studies by J. Alan Pounds, et.
al. have linked the fungi population increase to global climate change [6]. With increased
reproductive rates of the fungus, pathogen transmissibility becomes more prevalent. With
biological diversity at stake, it is vital that research is continued to discover a way to
control this disease [6, 7, 18].

The ecology of the Harlequin Frog and Chytrid fungal biology has to be considered
in determining the impact of Chytrid fungus on the population. The Chytrid fungus has
two main stages of development. It is first a waterborne mobile zoospore that becomes
a stationary thallus for asexual reproduction [3]. Driven by the flagellum, the saprobe
or saprophyte can easily spread and readily persist in a host population that resides in
water. The fungus aptly takes advantage of the stream-breeding nature of the Harlequin
frog, using the abundant tadpoles for increased propagation. Since the fungus only infects
the keratinized areas, the tadpole death associated with fungal infection is often rare
given the lack of keratin on the tadpoles. The fungus may reproduce and survive as a
saprophytic organism (spore), thriving on keratin from the carcass of other dead frogs
and from shedding [3]. The ability of the organism to survive outside the host accelerates
the declination of the frog population. The fungi usually reside in water or in moist soil.
The frogs are believed to contract the disease with contact of the fungal spores in the
water or from contact with infected frogs [3]. There is still more research needed to fully
understand the spread of the fungi and its ability to cause mortality among amphibians.

3



2 Research Goals and Objectives

The first goal of our project is to understand and review the current research of amphibious
population extinction resulting from an emerging infectious disease. The second goal is to
establish two models that incorporate the interaction between the disease causing Chytrid
fungus and the Harlequin frog population. We want to study and analyze the effects
of an infectious disease on the Harlequin frog, while concurrently exploring prevention
measures. Further objectives include comparative analysis of two models in approximating
the computer simulation of the Harlequin frog population and disease dynamics.

3 Model

We employ a stochastic spatial-temporal model to simulate the interaction between the
Harlequin frog and the Chytrid fungus. It is important to address the spatial arrangement
of the frog and fungi in order to capture the spreading dynamics of the disease. The infec-
tion dynamics between frog and fungus take place primarily in wet areas, specifically near
waterfalls or streams. The model used is a continuous-time lattice-based epidemiological
model where each site on the lattice contains a numeric value representing one of six states
(see Table 1). The model uses eight events, defining the focus of the simulated interaction
between the two organisms.

# State Description
0 empty wetland with no fungus or frog

1 fungus wetland occupied by a fungus

2 frog wetland occupied by a single healthy frog

3 infected frog wetland occupied by one infected frog, fungi has
been lodged in the epidermal layer of the skin

4 fungus & frog wetland occupied by one healthy frog and fungi, more specifically
it reflects a healthy frog occupying the same space as a patch of fungi

5 fungus & infected frog wetland occupied by one infected frog and fungi

Table 1: State variables representing the sites of the lattice.

These state variables will be dispersed onto a lattice, thereby creating a potential envi-
ronment representing the distribution of the frogs, infected frogs, and fungi.

To describe an event, we have defined eight parameters as follows:
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Parameters of System Dynamics

Symbol Description Estimated Biological Values Ranges
φf fungus successful birth rate 1

3 [0,10]
µf fungus death rate 1

49 [0,1]
φh frog successful birth rate 1 [0,1]
µi infected frog death rate 1

3 fixed
mi infected frog movement rate 12 [0,24]
mh healthy frog movement rate 24 [12,48]
σf rate of successful fungus to frog infection 1

4 [0,13 ]
σi rate of successful infected frog to frog infection 1

8 [0,13 ]

Table 2: This table shows the eight parameters used in our system of equations and the
values and ranges of values estimated for those parameters. All parameters are expressed
as rates (per day).

• φf is defined as the successful birth rate of a fungus. We make a reasonable assump-
tion that there is local dispersion of the zoospores and they only choose one of their
four orthogonal neighbors to whom they spread. The life cycle of the fungus from
its first production of zoospores to the point it is infectious is roughly estimated to
take three days. We have considered a range of values from no birth to ten births in
a day.

• µf is defined as the fungus death rate. The average life span of the fungus is 7 weeks,
so µf= 1

49 . This estimation can be found from a study published by the Center for
Disease Control & Prevention [13].

• φh is defined as the successful birth rate of a healthy frog. Realistically there should
be a time delay on the healthy frog successful birth rate, but for the sake of simpli-
fication we have not included this delay, thus φh is the per capita birthrate.

• µi is defined as the death rate of the infected frog. This parameter will be fixed
throughout the analysis. The estimated time until death whence a frog is infected
is three days, so µi = 1

3 .

• mi is defined as the infected frog movement rate. This parameter value will always
remain lower compared to the movement rate of a healthy frog. This assumption is
made from the knowledge that an infected frog is lethargic [4].

• mh is defined as the per healthy frog movement rate.

• σf is defined as the rate of successful fungus to frog infection rate.

• σi is defined as the rate of successful infected frog to frog infection rate.
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The legal transitions of single sites according to our biological assumptions are de-
scribed in the chart below.

Transitions of States

[0] ⇒ [1], [2], [3]
[1] ⇒ [0], [4], [5]
[2] ⇒ [0], [3], [4]
[3] ⇒ [0], [1], [5]
[4] ⇒ [1], [2], [5]
[5] ⇒ [1], [3]

Table 3: This table shows the possible transitions from one state to another state. For
example, [0] can become [1], [2], or [3].

• State [0]: State [1] can become [0] if the fungus dies, State [2] can become [0] if a
healthy frog moves from the current site to an empty site, or State [3] can become
[0] if an infected frog moves from the current site to an empty site. State [0] can
turn into [1] if a fungus is born from one of its neighbors, [2] if a healthy frog is born
onto the site or if a healthy frog moves there, or [3] if an infected frog moves to that
site.

• State [1]: State [0] can become [1] if a fungus is born from one of its neighbors and
State [3] can become [1] if an infected frog dies or State [5] may become [1] due to
infected frog death or movement. We have thus assumed that the event of the death
of an infected frog will leave that site occupied by fungus. State [1] can turn into [0]
if a fungus dies, [4] if a healthy frog is born or moves to that site, or [5] if an infected
frog moves to that site.

• State [2]: State [0] can become [2] if a healthy frog is born or if a healthy frog moves
to that site and State [4] can become [2] if the fungus dies. State [2] can turn into
[0] if a healthy frog moves away from the site, can turn into [3] if a healthy frog
becomes infected, or can turn into [4] if a fungus is born on that site.

• State [3]: State [0] can become [3] if an infected frog moves to that site, State [2]
can become [3] if the healthy frog is infected by an infected frog from one of the
neighboring sites, and State [5] can become [3] if the fungus dies. State [3] can turn
into [0] if the infected frog moves to an empty site, [1] if the infected frog dies, or [5]
if a fungus is born from a fungus in one of the neighboring sites.

• State [4]: State [1] can become [4] if a healthy frog is born or a healthy frog moves
to that site from one of the neighboring sites and State [2] can become [4] if a fungus
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is born. State [4] can turn into [1] if the healthy frog moves to an empty site, [2] if
the fungus dies, [5] if the healthy frog becomes infected.

• State [5]: State [1] can become [5] if infected frog moves to the site, State [3] can
become [5] if a fungus is born, and State [4] can become [5] if the healthy frog
becomes infected. State [5] can turn into [1] if the infected frog dies or if the infected
frog moves from the current site to an empty site or can turn into [3] if the frog dies.

In our model we do not include the per-capita natural death of healthy frogs because
the model reflects only the dynamics of single outbreaks, that is, it does not adequately
capture the dynamics over a long period of time (lack of adaptive parameters). We also
assume that a healthy frog that is occupying the same spot as fungus can be infected by
the fungus at a rate of σf . This is the only way that a frog can become infected by a
fungus. There is also infection from an infected frog onto a random adjacent healthy frog
at rate σi. If there is movement of an infected frog, we conjecture that the infected frog
will not leave behind any fungi, but its death will leave behind fungus on that patch.

4 Pair Approximation

Our approach in analyzing the dynamics of the spreading of an epidemic disease is through
the incorporation of spatial-temporal dimensions with local neighborhood interactions.
The pair-approximation is an applicable method employed as an analytical tool providing
behavioral dynamics of the host population and the infectious disease.

Pair Approximation utilizes a system of ordinary differential equations to describe the
probability of pairs of adjacent sites being in particular combinations of states. It can be
used to model both deterministic and stochastic processes of spatial dispersal, interaction,
disturbance, etc. This method is useful in models where the spatial arrangement between
states needs to be considered. Refer to Table 4 for all possible combinations of pairs of
neighboring sites. Specifically for our model a pair of sites can only be transformed into
certain pairs of sites as defined within the realm of biological significance. The lattice
of cells will represent a certain configuration of states, and while the proportion of a
given pair of states will change over time, it is assumed to be only dependent on its
immediate neighbors. A particular site will have a probability of being updated to another
state, which may be conditioned on the state of its four orthogonal neighbors. The pair
approximation method will be used as a continuous time Poisson process; only a single
event can happen per time-step.

Since our system has six state variables, there will be a total of thirty-six equations
when we consider each possible pair of state variables. We have listed below in Table 4 all
possible combinations of the state variables.

Assuming rotational symmetry, P [jk] = P [kj] = P

[
j
k

]
= P

[
k
j

]
as described in

Hiebeler 2004 [11]; therefore, the probabilities are equal and we only need to consider one.
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[00] �
�[10] �

�[20] �
�[30] �

�[40] �
�[50]

[01] [11] �
�[21] �

�[31] �
�[41] �

�[51]
[02] [12] [22] �

�[32] �
�[42] �

�[52]
[03] [13] [23] [33] �

�[43] �
�[53]

[04] [14] [24] [34] [44] �
�[54]

[05] [15] [25] [35] [45] �
�[55]

Table 4: All possible pairs of combinations of the state variables. Fifteen pairs have been
eliminated due to symmetry. That last pair [55] has been eliminated since the sum of the
probabilities of all the pairs is equal to one.

As shown in Table 3, we have eliminated fifteen pairs due to the property of symmetry.
Further note the sum of all of the probabilities is equal to one. This will eliminate one
more equation. We have chosen to eliminate the pair [55]; thus P [55]=1-

∑
j,k P [jk] where

j = k and k 6= 5.

4.1 Equations

Our first equation is the rate of change of the probability of [00].
The notation y, f , h, and i is used for simplicity. The notation y is used for an empty

space not occupied by a frog. An empty site consists of the state variables [0] and [1]. If a
fungus is occupying a site, we use the notation f to describe the state. These conditions
describe the states [1], [4] and [5]. The notation h is used to describe a site that is occupied
by a healthy frog, representing the state variables [2] and [4]. Finally, we use i to represent
a site occupied by an infected frog: [3] and [5].

To find dP [00]
dt , we find the possible outflow of [00] and subtract that from the possible

inflow. For example, [01], [10], [02], [20], [03], and [30] may become [00] in a single event.
If an empty site is paired with a fungus in either orientation, and that fungus dies, we will
be left with two empty sites. Should an empty site be paired with a site containing only
a frog, infected or healthy, then movement of this frog may result in the pair becoming
[00]. We assume the movement of an infected frog does not leave fungus on the site. The
inflow terms are the following:

P [01]µf + P [10]µf + P [02]
3
4
mhQy|2

+P [20]
3
4
mhQy|2 + P [03]

3
4
miQy|3 + P [30]

3
4
miQy|3

The term Qj|k is the conditional probability that a randomly chosen neighbor of a site
in state k is in state j. More succinctly:
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Qj|k =
P [jk]
P [k]

We can simplify since we know that P [jk]=P [kj]; therefore, the inflow terms are
simplified:

2P [01]µf + 2P [02]
3
4
mhQy|2 + 2P [03]

3
4
miQy|3

When we consider the outputs, we must also consider symmetry. In a single event, the
pair [00] can become [01], [02], or [03] if there is a successful birth of a fungus, a successful
birth of a frog, or a healthy or infected frog moves onto the pair. Thus, the equation of
the total rate change of the probability of [00] is

dP [00]
dt

= 2P [01]µf + 2P [02]
3
4
mhQy|2 + 2P [03]

3
4
miQy|3

−2P [00]
(

3
4
φfQf |0 + P [h]φh +

3
4
mhQh|0 +

3
4
miQi|0

)
. (1)

When we find the total rate of change over time of a pair of sites that is symmetric,
we will always get equal terms in pairs of two, as was such in the first equation. However,
this will not be true when our pair of sites is asymmetric.

Let us consider dP [01]
dt .

The inflow will be [00], [03], [04], [05], [21], [11], and [31]. Note that we have reduced
our thirty-six equations to twenty equations, so we are only using twenty pairs. The
probabilities of [21] and [31] will appear as P [12] and P [13] in our equation since these are
included in the twenty pairs that we initially decided would be solved.

The outflow will consist of the single events when the fungus dies [00], a healthy frog
moves onto the one site [04], a successful birth of a frog occurs on a zero site [21], a
successful birth of a frog occurs on a one site [04], an infected frog moves onto a zero site
[31], an infected frog moves onto a one site [05], and the event that a successful birth of a
fungus occurs on a zero site [11].

The final equations is

dP [01]
dt

= P [00]
3
4
φfQf |0 + P [03]µi + P [04]

3
4
mhQy|4 + P [05]

(
3
4
miQy|5 + µi

)
+P [12]

3
4
mhQy|2 + P [11]µf + P [13]

3
4
miQy|3 − P [01]

(
µf +

3
4
mhQh|0

+
3
4
mhQh|1 + 2P [h]φh +

3
4
miQi|0 +

3
4
miQi|1 +

3
4
φfQf |0 +

φf

4

)
. (2)
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Figure 1: This figure shows the possible pairs of states that can become [00] and the
outflow of pairs that [00] can turn into, given a single event.

Below we show the next eighteen equations.

dP [02]
dt

= P [00]
(

P [h]φh +
3
4
mhQh|0

)
+ P [02]

mh

4
+ P [04]µf

+P [12]µf + P [22]
3
4
mhQy|2 + P [23]

3
4
miQy|3

−P [02]
(

3
4
mhQy|2 +

mh

4
+

3
4
σiQi|2 +

3
4
φfQf |2

+
3
4
φfQf |0 + P [h]φh +

3
4
mhQh|0 +

3
4
miQi|0

)
(3)

dP [03]
dt

= P [00]
3
4
miQi|0 + P [02]

3
4
σiQi|2 + P [05]µf + P [03]

mi

4

+P [13]µf + P [23]
3
4
mhQy|2 + P [33]

3
4
miQy|3

−P [03]
(

3
4
miQy|3 + µi +

3
4
φfQf |3 +

3
4
φfQf |0 + P [h]φh

+
3
4
mhQh|0 +

3
4
miQi|0 +

mi

4

)
(4)
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Figure 2: This figure shows the possible pairs of states that can become [01] and the
outflow of pairs that [01] can turn into, given a single event.

dP [04]
dt

= P [01]
(

3
4
mhQh|1 + P [h]φh

)
+ P [02]

3
4
φfQf |2 + P [12]

mh

4

+P [14]µf + P [24]
3
4
mhQy|2 + P [34]

3
4
miQy|3

−P [04]
(

3
4
mhQy|4 + µf + σf +

3
4
σiQi|4 +

mh

4

+
3
4
φfQf |0 +

φf

4
+

3
4
mhQh|0 + P [h]φh +

3
4
miQi|0

)
(5)

dP [05]
dt

= P [01]
3
4
miQi|1 + P [03]

3
4
φfQf |3 + P [04]

(
σf +

3
4
σiQi|4

)
+P [13]

mi

4
+ P [15]µf + P [25]

3
4
mhQy|2 + P [35]

3
4
miQy|3

−P [05]
(

µi +
3
4
miQy|5 + µf +

3
4
φfQf |0 +

φf

4

+P [h]φh +
3
4
mhQh|0 +

3
4
miQi|0 +

mi

4

)
(6)
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dP [11]
dt

= 2P [01]
(

3
4
φfQf |0 +

φf

4

)
+ 2P [14]

3
4
mhQy|4

+2P [15]
(

3
4
miQy|5 + µi

)
+ 2P [13]µi − 2P [11] (µf + φf

+
3
4
mhQh|1 +

3
4
miQi|1

)
(7)

dP [12]
dt

= P [01]
(

P [h]φh +
3
4
mhQh|0

)
+ P [04]

mh

4
+ P [02]

3
4
φfQf |0

+P [23]µi + P [14]µf + P [24]
3
4
mhQy|4 + P [25]

(
µi +

3
4
miQy|5

)
−P [12]

(
3
4
mhQy|2 +

3
4
σiQi|2 +

3
4
φfQf |2 +

φf

4

+µf + P [h]φh +
3
4
mhQh|1 +

3
4
miQi|1 +

mh

4

)
(8)

dP [13]
dt

= P [01]
3
4
miQi|0 + P [12]

3
4
σiQi|2 + P [15]µf

+P [03]
3
4
φfQf |0 + P [05]

mi

4
+ P [33]µi + P [34]

3
4
mhQy|4

+P [35]
(

µi +
3
4
miQy|5

)
− P [13]

(
3
4
miQy|3 + µi +

3
4
φfQf |3

+
φf

4
+ µf + P [h]φh +

3
4
mhQh|1 +

3
4
miQi|1 +

mi

4

)
(9)

dP [14]
dt

= P [11]
(

P [h]φh +
3
4
mhQh|1

)
+ P [12]

(
3
4
φfQf |2 +

φf

4

)
+P [04]

(
3
4
φfQf |0 +

φf

4

)
+ P [34]µi + P [14]

mh

4

+P [44]
3
4
mhQy|4 + P [45]

(
µi +

3
4
miQy|5

)
−P [14]

(
3
4
mhQy|4 +

3
4
σiQi|4 + σf + µf

+P [h]φh +
3
4
mhQh|1 +

3
4
miQi|1 +

mh

4
+ µf

)
(10)

dp[15]
dt

= P [11]
3
4
miQi|1 + P [13]

(
3
4
φfQf |3 +

φf

4

)
+P [14]

(
σf +

3
4
σiQi|4

)
+ P [15]

mi

4
+ P [05]

(
3
4
φfQf |0 +

φf

4

)
+P [35]µi + P [45]

3
4
mhQy|4 + P [55]

(
µi +

3
4
miQy|5

)
− P [15] (µi

+
3
4
miQy|5 + 2µf + P [h]φh +

3
4
mhQh|1 +

3
4
miQi|1 +

mi

4

)
(11)
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dP [22]
dt

= 2P [02]
(

P [h]φh +
3
4
mhQh|0

)
+ 2P [24]µf

−2P [22]
(

3
4
mhQy|2 +

3
4
σiQi|2 +

3
4
φfQf |2

)
(12)

dP [23]
dt

= P [02]
3
4
miQi|0 + P [22]

3
4
σiQi|2 + P [25]µf + P [34]µf

+P [03]
(

P [h]φh +
3
4
mhQh|0

)
− P [23]

(
3
4
miQy|3 + µi

+
3
4
φfQf |3 +

3
4
mhQy|2 +

3
4
σiQi|2 +

σi

4
+

3
4
φfQf |2

)
(13)

dP [24]
dt

= P [12]
(

P [h]φh +
3
4
mhQh|1

)
+ P [22]

3
4
φfQf |2 + P [04]

(
P [h]φh +

3
4
mhQh|0

)
+P [44]µf − P [24]

(
3
4
mhQy|4 + σf +

3
4
σiQi|4

+
3
4
mhQy|2 +

3
4
σiQi|2 +

3
4
φfQf |2 +

φf

4
+ µf

)
(14)

dP [25]
dt

= P [12]
3
4
miQi|1 + P [23]

3
4
φfQf |3 + P [24]

(
σf +

3
4
σiQi|4

)
+P [05]

(
P [h]φh +

3
4
mhQh|0

)
+ P [45]µf − P [25]

(
µi +

3
4
miQy|5

+µf +
3
4
mhQy|2 +

3
4
σiQi|2 +

σi

4
+

3
4
φfQf |2 +

φf

4

)
(15)

dP [33]
dt

= 2P [03]
3
4
miQi|0 + 2P [23]

(
3
4
σiQi|2 +

σi

4

)
+ 2P [35]µf

−2P [33]
(

3
4
miQy|3 + µi +

3
4
φfQf |3

)
(16)

dP [34]
dt

= P [13]
(

P [h]φh +
3
4
mhQh|1

)
+ P [23]

3
4
φfQf |2 + P [04]

3
4
miQi|0

+P [24]
3
4
σiQi|2 + P [45]µf − P [34]

(
3
4
mhQy|4 +

3
4
miQy|3 + µi

+σf +
3
4
σiQi|4 +

φf

4
+

3
4
φfQf |3 + µf

)
(17)

dP [35]
dt

= P [13]
3
4
miQi|1 + P [33]

3
4
φfQf |3 + P [34]

(
σf +

3
4
σiQi|4

)
+P [05]

3
4
miQi|0 + P [25]

(
3
4
σiQi|2 +

σi

4

)
+ P [55]µf − P [35] (2µi

+
3
4
miQy|5 + µf +

3
4
miQy|3 +

3
4
φfQf |3 +

φf

4

)
(18)
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dP [44]
dt

= 2P [14]
(

P [h]φh +
3
4
mhQh|1

)
+ 2P [24]

(
3
4
φfQf |2 +

φf

4

)
−2P [44]

(
µf +

3
4
mhQy|4 + σf +

3
4
σiQi|4

)
(19)

dP [45]
dt

= P [14]
3
4
miQi|1 + P [34]

(
3
4
φfQf |3 +

φf

4

)
+ P [44]

(
σf +

3
4
σiQi|4

)
+P [15]

(
P [h]φh +

3
4
mhQh|1

)
+ P [25]

(
3
4
φfQf |2 +

φf

4

)
− P [45] (µi

+
3
4
miQy|5 + 2µf +

3
4
mhQy|4 + σf +

3
4
σiQi|4 +

σi

4

)
(20)

These equations will be analyzed numerically to obtain quantitative behavior (for a
limited range of parameters) and then be compared with mean field approximation to
approximate the computer simulation (full model).

5 Computer Simulations

We simulate a spatial Poisson process in continuous time, and as such the time between
two events is exponentially distributed. First we construct a 100×100 lattice using toroidal
(wrap-around) boundary conditions i.e. exiting the lattice from the left means entering
the lattice from the right. Next we decide on the dispersal of the initial amount of fungi,
healthy frogs, and infected frogs. The placement of the initial amounts is assumed to be
uniformly distributed on the lattice.

The process is modeled by randomly choosing one of the eight events. Depending on
the chosen event, a position or cell of the appropriate type is selected at random. For
example, upon the selection of a successful healthy frog birth event, the simulation will
choose a random cell not occupied by a frog. In this specific example, the birth event
will be wasted if all sites are occupied by a frog, healthy or infected. The lattice may be
produced visually as a grid with each cell set to a specific state designating each of the 6
states. Upon execution of the simulation, we track the lattice coordinates of all 6 states
(refer to Table 1 for list and descriptions). The importance of bookkeeping all 10,000 cells
in our lattice becomes evident as only certain states may transform into selected others.
After every event we save the data, updating the matrix containing the current value or
proportion of each state on our lattice. This data is effectively tracking the population
of the fungus, infected frog, and healthy frog after each event. We use this data for
comparative numerical analysis.

In our program we code rules for each simulation event as follows:

• Movement of the healthy frog is local, meaning that every frog can move to one of its
four cardinal neighbors. After selection of the movement of the healthy frog event,
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the program will randomly select a neighbor and check to see if the healthy frog is
allowed to move into the site. The healthy frog may move into a site not occupied
by another frog. The movement of a healthy frog event will be a wasted event if the
site is not empty.

• Movement of an infected frog is also local. The infected frog does not leave fungus
behind when it leaves the cell.

• Death of an infected frog leaves fungus in its place.

• Birth of a healthy frog may take place on any cell that is not occupied by a frog.
Under these conditions a healthy frog may be born to a site occupied by a fungus
or empty site.

• Fungus is also a locally dispersing vector spreading to a randomly chosen cardinal
neighbor. A fungus birth event is wasted if the chosen neighbor already has fungus.

• Infected frog to frog transmission requires an infected frog adjacent to a healthy frog.

• Fungus to frog transmission requires a healthy frog and fungus to occupy the same
cell.

6 Mean Field Model

The mean field approximation models a way of using a system of differential equations
that describes the rate of change of the probabilities of states under simplified conditions.
This method neglects any spatial arrangement and assumes a well mixing, effectively an
infinite neighborhood where “space does not matter”. Such approximation is carried out
by assuming independence between all states, that is, the local structure is neglected. In
short the mean field approximation assumes that P [ij] = P [i]P [j].

6.1 Equations

We consider the state variables alone rather than as a pair of sites since there is indepen-
dence between all states. Note that the notation y, f, h, and i is again used to describe
the states empty, fungus, healthy frog, and infected frog. The differential equations are
formed by subtracting the outflow from the inflow, describing the total rate of change.

dP [0]
dt

= P [1]µf + P [2]mhP [y] + P [3]miP [y]

−P [0] (φfP [f ] + φhP [h] + mhP [h] + miP [i]) (21)
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dP [1]
dt

= P [0]φfP [f ] + P [3]µi + P [4]mhP [y]

+P [5]µi + P [5]miP [y]− P [1] (µf

+φhP [h] + mhP [h] + miP [i]) (22)

dP [2]
dt

= P [0]φhP [h] + P [0]mhP [h] + P [4]µf

−P [2] (mhP [y] + σiP [i] + φfP [f ]) (23)

dP [3]
dt

= P [0]miP [i] + P [2]σiP [i] + P [5]µf

−P [3] (miP [y] + µi + φfP [f ]) (24)

dP [4]
dt

= P [1]φhP [h] + P [1]mhP [h] + P [2]φfP [f ]

−P [4] (mhP [y] + µf + σiP [i] + σf ) (25)

dP [5]
dt

= P [1]miP [i] + P [3]φfP [f ] + P [4]σiP [i]

+P [4]σf − P [5] (miP [y] + µi + µf ) (26)

By solving for the Jacobian, we analyze three trivial equilibriums: frog-free, fungus-
free, and disease-free. These equilibriums are unstable and only occur if the entire lattice
consists of empty sites or the entire lattice consists of healthy frogs.

7 Results

We have numerically integrated the systems of equations for the pair approximation model
and the mean field model to obtain solutions using a fourth-order Runge-Kutta technique.
Preliminary numerical solutions using varied initial values and fixed parameter values
indicate the healthy frog population, infected frog population and the fungus population
reach their respective equilibrium values regardless of the initial values. As we range our
parameters, the proportion of sites used to plot against parameters are equilibrium values.
The estimated biological parameters from Table 2 are used to plot the graphs.
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M.F. P.A. F.S.
Fungus 95.4 95.4 94.1
Infected Frog 33.6 33.7 32.8
Healthy Frog 38.5 38.5 40.0
Empty 27.9 27.8 27.2

Table 5: This table displays the equilibrium percentages of the healthy frog, infected frog,
and fungus population evaluated numerically with mean field, pair approximation, and
full model (computer simulation). We used the fixed parameter values defined in Figure
2.
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Figure 3: These figures show all state variables plotted against time using of the mean
field approximation using the estimated biological parameters from Table 2 showing the
change of percentage of sites of all state variables over time.

In Figure 4 plot the state variables versus time. We also plot empty, fungus, healthy
frog, and infected frog proportions versus time to allow for comparison between the sim-
ulations, mean field approximation and pair approximation.

The mean field model assumes well-mixing among all sites. This allows for more
contacts, which drives the behavior of the equilibria. Comparing the outcomes of a well-
mixing model of the frogs and fungi to the outcomes of a spatially explicit model, do not
show strong differences over time, in fact, both models behave quite similarly. Equilibria
appear to be nearly the same. In the pair approximation model the solution takes slightly
longer to reach equilibrium than the mean field model. This is due to the combination of
spatial dynamics and movement considered in the pair approximation model.

Since the parameters can not be determined with certainty due to the unavailability
of data, we isolate one parameter and vary it within an acceptable range and observe the
response of the system. Refer to Table 2 to see the range of values tested. First we vary
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Figure 4: These figures show the six equations of the mean field approximation and the 21
equations of the pair approximation as separated in the categories empty, fungus, healthy
frog, and infected frog plotted against time.

our parameters in the mean field model.
The population of fungus, healthy frog, and infected frog at equilibrium are not affected

by the values of the movement rate of infected frogs or the movement rate of healthy frogs
if these movement rates are not zero. Refer to Figure 8. We find that the fungus occupies
95.4% of the lattice, healthy frog occupies 38.5%, infected frog occupies 33.6%, and empty
sites occupy 27.9%, respectively, at equilibrium. We conclude that movement is negligible
to the equilibrium values in the mean field model.

We vary the successful birth rate of healthy frogs on the interval [0,1] (Refer to Figure
5). The proportion of fungi experiences little change as φh increases while the proportions
of empty sites, infected frog sites, and healthy frog sites have drastic changes. As expected,
the proportion of empty sites decreases as the proportion of healthy frogs and infected frogs
increases. According to pair approximation, with φh initially small, on the order of less
than 1 birth of frog every 5 days, the healthy frog population will not persist. Same can be
said for the infected frog population given the healthy frogs are driven to zero. Increasing
the birth rate greater than 1 birth of a frog every 5 days will allow for persistence of
both the healthy frog population and infected frog population. The proportion of the
healthy frogs and infected frogs will increase for higher values of φh. The rate at which
the population changes, for higher values of φh, decreases and levels off. The fungus
population with a fixed birth and death rate will approach a near saturation of the lattice.
We conclude that the density of the fungi in the lattice is not affected by the number of
frogs born. Furthermore, the mean field model and the pair approximation model support
the conclusion that increasing the birth rate of this species will not suffice in allowing for
the persistence of the healthy frog at higher population levels..

In Figure 6 we show the variation in the parameter φf in the interval [0,1]. We have
found on this interval rather than observing the interval [0,10] since the most interesting
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Figure 5: This Figure displays the healthy frog, infected frog, and fungus populations
plotted against the successful healthy frog birth rate (units of healthy frog births per
day). The solid line represents the graph of the pair approximation, the starred line
represents the simulation, and the line with triangles represents the mean field model.

dynamics occur near zero. According to the mean field model, we find a threshold value
at approximately 0.2 where the proportions display sharp increases or decreases. Unfor-
tunately for the Harlequin frog population, this figure shows that the successful birth rate
of the fungi must be significantly decreased in order for healthy frogs to persist in high
proportions. The birth rate of the fungus is relatively insensitive. The fungus will eventu-
ally saturate the entire lattice, thus increasing φf will not affect or influence any change
in the frog or infected frog population. Similarly with the pair approximation the birth
rate of the fungus is relatively insensitive. The fungus will eventually saturate the entire
lattice, thus increasing φf will not affect or influence any change in the frog or infected
frog equilibrium population. Both the mean field and pair approximation model suggest
that reducing the successful fungus birth rate is not the most efficient plan of action.

According to the mean field model, the variation of the infected frog to frog infection
rate σi in the interval [0,13 ] gave us a constant equilibrium for the proportion of fungus sites
at 95.3% of the lattice (Refer to Figure 9). As σi increases, we notice how the healthy frog
equilibrium decreases linearly while the infected frog equilibrium and empty equilibrium
increase linearly. Similarly, in the pair approximation model, the healthy frog population
declines in a linear fashion with increasing transmission rate. The infected frog population
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Figure 6: This Figure displays the healthy frog, infected frog, and fungus populations
plotted against the birth rate of the fungus (units of fungus births per day). The solid line
represents the graph of the pair approximation, the starred line represents the simulation,
and the line with triangles represents the mean field model.

slowly increases with increasing values of σi, eventually exceeding the population level of
healthy frogs. Biologically this implies that decreasing the fungus to frog infection rate is
a more effective solution than decreasing the infected frog to frog infection rate.

With the pair approximation model increasing the rate of transmission will steadily
decrease the size of the healthy frog population. From our observations if we increased the
transmission rate beyond 1 transmission per three days, the healthy frog population could
be driven to extinction (Refer to Figure 9). The population of the infected frog increases
with increasing transmission rate. The rate of increase of the infected frog population
decreases with increasing transmission rates. Increasing (σf ) beyond our interval will allow
the population of infected frog to persist at a higher level as compared to the population
level of healthy frogs. According to the mean field model, increasing σf we see a decrease in
healthy frogs as empty sites and infected frogs increase; however, these changes appear to
be exponential. Again, fungus stays relatively constant, varying only by a slight increase.

In the pair approximation model and mean field model, increasing the death rate of the
fungus to about .3 gradually lowers the equilibrium population of fungus and empty sites
(Refer to Figure 10). The equilibrium population of infected frogs declines linearly. This
observed behavior changes as the death rate approaches .4 . The equilibrium population
of the infected frog, empty sites, and fungus experience a sharp decline. They eventually
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are driven to zero once µf approaches and exceeds .5 .
Comparing the mean field to pair approximation reveal that the population of healthy

frogs, infected frogs, and fungi are not sensitive to the variation of movement rates of both
the healthy frog and infected frog. Variation of the fungus death rate and fungus to frog
infection rate show the most deviation between the pair approximation and mean field
approximation. Both methods approximate the computer simulation very closely (Refer
to table [comparison table]); the two methods accurately capture the qualitative behavior
of the computer simulation.
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Figure 7: This Figure displays the healthy frog, infected frog, and fungus populations
plotted against the rate of infected frog to frog transmission rate (units of infected frog
to frog infections per day). The solid line represents the graph of the pair approximation,
the starred line represents the simulation, and the line with triangles represents the mean
field model.
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Figure 8: This Figure displays the healthy frog, infected frog, and fungus populations
plotted against the movement of an infected frog (units of movements per day). The
solid line represents the graph of the pair approximation, the starred line represents the
simulation, and the line with triangles represents the mean field model.
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Figure 9: This Figure displays the healthy frog, infected frog and fungus populations
plotted against the fungus to frog transmission rate (units of fungus to frog infections
per day). The solid line represents the graph of the pair approximation, the starred line
represents the simulation, and the line with triangles represents the mean field model.
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Figure 10: This Figure displays the healthy frog, infected frog and fungus populations
plotted against the fungus death rate. The solid line represents the graph of the pair
approximation, the starred line represents the simulation, and the line with triangles
represents the mean field model.
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8 Conclusions

From our research we have met our goals and objectives. The first goal was to develop
an understanding of the current amphibious population declination crisis. The second
goal was to construct two models that capture the interaction of an infectious disease and
the Harlequin frog population. Finally, we compared our two models with the computer
simulation.

The reasons behind the documented declining population of the Harlequin frog species
and Chytridiomycosis are widely debated. The complexity of interaction between the
Chytrid fungus and the frog population while unclear represent an important factor whose
impact must be considered. Although there exists circumstantial evidence for increased
fungus virulence with climate fluctuations, the evidence is not conclusive. Further research
needs to be explored to better understand the Chytrid fungal interaction with the changing
climate.

We explored the interaction between the Chytrid fungus and the Harlequin frog by
varying parameter values to better understand the qualitative effects of each parameter
on the healthy frog population, infected frog population and the fungus population. Our
simulations and sensitivity analysis show that the populations are more sensitive to the
fungus to frog infection rate and death rate of the fungus, meaning slight changes to these
rates have more influence on the healthy frog, infected frog, and fungus populations. When
considering prevention measures to reduce the level at which the infected frog population
persists and increase the level at which healthy frogs persists, we need to focus our attention
to the rate of fungus to frog infection and the death rate of the fungus. To reduce the
rate of infection, we need to remove the opportunity for the fungus to make contact with
the frog. This could be achieved by relocating the extant frog population to a wildlife
preserve. Another approach would be increasing the death rate of the fungus. A chemical
could be developed to treat the frog population and reduce the level of the fungus.

The fungus population saturates the entire lattice for all parameter sweeps except for
the fungus death rate. As long as the death rate remains low and the birth rate is above
zero, the fungus will eventually spread over the entire lattice. A fungus can only give
birth to one of its four neighbors. Eventually a fungus will become surrounded by fungus,
resulting in wasted birth events. For this reason increasing the birth rate beyond a certain
value does not change the population of the fungus because the lattice is fully occupied
by fungus.

9 Discussion & Future Work

Within the mean field approximation we assume that space does not matter and well
mixing of all sites. This essentially, in the differential equation, gives every site an infinite
neighborhood for dispersal, movement, and interaction. Spatial structure is entirely ne-
glected and we are only concerned with the actual state within a given site. Within this
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framework we have that a site containing a frog is dependant upon the state of the fungus
in that site (hence the need for P [2] and P [4]).

In the pair approximation, we assume that the dynamics are driven by the interaction
of a site with its adjacent neighbors. While we ignore correlations forming over a distance
greater than two sites, it captures to a certain extent, how the spread and movement of
the respective species influence steady state outcomes for the system. There is a particular
fashion of coupling betwixt the two species. We have maintained the mean field single
site dependency of state but have extended the dependency to involve adjacent neighbors.
This is reflected in the fact that we maintain the difference between a [2] and a [4] but
now also extending the dependency to involve differences between [02], [12], ... , [34], [54].

The question becomes: What is the interdependency between the frogs and the fungus?
If we were to assume no dependency of the state of a frog within a site given the fungus
content of that site, we could formulate a new system of ODE’s. This would include
state variables P [yy], P [yh], P [yi], P [hh], P [ii], P [nn]andP [ff ], where y is a site without
a frog, h is a site with a healthy frog, i is a site with an infected frog, n is a site with no
fungus, and f is a site with fungus. This assumption is put more succinctly as P (frog
here | fungus here) = P (frog here) = P (frog here | no fungus here). This system
has loosened the assumptions on how the frog and fungus interact but the reader who is
paying attention will still notice that the P (fungus here) 6= P (fungus here | Infected
Frog was here); thus, we still have two coupled systems.

The previous system still maintained the local structure of the frogs, presumably due
to the biology of their movement. Considering the difference in magnitude between the
movement rates and the rest of the parameters a different assumption may be legitimate.
Recall that there is already some sort of mean field behavior within the frog population
due to tadpoles (i.e. birth may target any non-occupied site). What is holding us back
from rescaling the movement rates while adjusting the movement to al so be mean field?
Not much. We are able to strip away the pair structure of the frogs and reach a system
with even fewer state variables P [h], P [i], P [nn], P [ff ]. The only change in this hybrid
method from the last is the introduction of well mixing amongst the frog population. This
seems to be justified by previous models (mean field and pair approximation) due to the
near complete insensitivity to the value of mh and mi thus making it possible to let the
movement rates approach infinity.

Now consider a fungus that doesn’t die or spread but can infect frogs. With our mean
field approximation, moving frogs may come in contact with the stationary fungus which
infects the frog. The frog wanders off to a randomly chosen site and dies, thus spreading
the fungus in a mean field fashion. Now pulling back a little closer the models we had
before with normal fungus behavior the fungus is a local disperser. With the mean field
frog movement we have, as the toy example above pointed out, these potentials to do
essentially long distance dispersal, thus we can make another assumption that the fungus
behaves in a mean field manner. This assumption transforms the system into three state
variables P [h], P [i], and P [f ]. Through a particular series of decoupling, we have reduced
a twenty dimensional pair approximation system to a three dimensional mean field system.
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There are several questions raised throughout this formulation, including biological
validity. Perhaps the time scales of the ecology for a particular pair species is such that
it naturally lends itself to this reduction. What are the major differences in the dynamics
between these systems? Perhaps the smallest system is just as rich in qualitative behavior
as the most complicated or maybe the quantitative measures are way off. Or maybe end
states are preserved throughout the reduction process but the intermediate dynamics dif-
fers dramatically. A very involved study could be conducted in order to properly formulate
each of these unfolding layers. This could uncover different paths of reduction, where the
steps are made clear and the information lost along the way made apparent.
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Appendix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% %%%%
%%%%MTBI 2006 %%%%
%%%%Revised on: July 18, 2006 %%%%
%%%%Created by: Cassie Pawling %%%%
%%%% Mario Ayala %%%%
%%%% Adrian Smith %%%%
%%%% Ben Morin
%%%%
%%%%Function: Will simulate our harlequin frog project %%%%
%%%% at MTBI in 2006. Simulates pair approximation %%%%
%%%% model where chytrid fungus can infect and kill %%%%
%%%% the frog population. We will change our %%%%
%%%% parameters to show the difference between the %%%%
%%%% wet season and the dry season. %%%%
%%%% %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function frogs(fp,hp,ip,phif,phih,muf,mui,movei,moveh,sigmai,sigmaf, placement, dry)
%multstep(.2, .1, .1, .15, 1, 1/49, 1/3, 12, 24, 1/3, 1/4, [1, 1, 1], 1),
%fungus prevails
%multstep(.2, .1, .1, .4, 1, 1/49, 1/3, 12, 24, 1/3, 1/4, [1, 1, 1], 1)
%%%%%%%%%%%%%%%%%%%%%%%%%%%INPUTS%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% fp initial proportion of fungus
% hp intial prortion of healthy frogs
% ip initial proportion of infected frogs
% phih successful birth rate of healthy frogs
% phif successful birth rate of fungus
% muf fungus death rate
% mui infected frog death rate
% movei infected frog movement rate
% moveh healthy frog movement rate
% sigmaf rate of successful fungus to frog infection
% sigmai rate of successful infected frog to frog infection
% placement A vector with three values to determine the distributions of
% fungus, frogs, and infected frogs in initial placement
%dry The effective percentage of certian parameters during the dry
% season
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% State variables
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% state 0 : empty water/wetland
% state 1: fungus
% state 2; healthy frog
% state 3: infected frog
% state 4: heaalthy frog with fungus
% state 5: infected frog with fungus
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n=100; % lattice dimension
lattice=zeros(n,n); %creates a lattice of zero with dimension n by n
M=n^2; %total number of sites
Fungus_Coordinates=zeros(M,2); % tracking addresses of the sites occupied
% by a fungus(sites of state 1, 4, 5)
H_Frogs_Coordinates=zeros(M,2);% tracking addresses of the sites occupied
% by a healthy frog (h_frog)(sites of state 2, 4)
I_Frogs_Coordinates=zeros(M,2);% tracking addresses of the sites occupied
% by a infected frog (i_frog)(sites of state 3, 5)

cf=0; % cf is the number of sites on lattice with fungus at the moment.
fpop=floor(fp*M); % initial fungus population is equal to percentage of
% fungus times M, floor is used in case it is a decimal

ch=0; % ch is the number of sites on lattice with h_frog at the moment.
hpop=floor(M*hp); % initialization of healthy frog population size

ci=0; % ci is the number of sites on lattice with i_frog at the moment.
ipop=floor(M*ip); % initialization of infected frog population size

% handling potential initialization abnomalities.
if ((hp+ip)>1)
disp(’the initial proportion of frogs has to be less than one’)
return
end

if (fp>1)
disp(’Reducing Fungus proportion to one’)
fp=1;

end

if (fp<0||hp<0||ip<0)
disp(’How dare you put a negative!’)
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return
end

switch placement(1)
% Placement is one of inputs, this calls the first value of the vector,
% with specifies the distribution of fungus.

case 1 %uniform distribution
disp(’Fungus_uniform’)
while (cf<fpop) % place fungus on the lattice

row=unidrnd(n); % row is a random number between 1 and n.
col=unidrnd(n);
if (~lattice(row,col))

lattice(row,col)=1;
cf=cf+1; % Current fungus site count is increased by 1
Fungus_Coordinates(cf,1)=row;
Fungus_Coordinates(cf,2)=col;
% store the address of fungus sites in ’Fungus address
% book’

end
end

case 2 %distributed in center
disp(’Fungus_normal’)
var=ceil(sqrt(fpop)/6); %The most appropriate value for variance
while (cf<fpop)

row=mod(ceil(n/2+normrnd(0,var))-1+n,n)+1; %Ask Ben
col=mod(ceil(n/2+normrnd(0,var))-1+n,n)+1; %Ask Ben
if (~lattice(row,col))

lattice(row,col)=1;
cf=cf+1;
Fungus_Coordinates(cf,1)=row;
Fungus_Coordinates(cf,2)=col;

end
end

end

switch placement(2) % Calls the second value of the placement vector
case 1 % H_frog is uniform distribuited

disp(’Uniform-Healthy Frog’)
while (ch<hpop)

row=unidrnd(n);
col=unidrnd(n);
if (lattice(row,col)==0)
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% The site is empty, put a frog there, it turns to 2.
lattice (row,col)=2;
ch=ch+1;
H_Frogs_Coordinates(ch,1)=row;
H_Frogs_Coordinates(ch,2)=col;

elseif (lattice(row,col)==1)
% The site has fungus, put a frog there, it turns to 4.
lattice (row,col)=4;
ch=ch+1;
H_Frogs_Coordinates(ch,1)=row;
H_Frogs_Coordinates(ch,2)=col;

end
end

end

switch placement(3)
case 1 %uniform distribuited

disp(’Uniform-Infected Frog’)
while (ci<ipop)

row=unidrnd(n);
col=unidrnd(n);
if (lattice(row,col)==0)

%If the site is empty, put an i_frog, it turns to 3
lattice (row,col)=3;
ci=ci+1;
I_Frogs_Coordinates(ci,1)=row;
I_Frogs_Coordinates(ci,2)=col;

elseif (lattice(row,col)==1)
% The site has a fungus, put an i_frog there, it turns to 5
lattice (row,col)=5;
ci=ci+1;
I_Frogs_Coordinates(ci,1)=row;
I_Frogs_Coordinates(ci,2)=col;

end

end
end

colormap([0,0,0;0,0,1;0,1,0;1,0,0;0,1,1;1,0,1;]);
image(lattice + 1);
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max=n^2; % Number of events

A=zeros(max,1); % A(i) is the time elapsed till the event i-1
B=A; % save in this matrix the frog population in every step
C=A; % save the fungus population size

A(1)=0; % start at the time 0
B(1)=floor(M*(hp+ip)); % the intial frogs population size
C(1)=floor(M*fp); % the initial fungus population size

%Here we are going to find the coordinates of the empty sites ( with no
%frogs) and then store them in the matrix Empty_Coordinates.

Empty_Coordinates=zeros(M,2); % define the address book of empty sites
cE=0; % cE is the number of empty sites.
for i=1:n

for j=1:n
if(lattice(i,j)==0 || lattice(i,j)==1)

cE=cE+1;
Empty_Coordinates(cE,1:2)=[i,j];

end
end

end

Tr= ch*(phih + moveh)+ci*(movei+sigmai+mui)+cf*(phif+sigmaf+muf);
% Tr here is the initial value of total rates of all events.

% The major loop starts here
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
k=1000; % number of steps in the process
H_frogs=zeros(k,1);
I_frogs=zeros(k,1);
Fungus=zeros(k,1);
H_frogs(1)=floor(M*hp);
I_frogs(1)=floor(M*ip);
Fungus(1)=floor(M*fp);

step=1;
slope = 1;
%for step=1:k
while ((slope > 0.1) & (step <=k))
for count=1:max % NOW LET US START WITH THE SIMULATION
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if(Tr==0)
disp(’Tr=0’)
pause
end

Tr= ch*(phih + moveh)+ci*(movei+sigmai+mui)+cf*(phif+sigmaf+muf);
Pphih=(phih*ch)/Tr;
Pmoveh=(moveh*ch)/Tr;
Pmovei=(movei*ci)/Tr;
Psigmai=(sigmai*ci)/Tr;
Pmui=(mui*ci)/Tr;
Pphif=(phif*cf)/Tr;
Pmuf=(muf*cf)/Tr;
Psigmaf=(sigmaf*cf)/Tr;
P1=[Pphih, Pmoveh, Pmovei, Psigmai, Pmui, Pphif, Pmuf, Psigmaf];
P=cumsum(P1);
A(count+1)=A(count)+ exprnd(1/Tr);

r=rand(1); % Choose an event out of 8 possible events

w=unidrnd(4); % Choose a nearest-neighbor for event
if (w==1)
a=1;
c=0;
elseif(w==2)
a=0;
c=1;
elseif(w==3)
a=-1;
c=0;

elseif(w==4)
a=0;
c=-1;
end

if (r<P(1)) % birth of a frog
% disp(’p(1): birth of a frog’)

if (cE==0)
continue;

end
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b=unidrnd(cE); % choose an empty site randomly
if (lattice(Empty_Coordinates(b,1),Empty_Coordinates(b,2))==1)

lattice(Empty_Coordinates(b,1),Empty_Coordinates(b,2))=4;
elseif (lattice(Empty_Coordinates(b,1),Empty_Coordinates(b,2))==0)

lattice(Empty_Coordinates(b,1),Empty_Coordinates(b,2))=2;
else

disp(’error-birth of a frog’)
break

end
ch=ch+1;
H_Frogs_Coordinates(ch,:)=Empty_Coordinates(b,:);
Empty_Coordinates(b,:)=Empty_Coordinates(cE,:);
cE=cE-1;

elseif (r<P(2)) % movement of a healthy frog

if (cE==0 || ch==0) % if no empty sites or healthy frogs, abort the operation.
continue

end
d=unidrnd(ch); % pick a health frog
old_address_x =H_Frogs_Coordinates(d,1);
old_address_y =H_Frogs_Coordinates(d,2);
% Now find the address of the nearest_neighbor the healtht frog
% will move into, provided it is empty. Boundaries
% are wrapped around (torus lattice)
destination_x =mod(old_address_x+a-1+n,n)+1;
destination_y =mod(old_address_y+c-1+n,n)+1;

if (lattice (destination_x,destination_y)==0)
lattice(destination_x,destination_y)=2;

elseif (lattice (destination_x,destination_y)==1)
lattice(destination_x,destination_y)=4;

else
continue % if the destination already has a frog, skip the rest.

end
H_Frogs_Coordinates(d,1)=destination_x;
% the frog moved, change address
H_Frogs_Coordinates(d,2)=destination_y;
% the new address was empty, find it’s id in the Empty A_book.
findrow=find(Empty_Coordinates(:,1)==destination_x & Empty_Coordinates(:,2)==destination_y);
% The destionation in the Empty A_book is replaced by old_location of the frog.
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Empty_Coordinates(findrow(1),1)=old_address_x;
Empty_Coordinates(findrow(1),2)=old_address_y;

% Now change state in the old address, for frog has left.
if(lattice(old_address_x,old_address_y)==2)

lattice(old_address_x,old_address_y)=0;
elseif(lattice(old_address_x,old_address_y)==4)

lattice(old_address_x,old_address_y)=1;
end

elseif (r<P(3)) %movement of an infected frog
if (cE==0 || ci==0) % if no empty sites or infected frogs, abort the operation.

continue
end
d=unidrnd(ci); % pick an infected frog

old_address_x =I_Frogs_Coordinates(d,1);
old_address_y =I_Frogs_Coordinates(d,2);
% Now find the address of the nearest_neighbor the infected frog
% will move into, provided it is empty. Boundaries
% are wrapped around (torus lattice)
destination_x =mod(old_address_x+a-1+n,n)+1;
destination_y =mod(old_address_y+c-1+n,n)+1;

if (lattice (destination_x,destination_y)==0)
lattice(destination_x,destination_y)=3;

elseif (lattice (destination_x,destination_y)==1)
lattice(destination_x,destination_y)=5;

else
continue % if the destination already has a frog, skip the rest.

end
I_Frogs_Coordinates(d,1)=destination_x;
% the frog moved, change address
I_Frogs_Coordinates(d,2)=destination_y;
% the new address was orginally empty, find it’s id in the Empty A_book.
findrow=find(Empty_Coordinates(:,1)==destination_x & Empty_Coordinates(:,2)==destination_y);
% The destionation in the Empty A_book is replaced by old_location of the frog.

Empty_Coordinates(findrow(1),1)=old_address_x;
Empty_Coordinates(findrow(1),2)=old_address_y;

% Now change state in the old address, for frog has left.
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if(lattice(old_address_x,old_address_y)==3)
lattice(old_address_x,old_address_y)=0;

elseif(lattice(old_address_x,old_address_y)==5)
lattice(old_address_x,old_address_y)=1;

end

elseif (r<P(4)) %an infected frog infects a neighbor frog
if ci==0

continue
end
d=unidrnd(ci); % Choose an infected frog
% Now find the address of the nearest_neighbor this infected frog
% will infect, provided it has a healthy frog. Boundaries
% are wrapped around (torus lattice)
target_x =mod(I_Frogs_Coordinates(d,1)+a-1+n,n)+1;
target_y =mod(I_Frogs_Coordinates(d,2)+c-1+n,n)+1;

if (lattice (target_x,target_y)==2)
lattice(target_x,target_y)=3; ci=ci+1;

elseif(lattice (target_x,target_y)==4)
lattice(target_x,target_y)=5; ci=ci+1;

else
continue% if the destination doesn’t have a healthy frog, skip rest.

end

I_Frogs_Coordinates(ci,1)=target_x;
I_Frogs_Coordinates(ci,2)=target_y;

findrow=find(H_Frogs_Coordinates(:,1)==target_x & H_Frogs_Coordinates(:,2)==target_y);

H_Frogs_Coordinates(findrow(1),:)=H_Frogs_Coordinates(ch,:);
ch=ch-1;

elseif (r<P(5)) % death of an infected frog
if ci==0

continue
end
d=unidrnd(ci);

if (lattice(I_Frogs_Coordinates(d,1),I_Frogs_Coordinates(d,2))==3)
lattice(I_Frogs_Coordinates(d,1),I_Frogs_Coordinates(d,2))=1;
cf=cf+1; %update fungus count
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Fungus_Coordinates(cf,:)=I_Frogs_Coordinates(d,:);
elseif (lattice(I_Frogs_Coordinates(d,1),I_Frogs_Coordinates(d,2))==5)

lattice(I_Frogs_Coordinates(d,1),I_Frogs_Coordinates(d,2))=1;
else

disp(’error-death of frog’)
pause

end
% update empty (frog-free) count.
cE=cE+1;
Empty_Coordinates(cE,:)=I_Frogs_Coordinates(d,:);

I_Frogs_Coordinates(d,:)=I_Frogs_Coordinates(ci,:);
% update infected frog count.
ci=ci-1;

elseif (r<P(6)) %birth of fungus
b=unidrnd(cf);
target_x = mod(Fungus_Coordinates(b,1)+a-1+n,n)+1;
target_y = mod(Fungus_Coordinates(b,2)+c-1+n,n)+1;

if (lattice(target_x,target_y)==0)
lattice(target_x,target_y)=1;

elseif (lattice(target_x,target_y)==2)
lattice(target_x,target_y)=4;

elseif (lattice(target_x,target_y)==3)
lattice(target_x,target_y)=5;

else
continue

end
cf=cf+1;
Fungus_Coordinates(cf,1)=target_x;
Fungus_Coordinates(cf,2)=target_y;

elseif(r<P(7)) %death of fungus
if (cf==0)

continue
end
b=unidrnd(cf);
if (lattice(Fungus_Coordinates(b,1),Fungus_Coordinates(b,2))==1)

lattice(Fungus_Coordinates(b,1),Fungus_Coordinates(b,2))=0;
elseif (lattice(Fungus_Coordinates(b,1),Fungus_Coordinates(b,2))==4)

lattice(Fungus_Coordinates(b,1),Fungus_Coordinates(b,2))=2;
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elseif (lattice(Fungus_Coordinates(b,1),Fungus_Coordinates(b,2))==5)
lattice(Fungus_Coordinates(b,1),Fungus_Coordinates(b,2))=3;

end
Fungus_Coordinates(b,:)=Fungus_Coordinates(cf,:);
cf=cf-1;

elseif(r<P(8)) %the fungus infects one frog
if (ch==0 || cf==0)

continue
end
b=unidrnd(cf);
if (lattice(Fungus_Coordinates(b,1),Fungus_Coordinates(b,2))==4)

lattice(Fungus_Coordinates(b,1),Fungus_Coordinates(b,2))=5;
ci=ci+1;
I_Frogs_Coordinates(ci,:)=Fungus_Coordinates(b,:);
findrow=find(H_Frogs_Coordinates(:,1)==Fungus_Coordinates(b,1) & H_Frogs_Coordinates(:,2)==Fungus_Coordinates(b,2));

H_Frogs_Coordinates(findrow(1),:)=H_Frogs_Coordinates(ch,:);
ch=ch-1;

else
continue;

end
end % of an event (started at "if r<P(1)")
% display the lattice in motion every 100 events.
if(mod(count,10^3)==0)

subplot(211),
H=image(lattice+1);drawnow;pause(.001);
hold on;

end

end % of the count_loop, one step
% store size of H_frogs, I_frogs and fungus in a vector, later in data
% file after each step.

H_frogs(step)=ch/M;
I_frogs(step)=ci/M;
Fungus(step)=cf/M;

% regresson as stopping criteria
if (step>399 & mod(step,100)==0)

x=step-99:step;
y=Fungus(step-99:step);
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numerator=100*sum(x.*y)-sum(x)*sum(y);
denominator=100*sum(x.^2)-(sum(x))^2;
slope=abs(numerator/denominator)

end

end % of while

t=1:k;
subplot(212),
plot(t,H_frogs,’-g’,t,I_frogs,’*r’,t,Fungus,’+b’)
hold on

save -ascii Parameter1H H_frogs;
save -ascii Parameter1I I_frogs;
save -ascii Parameter1F Fungus;
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