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Abstract

Up to 3 percent of the population suffers from a mental disorder known as Obsessive-
Compulsive Disorder (OCD) *. Although full understanding of this disorder still eludes
scientists, there is a general consensus on distinct methods of treatment including Se-
lective Serotonin Re-uptake Inhibitors, various types of group therapy, and individual
therapy. This paper uses finite Continuous Time Markov Chainsg (CTMC) to model
the treatment dynamics of Obsessive-Compulsive individuals. The models proposed
herein include factors such as access to group or individual therapy and health insur-
ance constraints, and are modified to include prescribed treatment regimens. Natu-
rally, added realisin moves out of the “neatness” inherent in CTMC models. Realistic
extensions in the CTMC models are therefore addressed by numerical means (simu-
lations). To minimize time and cost, we establish necessary conditions between the
recruitment rate of individual therapy and the recruitment rate for the group therapy.
These conditions depend on the magnitude of the recovery rate for group therapy.

* http://www.canmat.org/resources /depression /ocd. html

1 Introduction

Obsessive-Compulsive Disorder (OCD) is a mental condition in which the common symp-
toms dedcribe an individual who experiences undesired persistent thoughts or obsessions
which cause anxiety or distress. The individual responds with a thought or action (com-
pulsion} to find temporary relief from the anxiety. This thought pattern is cyclical, leading
from obsessions to compulsions and vice-versa. Approximately 3 percent of the American
Population suffers from QCD. Specifically, approximately 2.3 percent of the American pop-
ulation between the ages of 18 and 54 have OCD [1]. There are different forms of treatment
including medication, individual therapy and/or group therapy. The standard in medica-
tion for OCD is the Selective Serotonin Re-uptake Inhibitors, commonly known as SSRI's.



If individual therapy is carried out by a psychiatrist, treatment includes medication that
will in most cases be SSRI’s, and some form of therapy, such as Cognitive-Behavior Ther-
apy (CBT), Exposure and Response Prevention, etc. Although individual therapy does
not always include medication, people usually achieve greater symptom relief with a com-
bination of medication and therapy [2]. Thus, a general assumption throughout this paper
is that all forms of therapy include medication.

We seek to understand the dynamics of how people suffering from Ohbsessive-Compulsive
Disorder choose treatment and how this affects their time and cost until recovery. To study
these dynamics, we use a Markov model and numerical simulations of one individual and
then use those results to make inferences about the general population of people suflering
from OCD. This strategy is justified by the Law of Large Numbers [5], i.e. for a large
number of independent individuals with the same transition probabilities, the expected
bchavior of the population mimics the expected behavior of the individual. That is, most
of the time the values x; of the random variables X, will he such that if there is an
arbitrarily small number e, for sufficiently large n:

E[Xh —e<sp/n< E[X|1 +¢ (1}
where s, = x| + z2 ... + &, and where z is the value of a random variable X.

We first study a model under the assumption that the individual chooses his preferable
therapy, that ig, he has unlimited resource or complete insurance coverage. Using Markov
Chain theory, we comparc analytical results to the numerical simulations to verify that
the simulations provide reliable results and conclusions. In reality, the dynamics can
transcend probability because choices are limited and influenced by external factors that
can go beyond freedom of choice. We then ask how long it takes on average, for an
individual to recover if the patient is completely subject to health insurance. Therefore,
in a second model, the individual does not choose what he wants but rather what the
insurance company will provide. It is also necessary to contemplate the associated cost of
therapy and how it plays a role in the dynamics of QCD treatment.

In a third model we combine both situations, freedom of choice and health insurance
limitations, to see how the individual will recover, given that in reality preference of
therapy and limited insurance coverage both play an important role in OCD treatment.
Ultimately we usc results of the three models to analyze how the rates can influence
rehabilitation and how insurance can find a cost-efficient way of aiding people who suffer
from Obsessive-Compulsive Disorder. Although there is no cure for OCD, studies show
that paticnts can reach an emotionally and mentally stable life after a period of consistent
(weekly or biweekly) treatment, after which occasional follow-up sessions are required
indefinitely. We then assume individuals who do not carry on with the post-treatment
follow-up sessions are individuals that quit treatment rather than recover. Thus individuals
can quit treatment and eventually start again. The only individuals that “recover” are
those that carry out the necessary post-treatments requirements, such as follow-ups and
medication.
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Figure 1: Free Will Model

All modcls are based on finite Continuous Time Markov Chains which can be simplified
by looking at the Embedded Markov Chain (EMC) [8]. Given that an event happens we
only need to know the probability of moving from one state to another. With this approach,
the events are Poisson processes with the parameter A, where A is the sum of the outgoing
rates. Therefore the average time between events follows an exponential distribution with
paratmeter 1/X.

The possibilities of this study push far beyond OCD because the model encompasses
any disorder with different forms of insurance limited treatment. Thus it follows that
modcels can be adapted to most disorders with the appropriate choice of paramcters.

2  Free Will Model

The Free Will model {Figure 1) is made of five classes or states which represent being
untreated, treated, and recovery. The {/ class represents the untreated state. The I and
(G classes represent individual and group therapy respectively, The Ry class is the state
that holds an individual who has recovered and was last in individual therapy, and the
R¢ class represents an individual that has recovered and last visited group therapy.

The distinguishing assumption of this model is that the individual can move freely from
state to state, depending solely on fixed initial probabilitics. This assumption potentially
allows an unlimited number of transitions hetween the different classes, apparently making
the model seem unrealistic. However, with careful choice of the parameters, we reduce the
probability of such transitions occurring. One of the major advantages is that the model
allows us to trace the history of each individual, see the time spent in each class and how
many times each class was visited. Another key point is the ease at which we can compare
the numerical simulations with analytic results such as the stationary distribution and the
mean time to absorption. This will serve as the basis for the Total and Partial Control
modecls.



2.1 Stationary Distribution

The one step transition matrix for a Markov Chain is given by:

P Pn ... ... P,
Py Py :

P = : (2)
Pw ... ... ... P

where P;; is the ijth element of P. Each of these elements represents the probability

of going from a state i to state j in the next step.
In the Free Will model, the transition matrix is given by:

Pyy Pve  Pur Pur, Pur;
Pev  Peec Per FPer, Fon;
P=| Pw P Py Prr, Prg (3)
Pr,u Pr,c Pr, Pryr, Prynr
Pruv  Pric Prg Prpr, Prr,

The one step transition matrix P of the Markov Chain for the Free Will Model is given

by:

©1 B2

0 1T 2 12 0 0

A1 0 Y1 01 0
ALty1+01 ALty Ar+yi+on

Az Y2 0 0 2
A2+ty2+82 Astv2+d2 A2+y2+9d2

0 0 0 1 0

0 0 0 0 1

Given an initial distribution vy, the distribution in the next step is defined as v; = vy P.

Then the distribution after n steps is found by solving:

Uy, = vo P (4)

The Stationary Distribution is then defined as:

Voo = Vac P (5)



Thus the distribution of states remains unchanged in the next step. Note that cach
of the simulations determines the movement of one individual until he reaches one of the
rccovery classes. Hence the stationary distribution scerves uscful when comparing to the
results of a large number of individual simulations. We can use equation 1 to approximate
the stationary distribution if we take n large enough.

For iy = 1/4, o = 1/6, A1 = 0.0067, Ay = 0.0056, §; = 1/18, 65 = 1/15, v = 0.0134,
vy =0.0112,

0 0.6 0.4 0 0
0.0796 0 0.1777 0.7427 0
P= | 0.0668 0.1337 0 0 0.7995
0 0 0 1 0
0 0 0 0 1

To approximate P°°, we calculate P™ for a sufliciently large n.

0 0 0 0.5451 0.4549

0 0 0 0.8118 0.1882
P*~ 1 0 0 0 0.1449 0.8551

0 00 1 0

0 00 0 1

In all cases our initial condition is one individual at U, so we use voz( 1 00 00 )
Therefore, the stationary distribution v,, can be approximated to

Vo = (0 0 0 0.5451 0.4549 )

Hence the probability the individual ends up in Rg is approximately 0.5451 and the
probability that the individual ends up in Iy is approximately 0.4549. When compared
to 10000 simulations for the same paramcters, the analytic proportion of R; and Rg was
approximately the same as the corresponding proportion in the simulations (Figure 2).
In the simulations, the percent of people that went to R; or R4, was approximately 53
percent and 47 percent respectively.
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2.2 Mean Time to absorption

The mean time to absorption is the average time the individual takes to reach one of the
absorbing states. To determine the time to absorption for our model, we use the Uniform
Discrete time approximation:

1 — ANt — pa At JISVAY JIZYAN 0 0
)\1At 1*/\1At*’ylﬁt*51At ’71At 51At 0
P= pYYAY P YAN 1 — XAt — At — Jo AL 0 L VAN
0 0 0 0 0
0 0 0 0 0

P and its ijth element are defined as before. The transient state matrix P, is given by
the transient states or non-absorbing states.

1— Mlﬁt - MgAt /L]At MgAt
P= pYWAY 1= MAL—y At =6 AL At
Ao At YN, 1= DAt — vt — Gyt

Wenow find A =1 — P, is:

H1 o — — 2
At “Al A+ +& -n
—A2 —72 Az + 72 + 02

Therefore,

U1+ p2 —H1 — 2
where M= — A1 A+ 40y !
-2 =72 A2+ y2 + &2

Let § =(At)A™



Solving for S yiclds:

1 My g lo+11Go 1 Mi{+M>Go 1 Mo+ M1 G4
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S— 1 My bGith 1 My 1 1 My Gy
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A2 t+v2+62 m2 1-G1G2

where

My = = M2 = =50

G = B2, G — .

mi = lnljriltz ? li = /\1:+i\/7;:+5,:’gi = ﬁ

The S;;th clement represents the time spent in j after starting in i. Since our model
always starts at U, we only need ijl S1j, i.e. the sum of the elements of the first row,
in order to know the total time to absorption.

Mi1+MoGo 1
1-G1Gy A2+y2-+d2

St=( il +

o+l Gy 1
p1tpe bmy (MIGI + MQ) 1*G1G2}

Mo+ M1 Gy
A1+v1+61 ’

1-G1Gy
This row for the previously used parameters is given by:
Si;= ( 2.649276316 9.769736846 6.858552633 ).

Therefore we see that the time to absorption is approximately 19.28 time units for the
selected parameters. In our simulations we record the following average time spent in the
respective classes:

U: 2.54 weeks

G: 9.99 weeks
I: 6.77 weeks

In the simulations, the total timc to absorption with the same paramcters is 19.3
weeks. For the selected parameters there is a 0.1 % error between the simulations and the
analysis. Furthermore the time spent in each class correspond as well (Figure 3).

Not only arc we able to keep track of the time history of one individual, but we can
construct probability distributions of the number of visits and time spent in each class.
Figurc 4 shows the probability distributions of the visits to and time spent in cach class. It
is clear that the time spent in each class follows the exponential distribution. Furthermore,
with the selected parameters, most people recover after visiting I at most once, and of



those people, most people will visit the I class once.
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Figure 3: time and number of visits in each class
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3 Total Control Model

Unfortunately in real-life situations, an individual’s choice is restricted by other factors
such as access to health insurance. For the purpose of imposing insurance health control
over the individual, we will base this model (see Figure 5) on a Markov Chain but with an
insurance time limit in which the individual is allowed to stay in individual therapy I until
the limnit expires. We turn to numerical sirnulations for the analysis of this model. In this
case we assume that the individual wants to stay in I because it has the fastest recovery
rate [3]. The insurance company will also initially cover individual therapy because they
want the patient to recover as quickly as possible, but if the patient takes too long to
recover, insurance will force the patient into group therapy because it is the less expensive
alternative. Once in G, an individual eventually reaches recovery Rg. At no point in the
model, can the individual return to a previously visited state.

The insurance limit 7 in /, represents the time the insurance provides for individual
therapy, i.e. an insurance limit. 77} is the time a certain individual needs to stay in I hefore
he recovers, without insurance. 77 is an exponential random variable with parameter 1/,
where 1/A is the expected or average time an individual stays in I #g is the amount
of time an individual needs to stay in G before he recovers, without insurance. tg is
an exponential random variable with parameter 1/d. The expected or average time an
individual stays in G is 1/5. We are assuming that at each point in time, the recovery will
be uniform, i.e. the individual has the same improvement in each session. The required
amount of time for recovery for a specific individual in &, with insurance, is Tz. We are
agsuming that after 7 time, there will have heen some progress towards recovery, therefore
the time until recovery from G, Tg, will be less as 7 increases. T = (1 — 7/T;)te. We
usc time in cach form of therapy to cstimatce cost to the insurance company.

11
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4 Partial Control Model

Realistically, health insurance cannot fully determine the dynamics of recovery, because
an individual may have a preference for a type of therapy over another. On the other
hand, health insurance may restrict the type of available therapies. Therefore we now
study the case in which there is an insurance limit to the [/ class, and where the individual
is allowed partial freedom of movement. The insurance limit is a time restriction on how
much accumulated time you can spend in I Therefore we are assuming that 7 represents
the average time that the individual has access to insurance-provided individual treatment.
The individual consumes time from his insurance limit only when in I Once this time is
consumed, the individual is “pushed” out of individual therapy and is no longer allowed
to visit I. The individual is free to move anywhere the patient wants to, except to I,
because insurance will no longer pay for individual therapy. The insurance now only pays
for group therapy. The model is the same as the Free Will Model (Figure 1) with the
addition of insurance time limit. As usual we assume that the time between each event is
an exponentially distributed random variable.

13



5 Parameter Estimation

The following is a list of the rates or paramcters used in the models. It is important to
understand that these are rates in the sense that they are events per time of movement
form one class to another.

parameter interpretations
41 ratc from U to G.
1% rate from U to L
Al rate from G to U.
Ag rate from f to U.
1 rate from G to I
o rate from I to G.
d1 rate from G to R,.
§9 rate from I to R;.

Unfortunatcly, there is very little or no available information regarding the parameters
in our models. This leads to the conclusion that well established or time-proven statistics
concerning these matters do not exist. Dr. Sabine Wilhelm of Harvard Medical School
said that she unfortunately has not scen any rescarch pertaining to the parameters of our
models. Michael A. Jenike, M.D. and professor of psychiatry at Harvard Medical School,
stated that he did not know of any studies that contain these rates or parameters. This
makes our question much more relevant because understanding these rates and their pos-
sible relation to health insurance can help find ways to rehabilitate quickly, and in greater
numbers, Obsessive-Compulsive people. In most cases, the parameters we used were esti-
mated by using scarce statistics and/or information. The only useful information found
was that people in individual therapy reach rehabilitation after an average of 15 sessions’.
Since most cascs experts recommend secking therapy weekly [11], we arc assuming that it
takes an average of 15 weeks for a person in individual therapy to recover. Additional in-
formation indicates that individual therapy is as effective but quicker than group therapy
3], and that some paticnts may have bad results in group therapy [4]. This leads to the
assumption that the rate at which people change from group therapy to individual therapy
should be greater than the rate of people changing from individual to group therapy. We
can also assume that the rate at which individual therapy people quit treatment should
be smaller than the rate at which group therapy people quit treatment. The Expert Con-
sensus Panel for Obsessive-Compulsive Disorder suggests that the appropriate number of
sessions in group therapy should range from 20-50, which matches other results previously
mentioned that state that group therapy is slower than individual [10].

There is a possibility for unrcalistic dynamics in the Free Will Modcl. The Markov
scenario allows for many possible state jumps from I to G and vice-versa. This seems

14



very unrealistic because normally an individual might make up his mind on whether to
scck individual or group therapy, after visiting cach state once. To avoid such unrcalistic
phenomena in the Markov simulation, we keep v and ~2 considerably low.

* Qut of 330 patients an average of 83 % were improved after an average of 15 sessions. Taken from

Foa, E.B. (1996). The efficacy of behavioral therapy with obsessive-compulsives. The Clinical Psycholo-
gist, 49, 2, 19-22.



With these conclusions, we set the following parameters:

parameter | value
1 1/4
Ha 1/5
Al 0.0067
Ag 0.0056
Y1 0.0134
Y2 0.0112
91 1/18
da 1/15

We perform parameter sweeps to sce the different dynamics that arc possible because of
the parameters, and how this can lead to new and better strategies that are cost-effective
for the rehabilitation of Obsessive-Compulsive people.

As previously stated, two of the models will have an insurance control or limit. This
insurance limit will be called 7 and represents the average amount of time an individual
has access to certain treatment resources that pertain to individual therapy due to his
health insurance. When this limit is exceeded, we assume that the insurance company
will continue to provide insurance but for group therapy. 7 will range from 0 to 80, where
7=0 implies no time spent in individual therapy. 80 is the upper limit of 7 because there
is over 99 % probability of recovery before 80 is reached.
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6 Simulation Results
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Figure 6: Time Graph for §; = 1/20

To fully understand our models we need to see how they respond to changes of param-
eters. The parameters of interest are 81, 1. and us. §; is the rate at which an individual
moves from G to Rq. p1 is the rate at which an individual moves from U to G and p»
is the rate at which an individual moves from U to I The next step is to optimize the
Partial Control model because it is a more realistic version of the free will model. Ideally,
one would wish to minimize the cost for the insurance company but at the same time,
minimize the average time to recovery for a person with OCD. In the Partial Control
model, where §;=1/20 and d2=1/15, we can scc that an individual suffering from OCD
recovers from individual therapy slightly faster than he does from group therapy. If we
look at the graph for minimum average time until recovery (Figure 6), we should make po
big relative to p1. Making po big with respect to pp is equivalent to saying that we make
an individual move faster from U to I than he would from U to G. We also have that
is smaller than 2, meaning that the timne a person takes to recover from [ is smaller than
the time it takes him to go to G.
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An individual has a higher probability of going from U to I than from U/ to G, and a
higher probability of recovering than of going to G. Hence, by letting pa greater than py
we are diminishing our time to recovery. The 7 at which this happens is 7=25. Since d
= 1/15, this means that a person recovers from I faster than he is forced to go to G.

§,= 1120 5, =120
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05 05
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Partial Control Model : Cost of Individual Therapy Partial Control Model ;. Min. Total Cost

Figure 7: Cost Graph for é; = 1/20

If we observe the minimum cost values (Figure 7) for puy and ps we find they are
#1=0.5 p2=0.3. The 7 at which this happens is zero. This makes sense because [ s
more expensive than G, therefore if we make the insurance time limit zero, we will get
our cheapest average total cost by making a person that is in U class go to group therapy
with more probability than going to individual therapy. This means nobody is going to L

By taking this value for & we are getting the minimum cost per individual. If we
consider the maximum cost per individual we can see that by taking 7 equal zero we are
reducing our cost by approximately 75 dollars per individual.

In order to minimize cost we need to make pq bigger than pe Therefore, if 4= 1/20:

1. In order to minimize the average time to recovery for one individual we need to make
ua bigger than py.

18



2. In order to minirmize the cost one individual we need to make y; bigger than po.
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Figure 8 corresponds to the Partial Control Model with respect to time with é; = 1/50.
We then make the same analysis of parameter variations for g1 and pe as 5 = 1/50. In
the Figure 8A we measure total time spent before recovery as a function of p and pg.
Since we are interested in minimizing the total time it takes for an individual to move to
a rchabilitated state. The region colored in dark blue highlights the arcas of the graph in
which we have relatively low “average total time to recovery” for an individual. Through
observation, we may conclude that the optimal total time to recovery occurs when po is
incrcased respect to . Given that our &7 is low (1/50) and less than half of d» (1/15), we
want more individuals to enter individual therapy because it will take them significantly
less amount time to recover.

Now we know the sort of behavior we want p4; and po to engage in, so we apply them to
the next 3 graphs to verify that they correlate with our observations in graph 1. In Figure
8B, when po is set so it is big respect to g1 we observe that the insurance limit is very
high (approximately 65 weeks). Since the ratio between ds and §; is less than 1/2 then
an individual recovers from I at less than half the time it would take him to recover from
(. The insurance company allows individuals such a large amount of time in individual
therapy because it is quicker and cheaper overall despite being more expensive than group
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therapy.

Figurc 8C and Figurc 8D are also displaying the expected results. In Figure 8C, when
we let 12 be bigger than gy the time that an individual spends in individual therapy
increases as it should because the insurance limit Figure 83 increases also. And in Figure
8D when we let po be bigger than g , the time that an individual spends in group therapy
decreases as it should because more people choose individual therapy.
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Figure 9: Cost Graph for 4, = 1/50

Figure 9 corresponds to the Partial Control model with respect to cost. Again, the
region colored in dark shaded (lower values) highlights the areas of the graph in which we
have relatively low “average total cost of treatment” for an individual and the gray shaded
region (higher values) denotes relatively high cost. We want the minimum total cost of
treatment for an individual prior to their recovery. From Figure 9A we conclude that the
optimal total cost of treatment occurs when pio is bigger than p1. Since more individuals
enter individual therapy, it takes them a significantly shorter amount of time to recover
(due to the low rate of recovery from group therapy), this implies it also costs them less
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money. Figure 8A supports this conclusion. In Figure 913, when po is bigger than pg we
obscrve the insurance limit is relatively high. However, note the insurance limit will not
grow forever as po is increased. The insurance company need not allow more than 32
weeks for individual therapy. The insurance company allows individuals a large amount of
time in individual therapy because it is a significantly quicker way to recover. Figure 9C
and Figure 9D are also displaying the expected results. In Figure 8C, when we let ya be
bigger than g the cost of individual therapy increases as it should because the insurance
limit Figure 8B increases also. In Figure 8D when we set p2 bigger than g the time that
an individual spends in group therapy decreases as it should because more people choose
individual therapy which allows an adequate insurance limit. The reason setting psz bigger
than gy lets us optimize cost is because group therapy, while less expensive, takes longer
and thus costs more overall.
Thercfore, if §;= 1/50:

1. In order to minimize the average time to recovery for one individual we need to make
2 bigger than p.

2. In order to minimize the cost for onc individual we nced to make po bigger than .

Consequentially, for d,=1/50, to optimize cost and time, we need to make uy bigger
than p.

6.1 Total Control Model Results

Figure 10 measures the total amount of time spent in therapy, as well as the amount
of time spent in group vs. individual therapy. From this we observe the 7 at which the
minimum time to recovery is realized. From observation, = = 10 weeks gives us the relative
minimum amount of time it takes for an OCD individual to recover, where the minimum
is about 12 weeks consisting of a little more individual therapy than group therapy. The
minimum time to recovery is an intcresting obscrvation, but morc importantly we want
to optimize (by minimizing) the cost of treatment with respect to some 7 imposed by the
insurance company. 7 = 5 weeks gives us the relative minimum cost of treatment, which
is about 750 dollars; most of the cost coming from the cheaper group therapy. The highest
amount an insurance company can be charged with for treating an individual with OCD
is approximately 1300 dollars. By making 7 = 5, the insurance company saves 550 dollars,
almost half of the amount it spends. So, using our realistic parameters we find that it will
be most beneficial to the insurance company to allow an individual 5 weeks of individual
therapy before moving them into group therapy to complete their treatiment.
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Figure 10: Time and Cost vs Insurance Limit

7 Conclusions and Future Work

The Free Will model provides a basic understanding of a Markov chain and allows for
comparison hetween numerical simulations and theoretical analysis. Its simplicity is a
foundation which facilitates the construction of the Partial Control and Total Control
Model. The Free Will model assumes that the individual has unlimited resources, a basis
of comparison to the other models with an insurance time limit. In the partial control
model for §;=1/20, in order to minimize time we need to make po bigger than py. If we
want to minimize cost we let g be bigger than ps. For 6;=1/50 we can make pg bigger
than g1 and this will let us minimize time and cost. In the Total Control model, we found
that the optimal health insurance time limit for individual therapy is 5 weeks.

In almost all cascs 7 was less than the expected time to recovery from individual
therapy without the insurance limit. Therefore an individual is typically forced to spend
time in both group and individual therapy. In the partial control model with §,=1/50,
since the recovery rate from individual therapy is significantly greater than the rate of
recovery from group therapy. it is more cost efficient to have individuals recover from
individual therapy alone.

The main critique of this paper is the lack of data necessary to estimate the parameters
of our models. To overcome this we varied our parameters over a wide range to see
the overall behavior. This model is casily adapted to other mental disorders since this
corresponds to a simple change in parameter values. The importance of these models is
therefore enhanced into a more general social-economical understanding of the treatment
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of mentally ill people. When the scope moves into this larger scale, the cost to society is
increased, thus the urgency of answering questions for these dynamics is increased. Such
future studies can provide answers to treating and removing the suffering of the mentally
ill population thus improving society into an emotionally healthy future.

Optimizing cost and time to recovery is an ill-posed problem which cannot be solved
unless there is an associated cost (to society, and possibly even the insurance companies)
of individuals not being in recovery. In the future we would like to explore how adding
even minimal cost to the I class can change the dynamics.
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