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Abstract 

The basic reproductive number Ro is defined as the expected number of secondary 

cases generated by a "typical" infected individual in a totally susceptible population. 

In the context of "\vithin-host viral dynamics, we study the reproductive number of viri­

ons and infected cells. In this study we utilize empirical data from ten anti-retroviral, 

drug-naive, patients infected with HIV-I, published by Stafford d. al.IIS]. We apply a 

Bayesian procedure which results in the estimation of the full probability distribution 

of Ro, due to Bettencourt and Ribeiro[5]. In addition, an uncertainty and sensitivity 

analysis of Ro is employed to assess the role played by variation of model parameters 

in within-host viral dynamics. 
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1 Introduction 

In 1982 the United States Center for Disease Control officially recognized the term Ac­

quired Immune Deficiency Syndrome (AIDS). This was a known disease that was thought 

to be a rare and deadly pneumonia found primarily in young homosexual men in the early 

1980's. In 1981 it was then realized that the disease did not only infect homosexual males, 

but was capable of infecting the entire population. It was not until 1984 that a virus, 

later named the Human Immunodeficiency Virus (HIV), was discovered to be the cause 

of AIDS by Luc Montagnier of the Pasteur Institute and Robert Gallo of the National 

Cancer Institute [19]. 

HIV is a retrovirus that originated from chimpanzees. It is thought by many re­

searchers that transmission of the virus from chimpanzees to humans most likely occurred 

from blood entering the wounds of humans in sub-Saharan Africa from killing the animals 

for food [lO, 21]. From there the virus has been passed from human to human through 

three primary modes: as a sexually transmitted disease, through parental exposure, and 

through infected needles used in intravenous drug usc [21]. 

Once HIV has entered the blood stream there are many immune responses that occur. 

The following is a very simple explanation of what happens within the body. After HIV, 

or any pathogen, enters the body it encounters dendritic cells. When dendritic cells en­

counter a foreign organism, they use their special receptors to decide whether the organism 

is nontoxic or pathogenic. If the dendritic cells decide that the organism is pathogenic, 

they then carry fragments of the pathogen to the lymph nodes where they stimulate the 

immune response from the CD4+ helper T-cells. These cells then stimulate the B cells to 

produce antibodies that connect to the specific pathogen and immobilize it, stopping it 
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from causing infection. The 13 cells also serve the purpose of activating memory cells pri­

marily named CD4+ and CCR5+ These cells insure that upon re-exposure to the same 

pathogen, a stronger and quicker immune response can be made. 13 cells also produce 

CDS+ Cytotoxic T -cells that destroy infected cells [10]. 

HIV primarily infects helper T -cells and macrophages of the immune system [12]. 

Without a large supply of helper T-cells, the immune system cannot tell B cells to pro­

duce CDS+ Cytotoxic T-cells, therefore leaving the body defenseless to HIV [10]. Another 

way that HIV defeats the human immune system is through mutation. With every replica­

tion of itself, there is roughly one mutation. Often times these mutations change the virus 

so much that antibodies and CDS+ Cytotoxic T-cells can not recognize it, enabling the 

virus to infect other cells and continue replicating [12]. An additional way HIV survives 

is through hiding. HIV is capable of viral latency, this is when the virus can live in a cell, 

but docs not reproduce itself until later, practically making it invisible to the immune 

system [3]. 

In order for HIV to reproduce itself it first needs to enter a cell. Once inside the cell, 

reverse transcriptase copies the viral RNA into viral DNA. This viral DNA then integrates 

into the cells DNA and becomes part of the cells genetic code. This new DNA then creates 

two strands of RNA. One of these strands is translated into subunits of HIV that will even­

tually become enzymes such as protease, integrase, and reverse transcriptase. The other 

strand is then converted into genetic material for the new viruses. The strand of ~mbunits 

of HIV is then cleaved by the protease enzyme. After cleavage, the subunits combine to 

make new virions. These new virions then pinch off and enter the blood stream, looking 

for other cells to infect [15]. 
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HIV progression is broken up into four stages. The first stage is what is usually called 

the primary HIV infection stage. During this stage HIV starts attacking the body, forcing 

an immune response which produces HIV antibodies and cytotoxic lymphocytes. This 

process is often called seroconversion, and usually lasts for a few weeks [4]. The second 

stage in HIV infection is the Clinically Asymptomatic Stage. During this stage a persons 

HIV virion count per microliter will drop to very low levels. The person still remains in­

fectious, but no major symptoms are apparent. As the immune system fails, a new stage 

in HIV infection begins. This is the Symptomatic HIV Infection Stage. During this stage 

of the infection, many opportunistic infections start to emerge. These infections usually 

affect the respiratory system, gastro-intestinal system, the central nervous system, and 

the skin. The fourth and final stage is when HIV progresses into AIDS [4]. 

Usually the onset of AIDS occurs approximately 10 years after the initial HIV infection 

[8]. The average healthy individual usually has between 800 and 1,200 CD4+ T-cells per 

micro-liter of blood [9]. Once the CD4+ T-cells drop below 500 per micro-liter, a person is 

defined as having clinical AIDS. Eventually, after many CD4+ T-cells have been infected 

or destroyed, and when the CD4+ T-cells drop below 200 per micro-liter, the immune 

system becomes susceptible to opportunistic infections [21]. As of December 2005 AIDS 

has killed at least 25 million people since in was first recognized in 1981. Currently there 

are an estimated 40.3 million people living with HIV [I]. 
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2 Classic Viral Dynamics Model 

Following are our equations for the HIV model with x representing the uninfected cells, y 

representing the infected cells, and v representing the free HIV virus [13, 14]. 

:i; = A - ILX - (lxv 

y = {3xv - ay 

v=ky-sv 

(1) 

(2) 

(3) 

The model that we are using is a predator-prey model. The predator can be represented 

as the HIV virus and the prey as the uninfected cells. In reducing this system we suppose 

that x is constant. Since we are aSHllrning that x is a constant then x is equal to O. 

Figure 1: Sketch of the model of virus dynamics [13] 
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Thus we can look for the disease free equilibrium. 

0= A - Il.X* - pX*V 

0= !3x*v - ay 

--+ f3x*v = 0, --+ ay = ° 
0= ky - 811 

--+ ky = 0, --+ 8V = ° 
'* ° = A - ,"X* 

* A --+X=-

'" 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

The disease free equilibrium is the equilibrium point where no disease exists. In order 

to solve for this point the infected cell and virion class must both be set to 0. Thus our 

disease free equilibriulll point is (*,0,0). 

The basic reproductive nurnber represents the nurnber of secondary infections caused 

by a virion in the uninfected cells. First we have to find the matrix that represents the 

new cases of infected cells: 

{3xv 

F= o (11) 

° 
The Jacobian of this matrix evaluated at the disease free equilibrium is: 

0 0 (JA 

A 
I' 

JF(-,O,O) = 0 0 0 (12) 

'" 0 0 0 
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Matrix A: 

ay 

A= -A + f-tx + (3xv 

-ky + sv 

The Jacobian of this matrix evaluated at the disease free equilibrium is: 

JA- 1 = (A,O,O) = 
f-t 

1. 
a 

-(3kA 
af.t2 s 

k 
as 

° 

° 
1. 
f.t 

° 
(3A 
f.ts 

° ° ° 
° ° ° 

° -(3A 
f.t2 S 

! 
s 

(13) 

(14) 

(15) 

Thus no=(3kA. Our no is the basic reproductive number of the new virus in the host. , af.ts 

If no < 1 then the virus is decreasing. If no > 1 then the virus is increasing, and the 

disease is killing the T -cells. 

How Virions produce more Virions 

• -- @ 

@_ .... -

•• -- ... ••• 
-....-.. -

Figure 2: This figure shows how a virion infects a cell and in turn produces more virions 

[13]. 
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How Infected Cells produce Virions 

Figure 3: This figure shows how an infected cell produces virions who then go on to infect 

more cells [13]. 

3 Empirical Longitudinal Data on Patient Viral Loads 

3.1 General statements about HIV diagnosis 

Most HIV tests measure the level of HIV antibodies the body has produced to fight HIV. 

The two most common tests used are the En~yme Immunoassay (EIA) and the En~yme-

linked lmmunosorbent Assay (ELISA). A hindrance for these two tests is that sometimes 

it takes the body three to six months from the time of infection for enough HIV antibodies 

to be produced in order to be detected in the bloodstream [7]. 

Viral load testing is used mostly for patients that are already diagnosed with HIV. 

The reason for this is that viral load testing is expensive, as well as it is used as a tool for 

doctors to monitor their patients and decide whether a treatment is effective, or whether 

a change in treatments will be beneficial. Three viral load tests that are commonly used 

are the branched-chain DNA test (bDNA), the reverse transcriptase polymerase chain re-

action test (RT-PCR), and the nucleic acid sequence based amplification test (NASBA) 

[2]. These tests are used to measure the HIV RNA levels in the blood [20]. 
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ParameterH 

Parameter Meaning Units 

A Growth rate of uninfected cells viTion 
(mL)(day) 

I' Death rate of uninfected cells 1 
day 

j3 Rate at which uninfected cell becomes infected mL 
(virion) (day) 

a Death rate of the infected cells 1 
day 

k Rate of infected cells becomes virion 1 
day 

S Death rate of the virus 1 
day 

X(t) Number of U ninfccted cells V1,T1,On 

y(t) Number of Infected cells V1,T1,On 

v(t) Number of Virus V1,T1,On 

Table 1: Parameters used and their meanings 

4 Recursive Formula of New Virions 

Since we are assuming that x is constant, we need to find an expression for v(t), that does 

not depend on v or y, We will find a recursive method in order obtain the number of new 

virions produced from the new virions of the previous time, To find v(t) we can take (3), 

v=kiJ-sv 

v = k(f3x*v - ay) - sv 

ij = kf3x*v - kay - sli 

Taking equation (3) we can then solve for y, 

ky='v+sv 

Then if we multiply both sides by a: 

aky = a'v + asv 

9 

(16) 

(17) 

(18) 

(19) 

(20) 



Patient 1 

22, 27.2 

43, 210 

78, 85.9 

106.81.1 

146,46.2 

183,60.1 

2.'\0, 82.8 

268. 103. 

358,72.1 

4.'\5, 79.4 

489. 70.4 

519,207. 

534. 42.6 

584, 10.8 

610,5-1.2 

687.22.3 

778, 40.8 

Patient 2 

3, 469.8 

11, 1600 

15, 42.8 

43, 41. 7 

71, 12.22 

99, 14.17 

129, 18.2 

197.70.8 

255, 16.3 

.'\.'\0,81.2 

Patient 3 

0, 766.8 

7,947.6 

9, 706.2 

15, 14.4 

29. 2 . .'\ 

.'\6. 1.1 

50. 1.0 

57. 1.8 

64. 2.1 

Patient 4 

0, 153.0 

5, 284.0 

6, 216.0 

14, 143.0 

21. 30.2 

.'\2. 6.4 

39. 4.1 

16. 5.85 

Patient 5 

0, 228.2 

2, 599.2 

6, 2617.4 

14, 169.6 

21. 9.'\.7 

42, 165.6 

98. 127.0 

203. 65.9 

:~29. 144.7 

Patient 6 

0, 939.26 

3, 1485.0 

8, 701.6 

10, 564.0 

15, 106.5 

17, 11.2 

22, 87.3 

21. 20.6 

29, 14.78 

30. 27.5 

64, 6.32 

27.'\. 2.27 

288, 5.64 

347, 14.55 

"1.'\0. 1.3.6 

478, 13.1 

Patient 7 

0, 1350.6 

4, 2398.6 

9, 8.'\7.2 

12, 340.6 

16, 202.3 

19, 169.7 

23, 141.4 

26, 56.18 

30, 182.75 

50, 207.0 

60,182.7 

21.'\. 186 .. 3 

551, 89.4 

Patient 8 

0,2217.7 

4, 2427.9 

7, 2200.4 

11, 1134.3 

14, 705.9 

18,447.8 

21,412.7 

26, .'\02.1 

29, 118.8 

:B, 248.8 

86, 17.'\.6 

40, 131.3 

"19, 259.1 

56, 132.24 

6.'\, 10.3.2 

75, 117.1 

547. 5.02 

659, 24.24 

Patient 9 

0, 216.4 

5, 355.2 

8, 855.4 

12, 146.8 

19, 100.9 

29, .'\4.7 

57, 11.4 

121, 17.3 

197. 90.1 

280, 68.2 

376, 55.3 

525. 91.5 

604, 34.4 

645 61. 7 

757. 55.9 

776, 52.7 

Patient 10 

4,8U57.2 

9,9622.8 

10, 78.'\0.0 

14, 715.81 

16, 213.79 

18,121.0.'\ 

28, 16.36 

30, 11.79 

35, 31.75 

42, 24.05 

51,16.257 

8"1, 19.59 

177,41.17 

211, 61.95 

239, 1.'\7.77 

Table 2: Tl1is tahlA is taken directly from Stafford et. al. [18]. Data point.s arA presented as ordArAd pairs witl1 first number in 

each entry representing a relative tirIle in days and the second nUInoer in each entry the virus concentration in thousands of 11lV-1 

RNA copies Inl 1. A hori,,,,ntal line in a colun"ln indicates only the data points ahove the line were lIsed in paran"leter estiInation. All 

points were used if there is no horizontal line. The times listed for patient 9 are froIn 35 days following initial infection (Borrow et 

aI., 19(7). Patients 1 and 2 are patient lll.llIlOerS 1019 and 1113 from University of Washington study. Patients 3-9 are .JS'vV-IJAAH, 

CMO-DAAR, HORR-SHA\V, SUMA-SHA\V, RORT-SHA\V, TNME-SHA'vV, amI \VEAU-SHA'vV from Aaron DiamonrJ ATDS RASAarch 

Center,respeclh-ely. Data for jJacient 10 are from patient DR from the Cedars-Sinai Medical Center in Los Angeles, CA. [181 

PararIleter 

A 

Init 

Init y 

Init v 

a 

k 

Patient 1 

pL, nIL 

.:m-l.1 . .'\OE+2 

4.6B-4,4.60E-7 

l.E+1, l.E+"1 

U.UO, U.UO 

l.E-9, l.E-6 

1 . .'\E-2,1.::\E-2 

4.E-l,4.E-l 

980, 980 

8, 8 

Patient 2 

pl,. mL 

2.E-1. 2.E+2 

3.60B-4, 3.60E-7 

1.00E+l. 1.00E+1 

O.OU, O.OU 

1.E-9, 1.00E-6 

2.E-2,2.00E-2 

8.E-1. 8.E-1 

1800, 1800 

3, 3 

Patient 5 

pL, nIL 

70E-l, 1.70E+2 

6.30B-4, 6.30E-7 

1.00E+1, l.00E+1 

U.UO, U.UO 

1.00E-9, 1.00E-6 

1.70E-2, 1.70E-2 

3.90E-l, 3.90E-1 

870, 870 

3, 

Patient 7 

.70E-l,1.7UE+2 

8.00B-4, 8.00B-7 

1.00E+1, 1.00E+1 

0,00, 0,00 

1.00E-9 . 1.00E-6 

1.70E-2, 1.70E-2 

3.10E-1, 3.lOE-l 

7.'\0, 730 

8, 8 

Table 3: Patients used in Bayesian Estimation 
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Patient 8 

pL, rIlL 

8.50E-2, tL':;OE+ 1 

6.60lJ-4. 6.60B-7 

l.OOE+1. 1.00E+1 

0,00, 0,00 

1.00E-9. 1.00E-o 

8.50E-.'\. 8.50E-.'\ 

1. 70E-1. 1. 70E-l 

830. 8.'\0 

.'\, 8 

Patient 9 

~,L, rIlL 

6.00E-2, 6.00E+ 1 

2.50B-3, 2.:iOE-6 

1.00E+1. 1.00E+1 

0.00. 0.00 

1.00E-9, 1.00E-o 

6.00E-.'\ , ti.UOE-::I 

1.30E-1. 1.30E-1 

110. 110 

3, 3 



Now we can substitute this in (18) and we obtain: 

ii = kf3x*v - (av + asv) - sv 

0= ii + v(ka + s) + v(as - kf3x*) 

Now we can find the characteristic equation. 

0= p2 + (a+ s)p+ (as - kf3x*) 

-a - s ± J(a + s)2 - 4(as - kf3x*) 
Pl,2 = 2 

-a - s ± J~a-2 -+-2-a-s-+-s-2---4a-s-(-I-----k~-:-' ) 
Pl,2 = 2 

-a - s ± y'rT( a-+-s'"")2c-_-4""7""a-s""7( 1:------=R:-o) 
Pl,2 = 2 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

This is true if and only if the discriminant is greater than O. This condition can be shown 

as: 

0> as - kf3x* 

kf3x* 
0> as(l- --) 

as 

--+O>I- R o 

--+Ro> 1 

Now we have the general solution for v(t) and v(O). 

v(O) = Cl + C2 

Now we must find an equation for v(t + Ti) 

11 
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(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 



L~T(t-'tI) AT(t) AT(t+'t2) 

~l~l~l 
t 

Figure 4: Diagram of New Cases in a Certain Period of Time 

From (31) we know that qeP1t = v(t) - C2eP2t. So we can substitute in (34): 

v(t - Ti-l) = (v(t) - c2eP2t)e-PlTi-1 + c2eP2te-P2Ti-1 

t v(t - Ti-l) - v(t)e-PlTi - 1 
--+ C2 eP2 = --'------'-----'-""""'------­

e-P2Ti-1 - e-P1 Ti-1 

Now we can write v(t + Ti) as an equation that depends on the last two equations. 

(35) 

(36) 

--+ v(t + Ti) = (v(t) - c2eP2t)eP1Ti + c2eP2teP2Ti (39) 

v(t - 'To-I) - v(t)e-P1Ti-1 
--+ v(t + Ti) = v(t)eP1Ti + ( zoo )(ePlTi - eP2Ti ) (40) 

e-P2T,-1 - e-P1 T,-1 

Using this equation that is function of v(t), V(t-Ti-l), a, s and no; we know that ~~ = kyo 

Then we have to solve for y. Since we have the solution for v(t) we can obtain v(t). 

From (3) we have can solve for y. 

ky - sv = PicleP1t + P2c2eP2t 

sv + PicleP1t + P2c2eP2t 
=::}- y = -----''----::-----''----

k 
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If we substitute v from (31) we obtain: 

S(CleP1t + C2eP2t) + PlclePlt + P2c2eP2t 
y= 

k 
(PI + S)ct eP1t + (P2 + S)C2 eP2t * y = -"-------'----::---'''-----'----

k 

Then we can make the following two assumptions if 'T is very small: 

flT(t - 'Tl) = (PI + s)'TocteP1(t-Tl) + (P2 + S)'TOC2 eP2 (t-Tl) 

flT(t) = (PI + S)'TlcteP1t + (P2 + s)'TIC2eP2t 

(45) 

(46) 

(47) 

(48) 

Using a system of two equations we can solve for the two unknown values:(pl + S)CleP1t 

and (P2 + S )C2eP2t. 

flT(t) flT(t - 'Tl) - TSJ.flT(t)e-T1P1 
(PI + S)Cl eP1t - -- _ T1 

- 'Tl 'To(e- P2T1 - e-P1T1 ) 
(49) 

t flT(t - 'Tl) - ~o flT(t) 
(p + S)C eP2 - 1 

2 2 - 'To(e-P2T1 _ e-P1T1 ) 
(50) 

Now we can obtain a recursive equation for flT(t + 'T2). 

(51) 

'T2('ToflT(t)(eP1T2-P2Tl - ePIT2-PITl + eP2TI-PITl - eP2T2-PITl) + 'TlflT(t - 'Tl)(eP2T2 _ eP2T1 )) 

'Tl'To(e-P2T1 - e-P1T1 ) 

(52) 
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5 Bayesian Estimation of Ro Probability Distributions 

5.1 Current Estimation Techniques 

The ba..,.,ic reproductive number is defined as the average nllnlber of new infections gener­

ated by a typical previous infection in a mostly uninfected population. When speaking in 

the terms of the HIV virus inside a host, no will be referred to in this manuscript as the 

average number of new virions created by a typical infected cell in a population of mostly 

uninfected cells. In other words no would be the reproduction ratio of the virus. 

In June of 2006 a new method for estimating no was created by Luis lvI. A. Bettencourt 

and Buy lvI. Bubeiro in their paper, Detecting early human transmission of H5Nl avian 

influenza. In this method they use data from WHO global surveillance of new avian flu 

cases, and interpret it in real time to evaluate changes in transmissibility with measured 

uncertainty and to perform predictions of new cases. They also predict the probabilis­

tic progression of new cases using a recursive equation from statistical analysis of prior 

disease progression. lvIore specifically they succeeded in developing a I3ayesian procedure 

that estimates the full probability distribution of no. 

Using this method we estimated the probability distribution of no for the reproduction 

of HIV-l virions in untreated patients at the cellular level. Virus concentration measure­

ments were obtained for 10 different patients [18]. The model we used to describe the 

dynamics of HIV is from the classic model of viral dynamics [13]. 

This research will give clinicians another tool for monitoring patients as well as help 

them tailor-fit disease regiments for individual patients. This method could assist in fine 

tuning the analysis of parameters given our sensitivity analysis. 
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5.2 Bayesian Estimation 

With the recurrence relation created in the previous section we now have a description 

for the new cases at time 't+72' defined completely in terms of the previous cases. Addi-

tionally, as we had originally intended, Ro is a part of the expression and is formulated to 

be the only part of our deterministic expression which varies. Stated differently, variation 

in Ro causes corresponding changes in the number of new cases at successive time steps. 

In this way, as new data is incorporated at each iteration through 7 and .6. T the increase 

and decrease of the expression is due to Ro. This can be stated more concisely by the 

following conditional probability, 

P[R I.6.T( ) .6.T() .6.T( _ )] = P[.6.T(t + 72) f-- .6.T(t) , .6.T(t - 71)I Ro]P[Ro] 
o t + 72 f-- t , t 71 P[.6.T(t + 72) f-- .6.T(t) , .6.T(t - 71)] 

(53) 

Our deterministic expression for new cases acts in this way as a detector for statistical 

variation. The key is using this deterministic expression as the mean for the distribution. 

This makes sense because the average of a stochastic process corresponds to the deter-

ministic model for the same process. Whereas a purely deterministic approach fails to 

capture the variation in real data the power of this approach lies in its ability to interpret 

data as it comes in. This approach to Ro estimation was motivated by trying to marry 

both approaches and use the advantages of both to interpret and analyze data in real time. 

The data from the aforementioned Stafford et. al. paper was used to create estima-

tions of both Ro and Reff during Stage 1 HIV-l infection. The basic replacement number 

(Reff) is defined as the average number of secondary infected created by an average in-
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fectious individual during its lifetime [8, 6]. Their study uses the same model that was 

presented earlier and nonlinear least squares estimation to attain parameter values for each 

of its patients. Using these values, Ro can be calculated for each patient and compared to 

the estimates achieved by applying Bayesian forward estimation directly to the data. In 

addition, observed patient data is used from the study to estimate Ref f after the initial 

growth phase. By definition, Reff is equal to Ro at the time of invasion into a completely 

susceptible population [8]. However, the Reff is then subsequently always smaller than 

Ro, because the susceptible population has been reduced to only a fraction of its original 

size. 

Using this formulation, it is possible to calculate Ro directly from the sample points. 

In order to estimate Ro, we chose a sample from within the initial growth period as shown 

in Figures 5 and 6. You can estimate Ro directly from the sample points. It is remarkably 

accurate, and docs not require individual parameter estimation through curve fitting or 

other means. With the simulation data, the values approach the calculated value for Ro 

rather quickly. 

Predicted data was generated for each patient using a numerical solver and the pa­

rameter estimates found in another manuscript [18]. A sample was chosen from the initial 

growth period for each patient as shown in Figures 5 and 6. These graphs show the 

number of new cases between sample times. The sample size was constrained to about 

50 data points for the population between 1 and 10000 virions per nanoliter. Although 

most of the data and parameters we encountered were given in nlilliliters, we converted 

OUf data to virions per nanoliter due to our COlnputer constraints. Because the numbers 

were simultaneously very large and very small, we would often hit the limits of computer 

merllory for storage of our numerals. Some of our expressions would then give irnpossible 
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values, such as zero. In order to avoid this problem, we scaled our problem to look at 

change on a nanoscale over a short period of time. One motivation for further work would 

be to somehow quantify the sensitivity of this methodology to min/max numeral storage. 

The observed data was also taken from the study [18]. They obtained their results for 

patients 1 and 2 from a University of Washington study and the rest from the Aaron Dia­

mond AIDS Research Center. All of the data is from Stage 1 of HIV -1 infection from the 

peak of the initial growth period to the beginning of the quasi-steady state that follows. 

This quasi-steady state period can last up to 10 years for many patients and we were able 

to get data for our estimation procedure well into the second year for many patients. As 

with the predicted patients, we used the number of new cases between sample times as 

shown in Figures 7 and 8, althongh here it is represented in micro-liters. In addition, the 

data was originally a time series of viral load over time. In order to convert this into a 

time series for change in new cases we applied the following expression: 

t:.T(t) "" t:.V(t) + TlSV(t - Tl) (54) 

which gives us a rough estimation for what occured between the samples. This result 

was attained by substituting t:.T(t) into the expression for t:. V(t). This also makes some 

intuitive sense because the difference in viral load alone does not represent the number 

of new cases unless we add the number of deaths that occmed over that same time. Of 

course, as with any estimation, we cannot be exactly sure how far we are frorTI the true 

dynamics and this may be another place for further work. 
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Figure 6: Initial growth sample from numerical solution of Patient 9. 
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Figure 8: Observed data from Patient 8 Stage 1 HIV. 
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5.3 Results 

In Figure 9 the estimated distributions for the predicted and observed data is represented 

for Patient 1. The Ro distribution for the predicted data converged very quickly to a 

mean of 3.8 +/- 0.144 which is precisely the number calculated by Stafford et. a1. for 

the same patient [18]. Although the predicted data was generated with these parameters. 

those values were not used explicitly in the expression for the distribution. This value 

for Ro was elicited purely from the variation in data. The same Ro estimate shown on 

the right as a graph of max values over time shows that the estimate converged to 3.8 as 

the confidence interval tightened. The observed data also converged to a value of 1. This 

would imply that the data saturated at an equilibrium, which is confirmed by the viral 

load time series for this patient. 

Patient 2 data looks very similar to Patient 1 with convergence to a value of 2.6+/-.086 

compared to a value of 2.8 calculated by Stafford et. a1. Here the estimated Ro converged 

very smoothly because the initial guess for the distribution was very close to the saturation 

value. The observed data also converged very quickly to a value of .94+/-3xl0-6 for the 

estimate of the effective number (Ref f ) after the period of initial growth. 

Patient 5 data, again, looks very similar to the previous patients in that the data 

smoothly converges to the expected Ro value and remains there while continuously de­

creasing the variance. Here the initial guess for the Ro distribution was very close to the 

final estimate so the graphs do not show very much movement. In the estimates for the 

observed data, the similar pattern of stabilizing near 1 is observed again. Viral load data 

confirms that this patient has reached an endemic state for this period. 

As before, the pattern for all the remaining patients shows a smooth progression from 
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Figure 9: Distribution of Ro VH time for Patient 1. 
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Figure 10: Distribution of Ro vs time for Patient 2. 

22 



Predicted Data PatientN5 
0.2 10 

0.15 c.i 
8 

-0 >!? 6 a: 0 

"' Ii 0.1 m 'Joee: :: SO osss::::Oos """" e :; 4 
"- 'j: 

0.05 0 
a: 2 

00 5 10 15 00 2 4 6 8 10 
Ro time[days) 

Observed Dala Patienl#5 
1.6 

0.8 c.i 1.4 

o:~ 0.6 .... 
"' Ii m 1.2 

e 0.4 
:; 

"-
.~ 

b;r ~ 

0.2 • a: 

00 0.5 1 1.5 2 
0.8

0 50 100 150 200 250 
Reff lime[days) 

Figure 11: Distribution of Ro vs time for Patient 5. 
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24 



Patient Expected Ro [18] Bayes Ro Bayes Reff 

1 3.8 3.805+/-0.144 0.991+ / -0.0 

2 2.8 2.609+ / -0.086 0.941+/-0.001 

5 4.7 4.669+ / -0.189 0.991+ / -0.0 

7 6.2 6.231+ / -0.221 0.991+ / -0.0 

8 11.0 10.53+ / -0.374 0.651+/-0.114 

9 6.6 6.482+/-1.117 0.991+/-0.001 

Table 4: Expected Ro values vs. Bayes Estimations 

the initial estimate to the expected Ro value calculated for the patient. Patient 8 data 

is particularly representative of the progression of the mean towards the expected value 

while the variance becomes smaller as shown in Figure 13. The observed data for Patient 

8 also had the highest resolution from all selected patients. The estimate for Patient 8 

Ref! stays below 1.0 for all estimates because this data comes from the period just af­

ter initial growth when the viral load is dipping down to its set point level. After this 

period of decline the viral load is sometimes so low that it is undetectable. Over years, 

the immune system slowly deteriorates and the T-cell count gets so low that the immune 

system eventually collapses into what is called Acquired Immune Deficiency Syndrome 

or AIDS. The patients selected for our study have positive viral load values during this 

period as shown in Figure 12. A summary of the estimates given by Stafford et. al. and 

the values estimated by the Bayes Forward Iteration are summarized in Table 4. All the 

values estimated by our procedure match those predicted by Stafford et. al. along with 

quantified uncertainty for each patient which was not provided there. Furthermore, all 

of the patients showed a higher estimate for Ro than for their Ref!' which agrees with 

theoretical expectations for these values. 
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6 Uncertainty and Sensitivity Analysis of Ro 

In order to determine if our distributions are an accurate representation of HIV-1 viral 

load within the host, we performed uncertainty and sensitivity analysis. To do so, we 

decided to create probability distributions for all of the parameters in our model. All of 

our parameter estimations were taken from a previous paper [18]. From this we know that 

A = XiniL/l. Due to A and /l being related to each other, we chose to use a new variable, 

To, instead as a parameter. Thus: 

Ro = AfJk = TofJk = TojJk~~ 
J.-Las as as 

The average healthy person has an average of 800 to 1200 CD4+ T-cells per micro-liter 

[91. The density of target cells before infection arc found to be 1% of the CD4+ T-cell 

density in peripheral blood. This vallie was found in a paper using nuclear antigen Ki-67 

[16, 181. Our uninfected cell count will range between 8000 and 12000 cells per milliliter. 

We assumed a uniform distribution for the parameter To. For jJ we chose to use a trian-

gular distribution, with a minimum of .00000019, a peak of .00000065, and a maximum 

of .0000048. Also, k was assumed to be a triangular distribution. This was created using 

a minimum of 98, a peak of 850, and a maximum of 7100. An exponential distribution 

was chosen for both ~ and ~. The mean for ~ was chosen to be 2.56 and the mean for 

~ was chosen as .33. All of these distributions can be seen in Figure 16. Using these 

five parameter distributions we ran our program 10 times, creating 50,000 values of Ro 

per simulation. The code used to create these distributions can be viewed in the Appendix. 
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Parameter Distribution 

Parameter Distribution Min. Max Mean Peak 

To Uniform 8,000 12,000 - -

f3 Triangular 0.00000019 0.0000048 - 0.00000065 

k Triangular 98 7,100 - 850 

.1 Exponential -
a 

- 2.56 -

.1 Exponential -
s 

- .33 -

Table 5: Distributions and values used 

Uncertainty Analysis 

R.un Min. Ro Max. Ro Median Ro J'vIean Ro Std. Dev. Pr[Ro < 11 Pr[Rn ?: 11 

1 0.000045 3174.858832 11.201395 42.903161 103.195643 .13756 .86244 

2 0.000029 5698.776718 10.935308 42.895685 108.835796 .1366 .8634 

3 0.000017 2726.865301 10.957302 42.57981 104.225365 .13418 .86582 

4 0.000026 5099.867277 10.855994 42.568557 106.460654 .1383 .8617 

5 0.000004 3899.840203 11.070551 42.535354 104.257277 .138 .862 

6 0.000012 3867.021795 11.231353 42.763078 105.715445 .1375 .8625 

7 0.000034 2949.600973 10.983479 42.636431 103.073843 .1382 .8618 

8 0.000005 2375.636386 10.989205 42.879221 103.436334 .13608 .86392 

9 0.000055 4273.549069 11.051081 43.208162 110.193039 .1364 .8636 

10 0.000008 3209.269798 11.060117 42.688299 105.604199 .13646 .86354 

J'vIean 0.0000235 3727.528635 11.0335785 42.7657758 105.4997595 0.136928 0.863072 

Table 6: Results of the Uncertainty Analysis 

Ro Quartiles 

First Quartile Second Quartile Third Quartile Fourth Quartile 

2.728798 10.957172 38.471825 4273.549069 

Table 7: Quartile, of the Probability Distribution of Ro 
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Figure 15: In order from top to bottom and left to right are the Probability Distributions 

of: To, (3, k, 1, and 1 
a s 
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Figure 16: To the left is a histogram of the simulated no distribution for patient 3. To 

the right is the same histogram truncated and enlarged. Since all 10 of the replications 

are conlparable, any of the replications is a reasonable representation of the other nine. 

6.1 Uncertainty Analysis 

From Table 6 it can be shown that the range for no ran from .000004 to 5698.776718. 

This is an extremely large range, but acceptable given the parameter ranges we used. The 

estimated no values that we were hoping for ranged from about 2 to 20 [18, 111. Despite 

the large variation in the range of no, the median no was 11.0335785. This number falls 

directly in our estimated no values. The mean no given was 42.7657758, with a stan-

dard deviation of 105.4997595. This shows that our no range is very large, and that our 

frequency histogram of no is strongly skewed to the right. Given that our mean is 42.7, 

and our median is 11.033, it can be concluded that there exist very large values of no 
per simulation that increase the mean tremendously. Due to the large standard deviation 

values, it is easy to notice that there is a large fluctuation in Ro- Also, since Ro has such 

a large range, there is a strong probability that no has the capability to explode into large 

numbers. When looking at the distribution of no values, we did find that 62.3% of no 
values were below 20, 70.4% below 30, 75.8% below 40, 79.7% below 50, and 89.3% below 
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lOO. Using the distribution from run 9, we calculated the quartiles. Run 9 was chosen 

since all other runs were comparable to this one. From Table 7 you can see that 75% of 

the distribution is under 38.471825; while the last quartile spans the range of over 4,000. 

This is also a strong indication that our distribution is skewed to the right. One surprising 

observation in our simulations, is that the probability of Ro ::>1 was .863072. Given our 

knowledge of HIV dynamics, we would have expected a larger probability of Ro ::> 1. 

6.2 Sensitivity Analysis 

In the sensitivity analysis of our parameters, partial rank correlation coefficients (PRee) 

were used. A parameter is influential in determining the magnitude ofRo if IFRCCI >.5. 

Also, if the p - vnlne associated with a parameter PRee is less than .05 we say that this 

correlation is statistically significant [17]. We found a positive correlation for four param­

eters, namely: To, {3, k, and n. As you can see from Table 8 below, there was a small 

correlation (almost 0) between To and Ro and between a. and Ro. The correlation which 

is Inost influential is with respect to the parameter s. As B is increased, Ro is decrea.....,ed, 

and vice versa. 

The p - va.lue lets us know about the statistical significance of the correlations. Every 

correlation between Ro and the five parameters showed that they are statistically signif­

icant. The p - val'ues for all of the parameters were found to be 0.000 (i.e.<.05). Hence 

we are rejecting the null hypothesis, and the five parameters are considered as statistically 

significant. From these p - val'ues we can conclude that there is a correlation between all 

the parameters and RD. Thus the correlation between Ro and the parameters could not 

have arisen by chance. These p - values show that there is approximately a 0% chance 

that these correlations occurred at randorIl. 
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Sensitivity Index of Ro with respect to Parameters 

Parameters FRCC P - value 

To 0.054 0.000 

j3 0.276 0.000 

k 0.297 0.000 

a 0.175 0.000 

s -0.541 0.000 

Table 8: Table of Sensitivity Analysis results 

7 Conclusion 

We estimated the distributions of the basic reproductive number for all the patients se­

lected in our study. As has been demonstrated by our graphs and previous discussion, 

our estimation progresses smoothly from the prior to the basic reproductive number while 

simultaneously decreasing the variance. Although we used predicted values for our pa­

rameters in our estimation of Ro this still serves as an effective control for checking the 

accuracy of the algorithm and its expressions, which should be employed whenever this 

algorithm is applied to a different model or context. Unlike, applications to larger time 

scales, like a flu season, the sample data used for this estimation resided wholly within 

the initial growth phase. This means that our estimation should stabili"e at the basic re­

productive number and remain there until the end of the sampled time. This is confirmed 

by our data, particularly in the graphs of the max Ro estimates for each patient. These 

graphs can be easily compared to the estimates given by Stafford et. al. using Table 4. 

Bettencourt et. al. suggested a method for calculating the basic reproductive number 

from a time series of the effective number by taking the maximum value. The theoretical 
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reason behind this result pertains to the distinction between the efIective reproductive 

number, or replacement number, and the basic reproductive number. Under normal con­

ditions the efIective reproductive number never gets any higher than in the initial growth 

phase because the population is completely susceptible in the initial growth phase. Due to 

difIerent assumptions about the data and its context, such as difIerent stages of growth, 

this method could not be directly applied to our samples. However, if our model and 

methodology, as well as computing constraints, were improved sufficiently this estimation 

procedure could encompass a larger time period which may allow more longer term anal­

ysis such as this to be employed. 

The efIective reproductive number calculated for each patient after the initial growth 

phase agreed with expectations about its size relative to no. More so, estimated neff val­

ues seemed to support intuitive expectations from the slope of the viral load curve during 

those periods. Because the observed data was low resolution and highly dynamic it was 

less than ideal for this estimation procedure given the assumptions we made, such as con­

stant uninfected cell population and poisson distributed new cases. For future work, these 

assumptions would have to be reevaluated and compared to more relevant alternatives, in 

which more care would be taken choosing data and applying the method in context. 

Using the probability density functions, the uncertainty analysis showed that the simu­

lated median for no was 11.0335785. The mean no given was 42.7657758, with a standard 

deviation of 105.4997595. Due to the large standard deviation values, it is concluded that 

there is a large fluctuation in the no distribution. Since there exist no values exceeding 

5000, this indicates that no has exponential growth. Also, since no has sllch a large range, 

there is a strong probability that no has the capability to explode into large numbers. 

34 



Also, it was shown through the sensitivity analysis that s was the only parameter that 

was statistically significant. This means that there is a large negative correlation between 

Ro and s. This suggests that viral death rate is a crucial factor in varying the threshold 

Ro. Therefore, in order for Ro to be decreased, s should be increased. 

7.1 Improvements and Future Work 

Some ideas for future work include finding a way to solve the whole system. This way 

we could assign a solution to x( uninfected cells) that is a function of t so that our de­

terministic process will be closer to the data. One thing we would like to do is improve 

our estimation of dynamics between sample points. Another idea is to choose a differ­

ent distribution with a larger variance to minimize statistical anomalies. On thought is 

to possibly use truncated normal distributions. Another thought is to try to apply the 

method on a more accurate model for HIV, one that is more complex. Our hope is that 

this can one day be extended to real time analysis of medicated patients. 
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9 Appendix 

9.1 MATLAB code for the HIV Model 

function dx=xyv_para(t,x,lambda,beta,mu,a,k,s) 

%patient #4 

% lambda 46; % cells/((mL) (day)) 

% beta 4.8*10'-6; % mL/((virion) (day)) 

% mu .0046; % l/day 

% a .18; % l/day 

% k 98; % l/day 

% s 3· , % l/day 

dx=zeros(5,1); dx(l)= lambda - mu*x(l) - beta*x(1).*x(3); dx(2)= 

dx(4)= k*x(2); %Total new cases 

dx(5)= s*x(3); %Total virion deaths 

9.2 MATLAB code used to create Predicted Data 

function patient_sim(index_vector) set(O,'DefaultAxesFontSize' ,16) 

initX 10000; % cells/microL 

initY 0; % cells/microL 

initV 1*10'-6; % virions/mL 
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init conds [initX,initY,initV,O,O]; 

10; patient zeros(1,nUffi_patients); 

%initialize parameter arrays 

lambda = zeros(l,num_patients); beta = zeros(l,num_patients); mu 

zeros(l,num_patients); a = zeros(l,num_patients); k = 

zeros(1,num_patients); s = zeros(1,nuffi_patients); 

% tspan = [0:3:99J; 

tspan = [0 49J; %number of samples 

%patient #1 

patient (1) =1; 

lambda (1) 1.3*10-2; 

beta(l) 4.6*10--7; 

mu(l) 1.3*10--2; 

a(l) .4; 

k(l) 980; 

s (1) 3; 

%patient #2 

patient(2)=2; 

% cells/«mL) (day)) 

% mL/«virion) (day)) 

% l/day 

% l/day 

% l/day 

% l/day 

lambda(2) 

beta(2) 

mu(2) 

2.0*10-2; % cells/«mL) (day)) 

3.6*10--7; % mL/«virion) (day)) 

2.0*10--2; % l/day 
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a(2) 

k(2) 

s(2) 

%patient #3 

.8; 

1800; 

3; 

patient(3)=3; 

lambda(3) 65; 

beta(3) 6.4*10'-7; 

mu(3) 6.5*10'-3; 

a(3) .43; 

k(3) 960; 

s(3) 3; 

%%%%%%% 

%patient #4 

patient (4) =4; 

lambda(4) = 46; 

beta(4) = 4.8*10'-6; 

mu(4) .0046; 

a(4) .18; 

k(4) 98; 

s(4) 3' , 

%%%%%%% 

%%%%%%% 

% l/day 

% l/day 

% l/day 

% cells/«mL) (day)) 

% mL/«virion) (day)) 

% l/day 

% l/day 

% l/day 

% l/day 

% cells/«mL) (day)) 

% mL/«virion) (day)) 

% l/day 

% l/day 

% l/day 

% l/day 
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%patient #5 

patient(5)=5; 

lambda(5) 170; % cells/«mL) (day)) 

beta(5) 6.3*10"-7; % mL/«virion) (day)) 

mu(5) .017; % l/day 

a(5) .39; % l/day 

k(5) 870; % l/day 

s(5) 3· , % l/day 

% 

%%%%%%% 

%patient #6 

patient(6)=6; 

% cells/«mL) (day)) 

beta(6) 7.5*10"-7; % mL/«virion) (day)) 

mu(6) 

a(6) 

k(6) 

s(6) 

% 

%%%%%%% 

%patient #7 

.012; 

.39; 

790; 

3; 

patient(7)=7; 

lambda(7) 170; 

% l/day 

% l/day 

% l/day 

% l/day 

% cells/«mL) (day)) 

beta(7) 8.0*10"-7; % mL/«virion) (day)) 

mu(7) .017; 

a(7) .31; 

% l/day 

% l/day 
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k(7) 

s(7) 

% 

%%%%%%% 

%patient #8 

730; 

3; 

patient(8)=8; 

lambda(8) 85; 

beta(8) 6.6*10'-7; 

mu(8) .0085; 

a(8) .17; 

k(8) 830; 

s(8) 3; 

% 

%%%%%%% 

%patient #9 

patient(9)=9; 

lambda(9) 60; 

beta(9) 2.5*10'-6; 

mu(9) .006; 

a(9) .13; 

k(9) 110; 

s(9) 3' , 

% 

%%%%%%% 

%patient #10 

patient (10) =10; 

% 1/day 

% 1/day 

% cells/«mL) (day)) 

% mL/«virion) (day)) 

% 1/day 

% 1/day 

% 1/day 

% 1/day 

% cells/«mL) (day)) 

% mL/«virion) (day)) 

% 1/day 

% 1/day 

% 1/day 

% 1/day 
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lambda(iO) 43; % cells/«mL) (day)) 

beta(iO) 1.9*10"-7; % mL/«virion) (day)) 

mu(10) .0043; % 1/day 

a(10) .46; % 1/day 

k(10) 7100; % 1/day 

s(10) 3' , % 1/day 

%solve system with given parameters 

%index_vector; 

for i=1:length(index_vector) 

j index_vector(i); 

t []; y = []; indx []; data [] ;%should null x and y 

figure; 

[t,y]=ode45(@xyv_para,tspan,init_conds, [] ,lambda(j),beta(j),mu(j),a(j),k(j),s(j)); 

% semilogy(t,y(:,3),'s'); 

% plot(t,y(:,3),'s'); 

graph_title = strcat('Predicted New Cases Patient #',int2str(patient(j))); 

title(graph_title); 

%data storage 

indx = find«1<y(: ,3))&(y(:,3)<1e4)); 

% indx = 1:length(y(:,3)); 

% fprintf('(%i) %f\n',indx, y(indx,3)); 
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end 

data(: ,1) 

data(: ,2) 

diff(t(indx)) ; 

diff(y(indx,3)); 

%fprintf('%1.15e \n', y(1:(end-l),3) ); 

%fprintf('%1.15e \n', s(i)*y(1:(end-l),3) ); 

tmp=s(j)*y(indx,3); 

data(:,3) = data(:,2) + data(:,l).*tmp(l:end-l); 

plot(t(indx),y(indx,3),'s'); 

xlabel('time[daysJ') 

ylabel('Viral Load [# per nanoliterJ'); 

title(graph_title); 

this_f=strcat('data\simdata_patient' ,int2str(patient(j)),' .txt'); 

mt=[data(:,l) data(: ,3)J; 

save(this_f,'mt','-ascii'); 

9.3 MATLAB code used to Graph Observed Data 

function graph_obs(index_vector) 

set(O,'DefaultAxesFontSize' ,16); 

for i=1:1ength(index_vector) 

j = index_vector(i); 

f_name = strcat('data\obsdata_patient',int2str(j),'.txt'); 

x = load(f_name, '-ascii'); 
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end 

figure; 

plot(cumsum(x(:,1))+20, x(:,2)); 

graph_title = strcat('Observed New Cases Patient# ',int2str(j)); 

title(graph_title); 

xlabel('time[days]'); 

ylabel('Viral Load [# per microliter]'); 

axis tight; 

9.4 MATLAB code to perform Bayes Forward Estimation 

function dy=bayes_frwd_estmtn(simdata, p_num) 

a = zeros(1,10); s = zeros (1,10) ; 

a(l) .4; % l/day 

a(2) .8; % l/day 

a(3) .43; % l/day 

a(4) .18; % l/day 

a(5) .39; % l/day 

a(6) .39; % l/day 

a(7) .31; % l/day 

a(8) .17; % l/day 

a(9) .13; % l/day 

a(10) .46; % l/day 

s (:) = 3.0; %per day 

%test for loading simulated data or observed data 
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if (simdata) 

this_file=strcat('data\simdata_patient',int2str(p_num),' .txt'); 

RO=linspace(1,20,250); 

RO_dist=normpdf(RO,5,2), ; 

RO_dist=RO_dist./sum(RO_dist); 

else 

this_file=strcat('data\obsdata_patient',int2str(p_num),' .txt'); 

RO=linspace(1e-1,5,100);%change this per patient 

RO_dist=normpdf(RO,.5,.2)' ; 

RO_dist=RO_dist./sum(RO_dist); 

end 

x=load(this_file,'-ascii'); 

tau= xC:,1); %times 

DeltaT= round(x(:,2)); %number of new cases at each time 

data_length = length(x); data cursor 

data_length-data_cursor; 

% RO dist 

% RO dist 

normpdf(RO, 2, 12); 

RO_dist I sum(RO_dist); 

2; iterations 

%RO_dist=RO.*exp(-RO); %first prior: positive because of condition 

%RO_dist=ones(length(RO),1); 

% RO_dist=normpdf(RO,5,2), ; 
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lambda=zeros(iterations,length(RO_dist»; 

vals=zeros(length(RO_dist),iterations); 

maxvals=zeros(iterations,l); cond_prob=zeros(l,length(RO»; 

for i=data_cursor:data_length-1 

rho_1 = ((-l*a(p_num)-s(p_num» + sqrt((a(p_num)+s(p_num»-2 

-4*a(p_num)*s(p_num)*(1-RO»)/2; %needs to be positive for stability condition 

rho_2 = ((-l*a(p_num)-s(p_num» - sqrt((a(p_num)+s(p_num»-2 

-4*a(p_num)*s(p_num)*(1-RO»)/2; 

A = (DeltaT(i)./tau(i»-(tau(i).*DeltaT(i-1)-tau(i-l).*exp(-1*rho_1.*tau(i». 

*DeltaT(i»./(tau(i).*tau(i-1).*(exp(-1.*rho_2.*tau(i))-exp(-1.*rho_1.*tau(i»»; 

B = DeltaT(i)/tau(i) - A; 

lambda(i,:)= tau(i+1).*(A.*exp(rho_1.*tau(i+1»+B.*exp(rho_2.*tau(i+1»); 

if sum(lambda(i,:»-=O 

cond_prob = poisspdf(DeltaT(i+1),lambda(i, :)'); 

if(cond_prob == 0) 

fprintf('ANOMALY!!! (culprit: new cases fall outside the distribution)\n'); 

end 

q=cond_prob.*RO_dist; 

q=q/sum(q); 

RO_dist=q; 
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vals(:,i-(data_cursor-1))=q; 

else 

fprintf('ANOMALY!!! (culprit: lambda)\n'); 

end 

hold on 

plot (RO,q) 

graph_title = strcat('Patient #',int2str(p_num)); 

title(graph_title); 

pause (. 75) 

end 

% hold off 

%save data to MATLAB .mat file 

if (simdata) 

name1=strcat('data\rO_dstn-sim_patient',int2str(p_num),' .mat'); 

else 

name1=strcat('data\rO_dstn-obs_patient',int2str(p_num),' .mat'); 

end save(name1,'vals','RO' ,'tau'); 

9.5 MATLAB code to graph and display patient data and confidence 

intervals 

function run_datagraph(index_vector) 

set(O,'DefaultAxesFontSize' ,16) sim_data 

i=l:length(index_vector) 

j = index_vector(i); 
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l' , 

figure; 

for w=1:2 %loop for patient data and sim data 

RO=[]; vals = []; tau = []; q = [] ;%null 

name = strcat('data\rO_dstn-sim_patient' ,int2str(j),'.mat'); 

else 

name strcat('data\rO_dstn-obs_patient' ,int2str(j),'.mat'); 

end 

%load variables from file 

load(name); 

RO = RO'; 

%%%%%(1) 

%plot distribution 

subplot(2,2,subplot_indx); 

subplot_indx = subplot_indx+1; 

plot(RO,vals); 

ylabel('Prob(R_{O})'); 

graph_title=strcat(' Predicted Data Patient#',int2str(j)); 

v = axis; %get axis data 

axis([O 15 v(3) v(4)]); 
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else 

xlabel('R_{eff}'); 

ylabel('Prob(R_{eff})'); 

graph_title=strcat('Observed Data Patient#',int2str(j»; 

v = axis; %get axis data 

axis([O 2 v(3) v(4)]); 

end 

title(graph_title); 

%%%%%%%%%%%%%% 

'1.'1.%%%(2) 

width_vals = length(vals(i,:»; 

length_vals = length(vals(: ,2»; 

%i could store the first prior in vals so i don't have to index tau from 2 

graph_data = zeros(width_vals, 3); 

timeline = cumsum(tau(2: (end-i»); 

[blah, indx_m] = max(vals); 

graph_data(:,2) = RO(indx_m); 

for i=i:width_vals 

q = vals ( : , i) ; 

av = sum(RO.*q); 

st = sqrt(sum((RO-av) .-2.*q»; 

graph_data(i,1) 

graph_data(i,3) 

end 

av - (1.96)*st; 

av + (1.96)*st; 
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end 

end 

subplot(2,2,subplot_indx); 

subplot_indx = subplot_indx+1; 

plot (timeline , graph_data(: ,2), 'ro-', timeline, 

graph_data(: ,1), 'b-', timeline, graph_data(:, 3), 'b-'); 

%axes tight; 

if (sim_data) 

ylabel('R_{O} with 95% C.l.'); 

final str = strcat('Patient#',int2str(j),' final estimate for R_{O} '); 

else 

ylabel('R_{eff} with 95% C.l.'); 

final str = strcat('Patient#',int2str(j),' final estimate for R_{eff} '); 

end 

xlabel('time[days] '); 

fprintf('%s %f +/- %f\n',final_str, av, st); 

%print out final estimation 

9.6 MATLAB code for Estimated Parameter Distributions 

and Probability Density Functions 

function Sampling; 

%% Choose distributions for each parameter in the R_O expression 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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NUM 50000 

TO=unifrnd(SOOO,12000,NUM,1); 

%creates a uniform distribution between SOOO and 12000 

figure; [TO_freq,bins] = hist(TO,100); 

bar(bins,TO_freq/length(TO»; xlabel('Initial Uninfected Cells'); 

ylabel('Probability'); title('Probability Distribution of Initial 

Uninfected Cells'); 

beta=triangular(.00000019,.00000065,.000004S,NUM); 

%creates a triangular distribution with min=1.ge-7, peak=6.5e-7, and max=4.Se-6 

beta=beta'; figure; [beta_freq,bins] = hist(beta,100); 

bar(bins,beta_freq/length(beta»; xlabel('beta'); 

ylabel('Probability'); title('Probability Distribution of beta'); 

k=triangular(9S,S50,7100,NUM); 

%creates a triangular distribution with min=9S, peak=S50, and max=7100 

k=k'; figure; [k_freq,bins] = hist(k,100); 

bar(bins,k_freq/length(k»; xlabel('k'); ylabel('Probability'); 

title('Probability Distribution of k'); 

a=exprnd(2.56,NUM,1); 

%creates an exponential distribution with mean=2.56 
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a=l./a; figure; [a_freq,bins] = hist(1./a,1000); 

bar(bins,a_freq/length(a)); xlabel('l/a'); ylabel('Probability'); 

title('Probability Distribution of l/a'); 

s=exprnd(.33,NUM,1); 

%creates an exponential distribution with mean=.33 

s=l./s; figure; [s_freq,bins] = hist(1./s,1000); 

bar(bins,s_freq/length(s)); xlabel('l/s'); ylabel('Probability'); 

title('Probability Distribution of l/s'); 

RO=zeros(NUM,l); 

%% Calculate R_O using sets of the parameters generated above 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

for i=l:NUM 

RO(i,l)=(beta(i)*k(i)*TO(i))/(a(i)*s(i)); 

end result=[RO, TO, beta, k, a, s]; save -ASCII 

sampling_result_l.txt; x_axis=(5:10:2005); figure; 

hist(RO,x_axis); h=findobj(gca,'Type', 'patch'); set(h, 

'FaceColor' ,'m' ,'EdgeColor' ,'k') 

fprintf('data are on the following line: \n %f %f %f %f %f %f %f \n', 

min(RO) ,max(RO) ,median(RO) ,mean(RO) ,std(RO) ,sum(RO<l)/NU M,sum(RO>=l)/NUM); 

quartile floor(NUM/4); sorted RO sort(RO); 
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fprintf('First quartile(25 percent): %f\n', sorted_RO(quartile)); 

fprintf('Second quartile(50 percent): %f\n', sorted_RO(2*quartile)); 

fprintf('Third quartile(75 percent): %f\n', sorted_RO(3*quartile)); 

%This function generates random numbers from a triangular distribution 

%a=min val, b=top value and c=max value 

function t= triangular(a,b,c,N); 

x=zeros(l,N+l); m=zeros(l,N); t=zeros(l,N); s=zeros(l,N); 

p=(c-a)*(b-a); %area of min value 

q=(b-a)/(c-a); %area of top value 

r=(c-a)*(c-b); %area of max value 

x(l)=a; %initializing min value 

for i=2:N+l 

end 

y=(i-l)/N; 

if y<q 

x(i)=sqrt(y*p)+a; 

else 

x(i)=c-sqrt((l-y)*r); 

end 

for i=l:N 
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end 

u=unifrnd(O,l); 

m(i)=x(i)+u*(x(i+l)-x(i»; 

%Since the random numbers generated above are generated 

%by default in increasing order we need to permute so that they are 

%generated randomly in the given interval 

s=randperm(N); 

for i=l:N t(i)=m(s(i»; end 
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