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Abstract

Despite the highly developed mechanism of the immune response, tumor cells often continue
to grow uncontrollably. The recognition of tumor cells by specific immune cells is dependent
on the balance between immature (ImC) and mature (MmC) myeloid cells in the body, a
fact not widely used in tumor growth dynamics models. We propose a mathematical model
that incorporates various stages of immune response to tumor growth. Our model includes
the dynamics and interactions of tumor cells, natural killer cells, CD8+T cells, immature and
mature myeloid cells. The resulting model is given by a five-dimensional non-linear system,
which is reduced to a two-dimensional system using time-scale arguments and explored ana-
lytically. A discussion on the role of the ratio of immature to mature myeloid cells concludes
our presentation.

1 Introduction

Cancer is a general term that encompasses a number of diseases, characterized by the uncontrollable
division of cells, which is caused by accumulating mutations in the DNA. Many types of cancer
are characterized by the development of a so-called solid malignant tumor - a tightly packed
conglomeration of rapidly dividing cells. In this case, the tumor cells may soon invade surrounding
tissues, causing the malfunction of internal organs and eventually the patient’s death [1]. In the
year 2000, malignant tumors were responsible for 12% of the nearly 56 million premature deaths
all over the world [12].

The immune system protects the human body from tumor cells that may develop into a ma-
lignant tumor. The body’s defense mechanism occurs on two levels: the innate immune response
and the specific immune response [1]. Both mechanisms involve white blood cells, which, among
others, consist of natural killer cells, B cells, myeloid cells, and specific cytotoxic T lymphocytes
[1]. In our model, we consider three types of cells, directly involved in the destruction of the tumor
cells, namely the natural killer cells, the CD8+T cells and the myeloid cells.

Natural killer (NK) cells are part of the innate immune response. They recognize the presence
of a tumor cell and attempt to eliminate it. NK cells bind to the receptors on the surface of the
tumor cell and release perforin, a chemical that damages its outer membrane. This creates osmotic
imbalance inside the tumor cell, causing it to either shrink or swell. This also facilitates entrance of
other chemicals inside the tumor cell. However, NK cells are not capable of distinguishing between
specific antigens, and as a result, they neither adapt nor improve their effectiveness over time [1].

Generally, the specific immune response becomes a dominating factor in fighting the tumor some
time after the organism has developed cancer, and it depends on the overall state of the patient’s
immune system. The CD8+T cells, which are part of the specific immune response, detect and kill
specifically the tumor cells. Even if the specific immune response is able to eliminate the tumor, a
certain fraction of CD8+T cells remains in the body for extended periods of time. These cells will
promptly activate the immune system, should the tumor reappear [1].

The growth of CD8+T cells is stimulated by the presence of the tumor cells in the body. Every
encounter with the tumor cells stimulates further production of CD8+T cells [3, 10]. They bind to
the surface of tumor cells and inject chemicals, such as perforin, that destroy the tumor cell from
inside [13]. Unlike NK cells, which are destroyed after each encounter with the tumor cells, each
CD8+T cell is capable of killing numerous tumor cells [3, 4].

Efficiency of the specific immune response depends on the ability of CD8+T cells to recognize
tumor cells. The recognition process is regulated by a class of cells, commonly referred to as
mature myeloid cells (MmC). Myeloid cells are produced in the bone marrow; after a period of

2



maturation, which normally lasts about 5 days, they differentiate into macrophages and dendritic
cells [8]. However, in the presence of the tumor cells the maturation process slows down, which
results in accumulation of immature myeloid cells (ImC) at the site where tumor is present. Clinical
studies have shown that inhibition of maturation of the myeloid cells is related to the production by
the tumor of certain cytokines, such as vascular endothelial growth factor (VEGF) [7]. As a result,
the number of antigen-presenting cells decreases, reducing the activity of the immune system and
consequently allowing the tumor to grow undetected by the CD8+T cells.

Tumor cells are created in the body at all times. However, normally the immune system is
capable of eliminating them before the tumor growth gets out of control. Tumor growth becomes
uncontrollable in people with already weakened immune system. Understanding the mechanism
of the immune response is crucial for developing an optimal treatment therapy. There are three
major types of treatment therapies that strengthen the body’s natural defenses: chemotherapy,
immunotherapy, and vaccination [3]. Even after the tumor has been surgically removed, there are
still undetectable tumor cells left in the body. In order to ensure that the tumor does not reappear,
chemotherapy is administered. However, chemotherapy cannot be administered for extended peri-
ods of time as it also severely damages the healthy tissues. In order to enhance the effectiveness of
chemotherapy, it is increasingly combined with other types of treatment, such as immunotherapy.
One of the most promising types of immunotherapy is the adaptive cell immunotherapy (ACI).
During ACI, T cells taken from the cancer patient are cultivated outside of the body and are
stimulated to react to certain antigens. The cells are then infused in the patient, working to more
effectively battle the tumor cells [9]. The third kind of treatment, the vaccine therapy, is still a
highly experimental procedure [9]. Unlike other kinds of vaccines, cancer vaccines are injected after
the disease has begun, preventing it from re-occurring [3]. They are mostly used in conjunction
with other types of treatment, but early clinical trials indicate their effectiveness in strengthening
the immune system response [3, 5].

In previous papers, authors have primarily looked at the interactions of the entire immune
system with tumor cells, without differentiating between the two stages (innate and specific) of
the immune response [13, ?]. In cases when the distinction was taken into consideration, such as
in [6, 3, 4], the authors explored the models without considering the role of myeloid cells in the
dynamics of the immune response.

In this paper, we propose a mathematical model which incorporates the effect of myeloid cells
on the dynamics of tumor growth. We explored the dynamics of tumor-immune system interactions
at different stages of the immune response in a non-linear five-dimensional model, studied in three
different time scales.

Our paper is organized as follows: the model description is given in Section 2. In Section 3,
we explain the approach that we have taken in analyzing our models. In Section 4 we conduct
numerical solutions and provide explanation of the results obtained. In Section 5 we summarize
our results and discuss future model modifications and applications of the results.

2 Model Description

We have developed our model based on the following biological assumptions:

• In the early phase of tumor life cycle, we assume that the tumor grows exponentially in the
absence of immune response.
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• NK and CD8+T cells both kill tumor cells. NK cells are part of the innate immune response
and have limited effectiveness. CD8+T cells are part of the adaptive immune response and
are specific to tumor cells, which increases their effectiveness in battling cancer [3].

• NK cells are present in the body at all times. The growth of NK cells, however, is stimulated
by the presence of tumor cells [3].

• On average it takes about 15 hours for the innate immune system to activate specific immune
response [1].

• CD8+T cells are created only in the presence of tumor cells. The production of CD8+T cells
is stimulated by the debris of tumor cells, previously killed both by NK cells and CD8+T
cells [3].

• The effectiveness of NK cells is limited by the fact that tumor cells are not always recognized
as foreign and therefore could escape destruction [13].

• NK cells die after each contact with the tumor cells, while each CD8+T cell is capable of
killing numerous tumor cells [3].

• Myeloid cells are constantly being produced in the body. Their production is additionally
stimulated by the presence of tumor cells [7].

• Normally, myeloid cells take about 5 days to mature and differentiate into dendritic cells and
macrophages, which are antigen-presenting cells. Mature myeloid cells are crucial in helping
CD8+T cells recognize tumor cells as foreign [7, 8].

• Tumor cells produce cytokines that inhibit the maturation process of the myeloid cells. Con-
sequently, immature myeloid cells accumulate in the body in the presence of tumor and
inhibit CD8+T cells responses [7].

• Both mature (MmC) and immature (ImC) myeloid cells are always present in the body. The
effectiveness of interactions between tumor cells and CD8+T cells depends on the balance
between ImC and MmC in the body [7].

Based on the above assumptions, we formulate the following model in terms of a system of
coupled non-linear differential equations where N(t): natural killer cell population, L(t): CD8+T
cell population, T (t): tumor cell population, M1(t): immature myeloid cell population, and M2(t):
mature myeloid cell population.
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Ṅ = Λ + bT − µ1N − fNT,

L̇ = −µ2L + cLT (M2
M1

)L + b1
NT

h+N ,

Ṫ = aT − d NT
h+N − eLT M2

M1
,

Ṁ1 = Ω + rT − µ3M1 − (θ − g T
p+T )M1,

Ṁ2 = (θ − g T
p+T )M1 − µ4M2

(1)

The rate of change of N cells depends on constant natural birth rate Λ from thymus and bone
marrow, and production of N cells due to stimulation by tumor cells present in the system at the
rate bT . µ1N is the natural death rate, and fNT describes the death of N cells after they have
come in contact with tumor cells.

The change in count of L cells is by natural death rate µ2L; the production of L cells via
stimulated by the debris of tumor cells, previously killed by N cells at the rate b1

NT
h+N , as well as

by debris of tumor cells killed by L cells at the rate cLT (M2
M1

)L. Note that the last term cLT (M2
M1

)L
also shows the influence of presence of myeloid cells. As previously mentioned in the assumptions,
the recognition of the tumor cells by L cells is increased by the presence of M2 cells whereas it is
decreased due to the presence of M1 cells.

The rate of change of tumor cells depends on the natural growth rate of tumor cells at rate
aT , and the killing of tumor cells by N cells and L cells at d NT

h+N and eLT M2
M1

, respectively. The
term M2

M1
accounts for the balance between the mature and immature cells, which is crucial for the

success rate of the interactions between tumor cells and L cells.
The count of the immature myeloid cells is changed by Ω, the constant production rate of ImC

cells from thymus, µ3M1, their natural death rate, rT which describes the additional production
rate of myeloid cells due to the release of certain cytokines by tumor cells. g M1T

p+T describes the
fraction of cells that cannot mature because of the presence of the tumor cells, and (θ− g T

p+T )M1

are ImC that can mature despite the presence of tumor cells, where θ is constant.
In the Ṁ2 equation, (θ− g T

p+T )M1 describes the ImC that have matured despite the inhibition
by tumor cells, µ4 describes the per capita natural death rate of matured cells.

If g > θ, then our model is valid for 0 ≤ T < θp
g−θ and if g ≤ θ, then our model is valid for all

non-negative T .
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Table 1: Parameter Definitions
Parameter Definition Value Units Ref

a Natural tumor growth rate 4.31× 10−1 day−1 [3, 4]
f Coefficient of successful en-

counter of N with T
3.42× 10−6 cell−1day−1 [3, 4]

d Coefficient of successful en-
counter of T with N

1.245× 10−1 day−1 [3]

e Coefficient of successful en-
counter of T with L

2.02× 10−8 cell−1day−1 [3]

r Production rate of ImC due to
T presence

3.9× 10−7 day−1 [4]

c Production rate of L due to
debris of T, killed by other L

2.49× 10−2 (cells2 ∗ day)−1 [3]

b Production rate of N due to T
presence

3.9× 10−7 day−1 [4]

b1 Production rate of L due to
debris of T, killed by N

1.245× 10−1 day−1 [3]

h Saturation coefficient of N 2.02× 107 cells [3, 7]
p Saturation coefficient of ImC 2.02× 107 cells [3, 7]
g Maturation rate of ImC with

respect to T
1.25× 10−2 day−1 [7]

θ Maturation rate of ImC re-
gardless of T

0.2 day−1 [5]

Λ Natural birth rate of N 1.3× 104 cell−1day−1 [4]
Ω Natural growth rate of ImC 1.3× 104 cell−1day−1 [5]
µ1 Natural death rate of N 4.12× 10−2 day−1 [3, 4, 7]
µ2 Natural death rate of L 2.04× 10−1 day−1 [3]
µ3 Natural death rate of ImC 1.1× 10−7 day−1 [3]
µ4 Natural death rate of MmC 4.12× 10−2 day−1 [3]

6



3 Analysis

3.1 Method Description - Handling Time

We have used different time scales arguments to simplify the analysis of our model. The general
approach is as follows. Consider the following non-linear system

x′ = f̃(x, y),

y′ = g̃(x, y),

where f̃(x, y) and g̃(x, y) are some functions. If we know that the dynamics of one of the equations
changes faster than of the other, we can rewrite our system of equations as

εx′ = f(x, y)

y′ = g(x, y),

where ε > 0, f(x, y) = ε−1f̃(x, y) and g(x, y) = g̃(x, y).
In this case we can classify x as a “fast” variable and y as the “slow” variable (see [2, 11, 10]).

This suggests that x reaches an equilibrium value 1/ε times faster than y (i.e. x = φ(y) where y is
assumed to be constant). This equilibrium is commonly referred to as a quasi-equilibrium state.
In this paper we apply this concept of different time scales in studying our models.

3.2 Model 1.A

Let us first consider a simplified model, where we do not take into account the influence of myeloid
cells





Ṅ = Λ + bT − µ1N − fNT,

L̇ = −µ2L + cTL2 + b1
NT

h+N ,

Ṫ = aT − d NT
h+N − eLT.

(2)

We assume that N cells cannot grow indefinitely, while the growth rate of L cells is directly
proportional to the number of tumor cells present in the system.

The system has a trivial (tumor-free) equilibrium (N0, L0, T 0) = ( Λ
µ1

, 0, 0). The eigenvalues for
this system at this trivial steady state are given by λ1 = a − ( dΛ

hµ1+Λ ), λ2 = −µ2, and λ3 = −µ3.
Hence, the equilibrium is stable if

a− (d
Λ
µ1

h + Λ
µ1

) < 0, (3)

and unstable otherwise a − (d
Λ

µ1
h+ Λ

µ1

) > 0. Expression d
Λ

µ1
h+ Λ

µ1

can be seen as the “maximum” per

capita killing rate of tumor cells by NK cells. Hence, tumor cells will be completely wiped out
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from the body if the natural replication rate of tumor cells will be less than maximum killing rate
of NK cells.

The nontrivial equilibria are given as follows:

N∗ = αL− β,

T ∗ = µ1(β−αL)
δ−fαL ,

(4)

and L∗, which is given by the following quartic polynomial

cα2L4 + L3(chα − µ2γα − 2cαβ) + L2(µ2δα + µ2βγ − µ2hγ − chβ + cβ2 + b1α
2) + L(−µ2hδ1 −

µ2βδ1 − 2αβb1) + b1β
2 = 0,

where α = eh
a−d , β = ah

a−d , δ = b + βf , γ = fα
µ1

, and δ1 = δ
µ1

.

Under certain conditions, β = 0 (i.e. h = 0) and a > d/2, an expression for the unique non-
trivial steady state is given by (4) and

L∗ = −µ2e(g−ba)−αbe+
√

(αbe−µ2e(b−ba)2)+4dcα(µ2ad+baα)

2dcα .

3.3 Model 1.B

We assume that at first the immune system responds only with activation of the innate immune
response, the N cells, and the L cells have not yet been produced in the body. The activation of
the innate immune systems occurs very rapidly, rendering N as the fast variable, which reaches
the quasi-steady state

N∗(T ) =
Λ + bT

µ1 + fT
,

Substituting N(t) into (2), we obtain:





Ṫ = aT − d (Λ+bT )T
(hµ1+Λ)+(hf+b)T − eLT,

L̇ = −µ2L + cL2T + b1
(Λ+bT )T

(hµ1+Λ)+(hf+b)T .

(5)

We have therefore reduced our system of three equations to a system of two equations. Math-
ematically this reduction can be seen as using parameters values in Table 1 and then choosing
ε = 10−4, as Λ is very large as compared to other parameter in Ṅ , Ṫ , and L̇ equations.

Trivial equilibrium for this system is (T 0, L0) = (0, 0), which is stable if a − ( dΛ
hµ1+Λ ) < 0,

−µ2 < 0, and −µ3 < 0 and unstable otherwise. Noticeably, the conditions for the trivial equilib-
rium are the same as for (2).

Non-trivial equilibria for this system are
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T ∗ = α + βL, (6)

and L∗, which is given by the following quartic polynomial,

L4(cb2β − chββ2) + L3(chβα2 − chαβ2 + cαb2 + cβα1) + L2(µ2hβ2 − µ2b2 + chαα2 + cαα1 +
bb1β) + L(b1 + b2 + b1α1β − µ2hα2 − µ2α1) + b1αα1 = 0,

where h1 = Λ + hµ, h2 = b − hf , β = e
ah2−db , α = dΛ−ah1

ah2−db , α1 = Λ + αb, α2 = µ − fα, β2 = bβ,
and β2 = fβ.

With the values of the parameters taken from Table 1, we found a unique non-trivial equilibrium,
E∗ = (155683, 5.24× 10−5) and it is stable.

3.4 Model 2

Now, let consider system (1). In our study of the cancer-immune system interactions we are
interested in exploring the dynamics of interaction between tumor cells and CD8+T cells, which
is directly influenced by the presence of myeloid cells. We assume that this occurs after the NK
cells have reached a steady state. At this point we take it that NK cells have reached a constant
saturation state, which allows us to eliminate the equation for NK cells and reduce our system of
equations to four dimensions as follows:





L̇ = −µ2L + cL2T M2
M1

+ ψ1T,

Ṫ = aT − ψ2T − eLT M2
M1

,

Ṁ1 = Ω + rT − µ3M1 − (θ − g T
p+T )M1,

Ṁ2 = (θ − g T
p+T )M1 − µ4M2,

(7)

where ψ1 = b1
N

h+N and ψ2 = d N
h+N are constants. Considering the order of the magnitude of

parameters in Table 1, we can interpret this reduction with ε1 = 10−7.

3.4.1 Analysis on the fast time scale

We know that the balance of immature to mature myeloid cells has to stabilize before it can affect
the interaction rate between CD8+T cells and tumor cells. Hence, we can consider system of M1

and M2 equations as fast variables where ε2 = 10−4, since Ω is of order 104.
Therefore, we can first analyze the following system, by assuming T as constant:





Ṁ1 = Ω + rT − µ3M1 − (θ − g T
p+T )M1,

Ṁ2 = (θ − g T
p+T )M1 − µ4M2

(8)
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If we set both equations equal to 0, we obtain that the equilibrium is

M∗
1 = Ω(p+T )+rT (p+T )

T (θ+µ3−g) + p(θ + µ3)

M∗
2 = M∗

1
µ4

(θ − gT
p+T ).

(9)

System (8) has a unique equilibrium. It is globally asymptotically stable (see Apendix for
proof).

3.4.2 Analysis on the real time scale

We know from experimental data that the ratio of immature to mature myeloid cells is often used
in order to measure the overall state of the immune system of the patient. Consequently, we can
assume that the balance between immature and mature myeloid cells has to be established before
they can affect the interactions between tumor cells and the CD8+T cells, rendering M1 and M2 as
”fast” variables. Therefore, if we assume that M1 and M2 first achieve a quasi-equilibrium, which
is given by (9) M∗

1 and M∗
2 and substitute these points into (5). We obtain a reduced system from

system (5)




Ṫ = aT − ψ2T − eLT θ(p+T )−gT
µ4(p+T ) ,

L̇ = −µ2L + cL2T θ(p+T )−gT
µ4(p+T ) + ψ1T,

(10)

where ψ1 = b1
N

h+N and ψ2 = d N
h+N , both now taken as constants.

The major characteristics of the five-dimensional system (1) are now described by the newly
obtained two-dimensional system (7).

Non-trivial equilibria for this system are

T ∗ = α1L−β
α1−γL , (11)

and L∗, given by the following quartic polynomial,

−cL4 + L3(α1c + γ1 − cβ1 − γ4) + L2(γ3 − α1γ1 − cβ1α1 − γ2 + β1γ1 + 2α1γ4) + L(−2β1 + α1γ2 +
β1γ1α1 − β1γ2 − γ4α

2
1) + γ3β

2
1 − α1β1γ2 = 0.

where α = a(g + θ), α1 = α
γ , β = aθp, β1 = β

γ , γ = µ4ep, γ1 = µ2(g + θ), γ2 = bθp, γ3 = b(g + θ),
and γ4 = µ2θp.

By appropriate rescaling of system (7), we obtain the following system.





ẋ = x− ϕxy 1+x
β+x ,

ẏ = −γy + xy2 1+x
β+x + δx

(12)

This system has trivial equilibrium at (0, 0), which is always unstable.
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There also exists a unique non-trivial equilibrium at (7)

x∗ = −a+
√

a2+2γϕc

c

y∗ = 1+x∗
ϕ(β+x∗) ,

where ϕ = e(g+θ)2

θp , γ = µ2
a , β = p(g+θ)

θp , δ = cb, a = b
δ , and c = 1

a .

Through numerical simulations we were able to determine that there exist two bifurcations in
our system: a Hopf bifurcation and a bifurcation “from infinity”, both of which are discussed in
more detail in Section 4.

4 Discussion and Numerical Results

4.1 Model 1

Model 1 describes the dynamics of the tumor-immune system interactions without taking the
influence of myeloid cells into consideration. As has been noted in Sections 3.2 and 3.3, the
conditions for trivial equilibria for both model 1.A and model 1.B are the same. Moreover, for the
selected range of parameter values, non-trivial equilibria for both systems are unstable. Therefore,
we can conclude that reduction of a higher-dimensional system of equations to a lower-dimensional
system using time scales does not change the overall dynamics of the system. We can therefore
apply the same method to analyzing our five-dimensional system.

Moreover, Model 1 describes only one type of behavior at the non-trivial equilibrium (see
Fig.1). Biologically this implies that, the growth of the tumor is always controlled by the immune
system, or at least the number of tumor cells are kept at a constant value. This is inconsistent
with experimental data. In order to correct our model, we introduce equations for the dynamics
of immature and mature myeloid cells to our system of equations.

4.2 Model 2

In Model 2 we incorporate the dynamics of myeloid cells in an attempt to explain how the balance
between ImC and MmC influences the dynamics of the immune system response.

Through variation of the parameter ϕ we have been able to numerically identify four distinct
patterns of behavior. Parameter ϕ determines the effectiveness of tumor killing by CD8+T cells,
influenced by the ratio of MmC to ImC (recognition of tumor cells by CD8+T cells, which allows
tumor destruction).

In case of a good immune response (ϕ > 1.528, β = 0.33, δ = 0.4, γ = 1) the system has only
one equilibrium point (see Fig.2). This implies that the immune system is able to control tumor
growth and keep it at a constant value. However, it is not capable of extinguishing the tumor
completely.

At ϕ = 1.528 (all other parameters held constant), the equilibrium point loses stability with
the appearance of a stable limit cycle by Hopf bifurcation (see Fig.2a). This implies that the
immune system is not capable of controlling the tumor growth completely and therefore cannot
keep the number of tumor cells at a constant value anymore. At this point the tumor produces a
sufficient number of cytokines to inhibit maturation of ImC so that the immune system is not able
to recognize and extinguish enough tumor cells. Therefore, the ImCs don’t mature fast enough,
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the balance between the ImC and MmC is not achieved in time, and the tumor cells grow faster
than the CD8+T cells can detect and kill them.

As the value of ϕ decreases further, the amplitude of the stable limit cycle increases (see Fig.2d),
which implies that CD8+T cells require increasingly more time to catch up with the tumor growth.
As can be seen from Fig. 2e, the growth rate of the tumor remains constant. However, the immune
system does not respond immediately but rather accumulates its forces and then “fires”(Fig.2f),
causing the number of tumor cells to rapidly decrease for a short period of time.

The smaller the value of the parameter ϕ, the larger the amplitude of the cycle, the more time
it takes for the immune system to respond effectively. The cycle repeats until it takes too much
time for the immune system to respond adequately, which allows the tumor to grow to be too
large, causing the patient’s death before the immune response.

The amplitude of the limit cycle keeps increasing with the decreasing value of parameter ϕ
(decreased recognition of tumor cells by the immune system cells, caused by decreased maturation
rate of MmC), until the limit cycle collapses “at infinity”, resulting in an unstable fixed point (see
Fig.4). This means that at this stage the immune system is able to only slightly delay the growth
of the tumor (make it grow not exponentially but in an unwinding spiral), but cannot control it.
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Figure 1: Model 1.B. A stable equilibrium, parameter values were taken from Table 1.

Figure 2: Model 2B. A stable equilibrium for ϕ = 2, β = 0.33, δ = 0.4, γ = 1.
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(a) Model 2B. A stable periodic orbit for
ϕ = 1.4, β = 0.33, δ = 0.4, γ = 1.

(b) Model 2B. A stable peri-
odic orbit for ϕ = 1.4, β =
0.33, δ = 0.4, γ = 1. ”Relaxed”
oscillations for T vs. time

(c) Model 2B. A stable periodic
orbit for ϕ = 1.4, β = 0.33,
δ = 0.4, γ = 1. ”Relaxed” os-
cillations for L vs. time

(d) Model 2B. A stable periodic orbit for
ϕ = 1.1, β = 0.33, δ = 0.4, γ = 1.

(e) Model 2B. A stable periodic
orbit for ϕ = 1.1, β = 0.33,
δ = 0.4, γ = 1. ”Sinusoidal”
oscillations for T vs. time

(f) Model 2B. A stable periodic
orbit for ϕ = 1.1, β = 0.33,
δ = 0.4, γ = 1. ”Sinusoidal”
oscillations for L vs. time
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Figure 3: Model 2B. An unstable equilibrum and stable periodic orbit for ϕ = 0.8, β = 0.33,
δ = 0.4, γ = 1.

Figure 4: Model 2B. An unstable equilibrium for ϕ = 0.5, β = 0.33, δ = 0.4, γ = 1.
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5 Conclusion

In this paper for the first time we incorporate the impact of myeloid cells, which are part of the
innate immune response, on the tumor-immune system interactions. In our model we consider NK
cells, CD8+ cells, myeloid cells and tumor cells. We then perform analysis in different time scales.

Firstly, we study the dynamics of a simplified three-dimensional system of equations, describing
the immune system-tumor interactions without taking the effect of myeloid cells into account. We
study the system in two different time scales and are able to identify only one type of behavior
for the given parameter range. According to this model, the tumor is always eliminated, which
is inconsistent with experimental data. However, this model does demonstrate that the overall
dynamics of the system does not change when the system is reduced to lower dimensions using
time scale arguments.

In order to elucidate the mechanisms that influence the success of the tumor-immune system
interactions and to obtain richer dynamical behavior, we incorporate two new equations, describing
the dynamics of immature and mature myeloid cells, into our system. We then analyze the newly
obtained system of equations in three different time scales, which allows us to a reduce a five-
dimensional system to two dimensions.

The reduced system of equations, in which we have incorporated the myeloid cells, exhibits four
distinct patterns of behavior. At first the immune system is able to keep the level of tumor cells at
a constant level, which is represented by the existence of a stable equilibrium point. As the tumor
cells release more cytokines, the recognition of the tumor cells by the CD8+T cells decreases. At
some point the equilibrium point changes stability with the appearance of a stable limit cycle by
Hopf bifurcation occurs. At this point the immune system is still able to control the tumor growth
but not entirely anymore. As the tumor grows, the specific immune response increasingly requires
more time to respond. Eventually the tumor becomes so large that the immune response is no longer
capable of responding in time, and the patient dies. If the person with initially highly weakened
immune response develops a tumor, the immune system is only capable of slightly delaying the
tumor growth but it cannot control it, which mathematically is presented by an unstable node.

In the future work we intend to explore the effects of the vaccine therapy on the rate of
maturation of myeloid cells in particular and on the effectiveness of the specific immune response
in general.
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7 Appendix A

7.1 Applying Dulac Criterion

We can prove that there are no periodic orbits in the system (6) using Dulac criterion as follows:

Taking β = 1
M1

, we have

βṀ1 =
1

M1
(Ω + rT − µ3M1 − g

M1T

p + T
− θM1)

=
Ω

M1
+

rT

M1
− g

T

p + T
− (θ + µ3),

∂

∂M1
(βṀ1) = − 1

M2
1

Ω− rT

M2
1

,

βṀ2 =
1

M1
(g

M1T

p + T
+ θM1 − µ4µ2),

= g
T

p + T
θ − µ4µ2

M1
,

∂

∂M2
(βṀ2) = − µ4

M1
,

∂

∂M1
(βṀ1)− ∂

∂M2
(βṀ2) = − µ4

M1
− Ω

M2
1

− rT

M2
1

− µ4

M1
.

The obtained expression is strictly negative in R2
+ r {(0, 0)}. Hence, there are no periodic orbits

on Ṁ1 and Ṁ2 in R2
+ r {(0, 0)}.

7.2 Applying Poincaré-Bendixon Theorem

Now, we find a condition such that M1(t) + M2(t) ≤constant.

Solving Ṁ1 + P1M1 = P2 and Ṁ2 + K1M2 = K2,
where P1 = µ3 + g T

p+T + θ, P2 = Ω + rT , K1 = µ4, and K2 = g T
p+T + θ.

We obtain,

M1 =
P2

P1
+ (M1(0)− P1

P2
) exp(−P1t),

M2 =
K2

K1
+ r1 exp(−K2t) + r2 exp(−K1t),

where r1 and r2 are constants.

Then,
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lim
t→∞

M1(t) =
P2

P1
,

lim
t→∞

M2(t) =
K2

K1
.

Therefore, the system (6) is bounded. Hence, the unique steady state is globally asymptotically
stable.
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