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Abstract 

Up to 3 percent of the population suffers from a mental disorder known as Obsessive
Compulsive Disorder (OCD) '. Although full understanding of this disorder still eludes 
scientists, there is a general consensns on distinct methods of treatment including Se
lective Serotonin Re-uptake Inhibitors, various types of group therapYl and individual 
therapy. This paper uses finite Continuous Time :rvlarkov Chains (CTJ\.IC) to model 
the treatment dynamics of Obsessive-Compulsive individuals. The models proposed 
herein include factors such as access to group or individual therapy and health insur
ance constraints, and are modified to include prescribed treatment regimens. N atu
rally, added realism moves out of the "neatness1

' inherent in CTr'vIC models. Realistic 
extensions in the CT~IC models are therefore addressed by numerical means (simu
lations). To minimize time and cost; we establish necessary conditions bet\veen the 
recruitment rate of individual therapy and the recruitment rate for the group therapy. 
These conditions depend on the magnitude of the recovery' rate for group therapy. 

* http://www .eanrnat.org/resourees/ depression/ oed.htrnl 

1 Introduction 

Obsessive-Compulsive Disorder (OCD) is a mental condition in which the common symp
toms describe an individual who experiences undesired persistent thoughts or obsessions 
which cause anxiety or distress. The individual responds with a thought or action (com
pulsion) to find temporary relief from the anxiety. This thought pattern is cyclical, leading 
from obsessions to compulsions and vice-versa. Approximately 3 percent of the American 
Population suffers from OCD. Specifically, approximately 2.3 percent of the American pop
ulation between the ages of 18 and 54 have OCD [11. There are different forms of treatment 
including medication, individual therapy and/or group therapy. The standard in medica
tion for OCD is the Selective Serotonin Re-uptake Inhibitors, commonly known as SSRI's. 
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If individual therapy is carried out by a psychiatrist, treatment includes medication that 
will in most cases be SSRI's, and some form of therapy, such as Cognitive-Behavior Ther
apy (CBT), Exposure and Response Prevention, etc. Although individual therapy does 
not always include medication, people usually achieve greater symptom relief with a com
bination of medication and therapy [21. Thus, a general assumption throughout this paper 
is that all forms of therapy include medication. 

We seek to understand the dynamics of how people suffering from Obsessive-Compulsive 
Disorder choose treatment and how this affects their time and cost until recovery. To study 
these dynarnics, we use a l'vlarkov rnodel and Hnrnerical sirnulations of one individual and 
then use those results to make inferences about the general population of people suffering 
from OCD. This strategy is justified by the Law of Large Numbers [5], i.e. for a large 
number of independent individuals with the same transition probabilities, the expected 
behavior of the population mimics the expected behavior of the individual. That is, most 
of the time the values Xi of the random variables Xi will be such that if there is an 
arbitrarily small number E, for sufficiently large n: 

E[X], - E < sn/n < E[X], + E (1) 

where Sn = Xl + X2 .•. + Xn and where x is the value of a random variable X. 

We first study a model under the assumption that the individual chooses his preferable 
therapy, that is, he has unlirnited resource or cornplete insurance coverage. Using rvIarkov 
Chain theory, we compare analytical results to the numerical simulations to verify that 
the sirllulations provide reliable results and conclusions. In reality, the dynamics can 
transcend probability because choices are limited and influenced by external factors that 
can go beyond freedom of choice. We then ask how long it takes on average, for an 
individual to recover if the patient is completely subject to health insurance. Therefore, 
in a second model, the individual does not choose what he wants but rather what the 
insurance company will provide. It is also necessary to contemplate the associated cost of 
therapy and how it plays a role in the dynamics of OCD treatment. 

In a third model we combine both situations, freedom of choice and health insurance 
limitations, to see how the individual will recover, given that in reality preference of 
therapy and limited insurance coverage both play an important role in OCD treatment. 
Ultimately we use results of the three models to analyze how the rates can influence 
rehabilitation and how insurance can find a cost-efficient way of aiding people who suffer 
from Obsessive-Compulsive Disorder. Although there is no cure for OCD, studies show 
that patients can reach an emotionally and mentally stable life after a period of consistent 
(weekly or biweekly) treatment, after which occasional follow-up sessions are required 
indefinitely. We then assume individuals who do not carryon with the post-treatment 
follow-up sessions are individuals that quit treatment rather than recover. Thus individuals 
can quit treatrnent and eventually start again. The only individuals that "recover" are 
those that carry out the necessary post-treatments requirements, such as follow-ups and 
medication. 
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Figure 1: Free Will Model 

All models are based on finite Continuous Time Markov Chains which can be simplified 
by looking at the Embedded Markov Chain (EMC) [8]. Given that an event happens we 
only need to know the probability of moving from one state to another. With this approach, 
the events are Poisson processes with the parameter .\, where .\ is the sum of the outgoing 
rates. Therefore the average time between events follows an exponential distribution with 
parameter 1/.\. 

The possibilities of this study push far beyond OCD because the model encompasses 
any disorder with different forms of insurance limited treatment. Thus it follows that 
models can be adapted to most disorders with the appropriate choice of parameters. 

2 Free Will Model 

The Free Will model (Figure 1) is made of five classes or states which represent being 
untreated, treated, and recovery. The U class represents the untreated state. The I and 
G classes represent individual and group therapy respectively. The Rr class is the state 
that holds an individual who has recovered and was last in individual therapy, and the 
RG class represents an individual that has recovered and last visited group therapy. 

The distinguishing assumption of this model is that the individual can move freely from 
state to state, depending solely on fixed initial probabilities. This assumption potentially 
allows an llnlilnited llllnlber of transitions between the different cla.."ses, apparently making 
the model seem unrealistic. However, with careful choice of the parameters, we reduce the 
probability of such transitions occurring. One of the major advantages is that the model 
allows us to trace the history of each individual, see the time spent in each class and how 
many times each class was visited. Another key point is the ease at which we can compare 
the numerical simulations with analytic results such as the stationary distribution and the 
mean time to absorption. This will serve as the basis for the Total and Partial Control 
models. 
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2.1 Stationary Distribution 

The one step transition matrix for a Markov Chain is given by: 

Poo POl ... .. . Pan 

PlO PH 

P= (2) 

Pno P nn 

where Pij is the ijth element of P. Each of these elements represents the probability 
of going from a state i to state j in the next step. 

In the Free Will model, the transition matrix is given by: 

P UU PUG PUI P URg P URi 

PGU PGG PGI PGRg PGRi 

P= Pw PIG Pn PIRg PIRi (3) 
PRgU PRgG PRgI PRgRg PRgRi 

P RiU PRiG P RiI P RiRg P RiRi 

The one step transition matrix P of the Markov Chain for the Free Will Model is given 
by: 

0 ~ ~ 0 0 
/-Ll+/-L2 /-Ll+/-L2 

>'1 0 11 'h 0 >'1 +")'1 +81 >'1 +")'1 +81 >'1+')'1+81 
>'2 12 0 0 82 

>'2+')'2+82 >'2+')'2+82 >'2+')'2+82 
0 0 0 1 0 
0 0 0 0 1 

Given an initial distribution Vo, the distribution in the next step is defined as VI = voP. 

Then the distribution after n steps is found by solving: 

(4) 

The Stationary Distribution is then defined as: 

(5) 
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Thus the distribution of states remains unchanged in the next step. Note that each 
of the simulations determines the movement of one individual until he reaches one of the 
recovery classes. Hence the stationary distribution serves useful when comparing to the 
results of a large number of individual simulations. We can use equation 1 to approximate 
the stationary distribution if we take n large enough. 

For /-l1 = 1/4, /-l2 = 1/6, Al = 0.0067, A2 = 0.0056, (h = 1/18, 62 = 1/15,1'1 = 0.0134, 
1'2 =0.0112, 

p= 

o 0.6 
0.0796 0 
0.0668 0.1337 

o 
o 

o 
o 

0.4 o o 
0.1777 0.7427 0 

o 0 0.7995 
o 
o 

1 
o 

o 
1 

To approximate p oo , we calculate pn for a sufficiently large n. 

o 0 0 0.5451 0.4549 
o 0 0 0.8118 0.1882 
o 0 0 0.1449 0.8551 
o 0 0 1 0 
000 o 1 

In all cases our initial condition is one individual at U, so we use Vo= (1 0 0 0 0) 
Therefore, the stationary distribution Voo can be approximated to 

Voo ~ (0 0 0 0.5451 0.4549) 

Hence the probability the individual ends up in RG is approximately 0.5451 and the 
probability that the individual ends up in RJ is approximately 0.4549. When compared 
to 10000 simulations for the same parameters, the analytic proportion of RJ and RG was 
approximately the same as the corresponding proportion in the simulations (Figure 2). 
In the simulations, the percent of people that went to ~ or Rg , was approximately 53 
percent and 47 percent respectively. 
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Figure 2: RG and RJ Proportion 
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2.2 Mean Time to absorption 

The mean time to absorption is the average time the individual takes to reach one of the 
absorbing states. To determine the time to absorption for our model, we use the Uniform 
Discrete time approximation: 

1 - /-l16.t - /-l26.t /-l16.t /-l26.t 0 
).,16.t 1 - ).,16.t - "I16.t - (h6.t "I16.t (h6.t 

p= ).,26.t "I26.t 1 - ).,26.t - "I26.t - d26.t 0 
0 0 0 0 
0 0 0 0 

P and its ijth element are defined as before. The transient state matrix Pt is given by 
the transient states or non-absorbing states. 

We now find A = I - Pt is: 

Therefore, 

(6) 
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Solving for S yields: 

1 M1+M2G2 
Al +)'1 +,h I-G1G2 

1 M1 1 
A1+')'1+,h m1 I-G1G2 

1 M2 G2 
A1+')'1+,h m2 I-G1G2 

where 

M ~M-~ 
1 = I-II m1 ' 2 - I-bm2' 

The Sijth element represents the time spent in j after starting in i. Since our model 
always starts at U, we only need 2:J=1 Slj, i.e. the sum of the elements of the first row, 
in order to know the total time to absorption. 

1 M1+M2G2 
Al +,1 +,h I-G1G2 

This row for the previously used parameters is given by: 

Slj= (2.649276316 9.769736846 6.858552633). 

Therefore we see that the time to absorption is approximately 19.28 time units for the 
selected parameters. In our simulations we record the following average time spent in the 
respective classes: 

U: 2.54 weeks 

G: 9.99 weeks 

I: 6.77 weeks 

In the simulations, the total time to absorption with the same parameters is 19.3 
weeks. For the selected parameters there is a 0.1 % error between the simulations and the 
analysis. Furthermore the time spent in each class correspond as well (Figure 3). 

Not only are we able to keep track of the time history of one individual, but we can 
construct probability distributions of the number of visits and time spent in each class. 
Figure 4 shows the probability distributions of the visits to and time spent in each class. It 
is clear that the time spent in each class follows the exponential distribution. Furthermore, 
with the selected parameters, most people recover after visiting I at most once, and of 

8 



those people, most people will visit the I class once. 
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Figure 3: time and number of visits in each class 
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3 Total Control Model 

Unfortunately in real-life situations, an individual's choice is restricted by other factors 
~mch as access to health immrance. For the purpose of imposing insurance health control 
over the individual, we will base this model (see Figure 5) on a Markov Chain but with an 
insurance time limit in which the individual is allowed to stay in individual therapy I until 
the limit expires. We turn to numerical simulations for the analysis of this model. In this 
case we assume that the individual wants to stay in I because it has the fastest recovery 
rate [3]. The insurance company will also initially cover individual therapy because they 
want the patient to recover as quickly as possible, but if the patient takes too long to 
recover, insurance will force the patient into group therapy because it is the less expensive 
alternative. Once in G, an individual eventually reaches recovery Ra. At no point in the 
model, can the individual return to a previously visited state. 

The insurance limit T in I, represents the time the insurance provides for individual 
therapy, i.e. an insurance limit. Tj is the time a certain individual needs to stay in I before 
he recovers, without insurance. Tr is an exponential random variable with parameter 1/,\, 
where 1/,\ is the expected or average time an individual stays in 1. ta is the amount 
of tirHe an individual needs to stay in G before he recovers, without insurance. tG is 
an exponential random variable with parameter 1/5. The expected or average time an 
individual stays in Gis 1/5. We are assuming that at each point in time, the recovery will 
be unifofIn, i.e. the individual has the sarne irnprovernent in each session. The required 
amount of time for recovery for a specific individual in G, with insurance, is Ta. We are 
assuming that after T tilne, there will have been SOllIe progress towards recovery, therefore 
the time until recovery from G, Ta, will be less as T increases. Ta = (1 - T /T;)ta. We 
usc time in each form of therapy to estimate cost to the insurance company. 
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4 Partial Control Model 

Realistically, health insurance cannot fully determine the dynamics of recovery, because 
an individual may have a preference for a type of therapy over another. On the other 
hand, health insurance may restrict the type of available therapies. Therefore we now 
study the case in which there is an insurance limit to the I class, and where the individual 
is allowed partial freedoln of rIlovernent. The insurance lirnit is a tirHe restriction 011 how 
much accumulated time you can spend in 1. Therefore we are assuming that T represents 
the average time that the individual has access to insurance-provided individual treatment. 
The individual conSUInes tirne frorH his insurance lirnit only when in 1. Once this tirHe is 
consumed, the individual is "pushed" out of individual therapy and is no longer allowed 
to visit 1. The individual is free to move anywhere the patient wants to, except to I, 
because insurance will no longer pay for individual therapy. The insurance now only pays 
for group therapy. The model is the same as the Free Will Model (Figure 1) with the 
addition of insurance tinle limit. As usual we assume that the tinle between each event is 
an exponentially distributed random variable. 
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5 Parameter Estimation 

The following is a list of the rates or parameters used in the models. It is important to 
understand that these are rates in the sense that they are events per time of movement 
form one class to another. 

parameter interpretations 

/"1 rate from U to G. 

11.2 rate from U to 1. 

),1 rate from G to U. 
),2 rate from I to U. 

1'1 rate from G to 1. 

1'2 rate from I to G. 

51 rate from G to R g • 

52 rate from I to Ri. 

Unfortunately, there is very little or no available information regarding the parameters 
in our models. This leads to the conclusion that well established or time-proven statistics 
concerning these matters do not exist. Dr. Sabine Wilhelm of Harvard Medical School 
said that she unfortunately has not seen any research pertaining to the parameters of our 
models. Michael A. Jenike, M.D. and professor of psychiatry at Harvard Medical School, 
stated that he did not know of any studies that contain these rates or parameters. This 
makes our question much more relevant because understanding these rates and their pos
sible relation to health insurance can help find ways to rehabilitate quickly, and in greater 
numbers, Obsessive-Compulsive people. In most cases, the parameters we used were esti
mated by using scarce statistics and/or information. The only useful information found 
was that people in individual therapy reach rehabilitation after an average of 15 sessions l . 

Since most cases experts recommend seeking therapy weekly [11], we are assuming that it 
takes an average of 15 weeks for a person in individual therapy to recover. Additional in
formation indicates that individual therapy is as effective but quicker than group therapy 
[3], and that some patients may have bad results in group therapy [4]. This leads to the 
assumption that the rate at which people change from group therapy to individual therapy 
should be greater than the rate of people changing from individual to group therapy. We 
can also assume that the rate at which individual therapy people quit treatment should 
be smaller than the rate at which group therapy people quit treatment. The Expert Con
sensus Panel for Obsessive-Compulsive Disorder suggests that the appropriate number of 
sessions in group therapy should range from 20-50, which matches other results previously 
mentioned that state that group therapy is slower than individual [10]. 

There is a possibility for unrealistic dynamics in the Free Will Model. The Markov 
scenario allows for ITlany possible state jurnps frorTI I to G and vice-versa. This seems 

14 



very unrealistic because normally an individual might make up his mind on whether to 
seck individual or group therapy, after visiting each state once. To avoid such unrealistic 
phenomena in the Markov simulation, we keep 11 and 12 considerably low. 

l Out of 330 patients an average of 83 % were improved after an average of 15 sessions. Taken from 
Foa, E.n. (1996). The efficacy of behavioral therapy with obsessive-compulsives. The Clinical Psycholo
gist, 49, 2, 19-22. 
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With these conclusions, we set the following parameters: 

parameter value 

1"1 1/4 

M 1/5 

>'1 0.0067 
..\2 0.0056 

1'1 0.0134 

1'2 0.0112 
61 1/18 

"2 1/15 

We perform parameter sweeps to see the different dynamics that are possible because of 
the parameters, and how this can lead to new and better strategies that are cost-effective 
for the rehabilitation of Obsessive-Compulsive people. 

As previously stated, two of the models will have an insurance control or limit. This 
insurance limit will be called T and represents the average amount of time an individual 
has access to certain treatment resources that pertain to individual therapy due to his 
health insurance. When this limit is exceeded, we assume that the insurance company 
will continue to provide insurance but for group therapy. 7 will range from 0 to 80, where 
7=0 implies no time spent in individual therapy. 80 is the upper limit of 7 because there 
is over 99 % probability of recovery before 80 is reached. 
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6 Simulation Results 
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Figure 6: Time Graph for 61 1/20 

o 

To fully understand our models we need to see how they respond to changes of param
eters. The parameters of interest are 61, 1"1, and 1'2. 61 is the rate at which an individual 
moves from G to Rc. 1'1 is the rate at which an individual moves from U to G and 1'2 
is the rate at which an individual moves from U to 1. The next step is to optimize the 
Partial Control model because it is a more realistic version of the free will model. Ideally, 
one would wish to rninimize the cost for the insurance company but at the same time, 
minimize the average time to recovery for a person with OCD. In the Partial Control 
model, where 61 =1/20 and 62=1/15, we can see that an individual suffering from OCD 
recovers from individual therapy slightly faster than he does from group therapy. If we 
look at the graph for minimum average time until recovery (Figure 6), we should make /l2 

big relative to 1'1. Making 1"2 big with respect to 1'1 is equivalent to saying that we make 
an individual move faster from U to I than he would from U to G. We also have that 1'1 
is smaller than 62 , meaning that the time a person takes to recover from I is smaller than 
the time it takes him to go to G. 
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An individual has a higher probability of going from U to I than from U to G, and a 
higher probability of recovering than of going to G. Hence, by letting /12 greater than /11 

we are diminishing Ollr tinle to recovery. The T at which this happens is 7=25. Since J2 
1/15, this means that a person recovers from I faster than he is forced to go to G. 
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Figure 7: Cost Graph for 01 1/20 

If we observe the mllllmUlll cost values (Figure 7) for /11 and J12 we find they are 
/11 =0.5 /12=0.3. The T at which this happens is zero. This makes sense because I is 
more expensive than G, therefore if we make the insurance time lilnit zero, we will get 
our cheapest average total cost by making a person that is in U class go to group therapy 
with more probability than going to individual therapy. This means nobody is going to 1. 

By taking this value for T we are getting the minimum cost per individual. If we 
consider the maximum cost per individual we can see that by taking T equal zero we are 
reducing our cost by approximately 75 dollars per individual. 

In order to minimize cost we need to make /11 bigger than /12 Therefore, if 01 = 1/20: 

1. In order to minimize the average time to recovery for one individual we need to make 
J12 bigger than /11, 
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2. In order to minimize the cost one individual we need to make 1"1 bigger than 1"2. 
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Figure 8: Time Graph for 01 1/50 

Figure 8 corresponds to the Partial Control Model with respect to time with 01 = 1/50. 
We then make the same analysis of parameter variations for 1'1 and M as 01 = 1/50. In 
the Figure 8A we measure total time spent before recovery as a function of 1'1 and 1'.2. 
Since we are interested in rninirnizing the total tirn€ it takes for an individual to rnove to 
a rehabilitated state. The region colored in dark blue highlights the areas of the graph in 
which we have relatively low "average total time to recovery" for an individual. Through 
observation, we may conclude that the optimal total time to recovery occurs when 1'2 is 
increased respect to /"1. Given that our 01 is low (1/50) and less than half of 02 (1/15), we 
want more individuals to enter individual therapy because it will take them significantly 
less anlOunt tinl€ to recover. 

Now we know the sort of behavior we want 1'1 and 1'2 to engage in, so we apply them to 
the next 3 graphs to verify that they correlate with our observations in graph 1. In Figure 
8B, when M is set so it is big respect to /"1 we observe that the insurance limit is very 
high (approximately 65 weeks). Since the ratio between 02 and 01 is less than 1/2 then 
an individual recovers from I at less than half the time it would take him to recover from 
G. The insurance company allows individuals such a large amount of time in individual 
therapy because it is quicker and cheaper overall despite being more expensive than group 
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therapy. 
Figure 8C and Figure 8D are also displaying the expected results. In Figure 8C, when 

we let /1.2 be bigger than fl'l the time that an individual spends in individual therapy 
increases as it should because the insurance limit Figure 813 increases also. And in Figure 
8D when we let 1'2 be bigger than fl.1 , the time that an individual spends in group therapy 
decreases as it should because more people choose individual therapy. 
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Figure 9: Cost Graph for 01 1/50 

Figure 9 corresponds to the Partial Control model with respect to cost. Again, the 
region colored in dark shaded (lower values) highlights the areas of the graph in which we 
have relatively low "average total cost of treatment" for an individual and the gray shaded 
region (higher values) denotes relatively high cost. We want the minimum total cost of 
treatment for an individual prior to their recovery. From Figure 9A we conclude that the 
optimal total cost of treatment occurs when 1'2 is bigger than 1'1. Since more individuals 
enter individual therapy, it takes them a significantly shorter amount of time to recover 
(due to the low rate of recovery from group therapy), this implies it also costs them less 
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money. Figure 8A supports this conclusion. In Figure 913, when 1"2 is bigger than 1"1 we 
observe the insurance limit is relatively high. However, note the insurance limit will not 
grow forever as Ji'2 is increa..r.;ed. The insurance company need not allow more than 32 

weeks for individual therapy. The insurance company allows individuals a large amount of 
time in individual therapy because it is a significantly quicker way to recover. Figure 9C 
and Figure 9D are also displaying the expected results. In Figure 8C, when we let 1"2 be 
bigger than 1"1 the cost of individual therapy increases as it should because the insurance 
limit Figure 813 increases also. In Figure 8D when we set 1",2 bigger than 1"1 the time that 
an individual spends in group therapy decreases as it should because more people choose 
individual therapy which allows an adequate insurance limit. The reason setting 1"2 bigger 
than fJ'1 lets us optimize cost is because group therapy, while less expensive, takes longer 

and thus costs more overall. 
Therefore, if 61 = 1/50: 

1. In order to minimize the average time to recovery for one individual we need to make 
1"2 bigger than 1"1· 

2. In order to minimize the cost for one individual we need to make 1"2 bigger than 1"1. 

Consequentially, for 61 =1/50, to optimize cost and time, we need to make 1",2 bigger 
than 1"1. 

6,1 Total Control Model Results 

Figure 10 measures the total amount of time spent in therapy, as well as the amount 
of time spent in group vs. individual therapy. From this we observe the T at which the 
minimum time to recovery is realized. From observation, T = 10 weeks gives us the relative 
minimum amount of time it takes for an OCD individual to recover, where the minimum 
is about 12 weeks consisting of a little more individual therapy than group therapy. The 
nlininlum titne to recovery is an interesting observation, but UlOTe importantly we want 
to optimize (by minimizing) the cost of treatment with respect to some T imposed by the 
insurance company. T = 5 weeks gives us the relative minimum cost of treatment, which 
is about 750 dollars; most of the cost coming from the cheaper group therapy. The highest 
alllollnt an insurance cOlnpany can be charged with for treating an individual with OeD 
is approximately 1300 dollars. By making T = 5, the insurance company saves 550 dollars, 
almost half of the amount it spends. So, using our realistic parameters we find that it will 
be most beneficial to the insurance company to allow an individual 5 weeks of individual 
therapy before moving them into group therapy to complete their treatment. 
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Figure 10: Time and Cost vs Insurance Limit 

7 Conclusions and Future Work 

The Free Will model provides a basic understanding of a Markov chain and allows for 
comparison between numerical simulations and theoretical analysis. Its simplicity is a 
foundation which facilitates the construction of the Partial Control and Total Control 
Model. The Free Will model assumes that the individual has unlimited resources, a basis 
of comparison to the other models with an insurance time limit. In the partial control 
model for ,5,=1/20, in order to minimize time we need to make 1"2 bigger than 1"1. If we 
want to minimize cost we let 1"1 be bigger than 1"2. For 61 =1/50 we can make 1"2 bigger 
than ILl and this will let us minimize time and cost. In the Total Control model, we found 
that the optimal health insurance time limit for individual therapy is 5 weeks. 

In almost all cases T was less than the expected time to recovery from individual 
therapy without the insurance limit. Therefore an individual is typically forced to spend 
time in both group and individual therapy. In the partial control model with 61=1/50, 
since the recovery rate from individual therapy is significantly greater than the rate of 
recovery froIll group therapy, it is rnore cost efficient to have individuals recover fronl 
individual therapy alone. 

The main critique of this paper is the lack of data necessary to estimate the parameters 
of our models. To overcome this we varied our parameters over a wide range to see 
the overall behavior. This model is easily adapted to other mental disorders since this 
corresponds to a simple change in parameter values. The importance of these models is 
therefore enhanced into a more general social-economical understanding of the treatment 
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of mentally ill people. When the scope moves into this larger scale, the cost to society is 
increased, thus the urgency of answering questions for these dynamics is increased. Such 
future studies can provide answers to treating and removing the suffering of the nlentally 
ill population thus improving society into an emotionally healthy future. 

Optimizing cost and time to recovery is an ill-posed problem which cannot be solved 
unless there is an associated cost (to society, and possibly even the insurance cOlnpanies) 
of individuals not being in recovery. In the future we would like to explore how adding 
even minimal cost to the U class can change the dynamics. 
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