
A theoretical framework for a three-state spatial population

model with applications

Michelle Bettelheim1, Jennifer Houle2, Fabian Librado3,

David Hiebeler2, Karen R. Rios-Soto4

1 Department of Applied Mathematics, Columbia University, New York, NY

2 Department of Mathematics and Statistics, University of Maine, Orono, ME

3 Department of Mathematics, University of Idaho, Moscow, ID

4 Department of Biological Statistics & Computational Biology, Cornell University, Ithaca, NY

Abstract

The theoretical work of this contribution is motivated by our efforts to understand

spatiotemporal dynamics of biological systems whose main features can be roughly

captured by three states. The general model is constructed and approximate sub-

models are used to help increase (eventually) our understanding of the dynamics of

three-state systems. The pair approximation method is used to construct a spatial

sub-model with nearest neighbor interaction. The spatially implicit mean-field ap-

proximation of the three-state model is also investigated to study the dynamics of the

null-model, that is the dynamics of a model without the spatial component. Dynam-

ics of our approximation are compared with a stochastic computer simulation (based

on continuous-time Poisson processes) of the full model. The reliability of the pair

approximation and the mean field model is discussed. The model is applied to the pro-

tection of crops against infestation and the spread of influenza in a closed environment

with temporary vaccination.
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1 Introduction

Recently there has been interest in spatial mathematical models in biology. Spatial models

include some degree of spatial correlation over a population while traditional mathematical

models, such as mean-field approximations, ignore these correlations. Including space in a

model allows one to include the distance over which interactions in a population take place.

Traditional models assume homogeneous mixing, while spatial models allow interactions

to take place on various scales, such as interactions between nearest neighbors. Pair

approximation models have been applied by Hiebeler [15] to study block disturbances on

a locally-dispersing population. Spatial population models have also been applied to the

study of the spread of plant disease [1, 9] and forest gap dynamics [16]. There have also

been epidemiological spatial models such as a spatial SIS model [14].

Each modeling technique has different advantages. While mean-field approximations

neglect spatial correlations they are the simplest mathematically and the equations can

be solved analytically for equilibrium points. Pair approximation models include some

spatial correlations, and therefore may produce more biologically accurate results, but the

equations are more complicated and extensive analysis may not be able to be performed.

Stochastic computer models are even more accurate because they do not neglect any

spatial correlations, but are only numerical and no analytical results can be obtained from

them.

The model presented here uses stochastic computer simulations in continuous time and

the pair approximation technique to investigate the dynamics of a three-state model with

normal, infested, and protected states. The transitions between the states can be caused by

large-scale block protection events, spatially local spread of infestation, or a site losing its

protection. This paper also examines several applications of the model including spraying

of pesticides to reduce crop infestation by Argentine ants and temporary vaccination to
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protect against the influenza virus. The general framework for the model proposed here

is applicable to situations where something contagious is spread among neighbors and

sites can be temporarily protected. The effectiveness of various spraying and vaccination

techniques is also examined.

In Section 2, an introduction to pair approximation is presented. In Section 3, the

details of the model for both the pair approximation equation and computer simulation

are discussed. In Section 4, the mean field approximation of the model is studied. In

Sections 5 and 6 applications of the general model are shown. In Section 7, results from

all three models are shown and in Section 8, conclusions from the models discussed.

2 Introduction to Pair Approximation

Pair approximation is a modeling technique which allows local spatial correlations to be

included in a mathematical population model. Pair approximation models are approxima-

tions because they assume that the only spatial correlations which exist are ones between

nearest neighbors. Often spatial correlations develop over distances greater than local dis-

tances between nearest neighbors, which makes pair approximation models most accurate

when larger scale correlations are less prevalent.

Pair approximation models contain a set of differential equations which describe con-

figurations of 2× 1 blocks (pairs) of sites. Sites of 2× 1 blocks (pairs) are considered due

to their simplicity compared to larger blocks of pairs of sites. Larger blocks, called local

structure approximations, tend to be far less tractible [11].

Pair approximation models are more accurate than the traditional spatially implicit

approach where the equations only describe single sites when models involve local spatial

interactions. Examples of spatially explicit models are infestation spreading amongst

neighboring plants, influenza spreading amongst neighboring sites in closed environments,
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the spread of rumors, or even the spread of fear and panic. Other methods such as mean

field approximation will not give as accurate results because they fail to account for spatial

characteristics.

In pair approximation models the system is described with state variables which are

probabilities of pairs of sites being in certain states. For example, P [ab] is the probability

that the first site is in state a and the second site is in state b. Pair approximation models

assume spatial symmetry, so in a model where local neighbors are considered to be the

four nearest neighbors (i. e. N, S, E, W neighbors) the probabilities P [ab], P [ba], P [ a
b ],

and P [ b
a ] would be the same. A marginal single-site probability is found by summing over

all the possible ways the first site could be in that state and the second can be in any

other state. For instance in a two-state model with states a and b, P [a] = P [aa] + P [ab].

The conditional probability that a randomly chosen neighbor of a site in state b is in

state a is given by

Q[a|b] = Qa|b =
P [ab]
P [a]

. (1)

Because pair approximation only involves correlations between neighboring sites, the

conditional probability that in three adjacent sites the last one will be in state c given the

first two are in state a and b is actually the same as the conditional probability discussed

previously, Qc|b [13]. That is,

P [∗ ∗ c|ab∗] = P [∗ ∗ c| ∗ b∗] =
P [∗bc]
P [∗b∗] =

P [bc]
P [b]

= Qc|b. (2)
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3 The Model

3.1 General Model

This three-state spatial model has the states N , S, and I. A site in the normal state is

represented by N , S a site in the sprayed or protected state, and I a site in the infested

state. These states were chosen to model the effect of protection by pesticide to mitigate

crop damage caused by insect infestation. The model discussed will be general and can

be applied to any situation involving protection to mitigate damage spread locally in a

population.

Several events can cause transitions between the states. Sites on a landscape which

are normal (N) can be infested by their local neighbor. Infested sites attempt to infest

their neighbors at rate φ. Sites which are sprayed (S) can have the protection wear off

in this case the sites become individually normal again. This transition occurs at rate µ.

The other event that can occur is that sites of any state may be protected in a block. The

protection block event causes any state (N , S, or I) to transition to state S. A site in

state S remains protected in state S if it is affected by the protection block event. Not all

states in the block are successfully protected, and c is the proportion of sites within the

protection block that successfully transition to state S. The dimensions of the protection

blocks are b1 × b2. The rate of protection blocks occuring, the rate that blocks of sites

transition to state S, is σ
c(b1×b2) . The per-site spray rate, the rate that single sites transition

to state S, is the same regardless of the block size or concentration and is σ. These rates

and parameters are summarized in Table 1.

3.2 Pair Approximation Model

To construct the pair approximation equations, the possible configurations of pairs of sites

and transitions between them were first examined. There are three states so there are nine
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Table 1: Summary of parameters
N normal site
I infested site
S sprayed site
φ rate of sites becoming infested
µ rate of protection wearing off
σ rate of sites becoming protected

b1 and b2 length and width of protection block
c probability within a block that a site will be protected

possible pairs of states. The nine probabilities of two neighbors being in certain states

are P [NN ], P [NS], P [II], P [IN ], P [IS], P [SS], P [SI], P [SN ], and P [NI]. Due to

symmetry, P [NI] = P [IN ], P [IS] = P [SI], and P [SN ] = P [NS]. P [NN ] can be written

as 1− 2P [NI]− 2P [NS]− 2P [SI]− P [II]− P [SS] because all probabilities must add up

to 1. The state variables for the model are then P [SI], P [NI],P [NS], P [II], and P [SS].

The other pair probabilities can be written in terms of these state variables.

In order to obtain the diagram used to create the pair approximation equations as

shown in Figure 1 one must check each of the state variables one at a time. The idea is to

examine which states go in and out of a given state provided the transitions are allowed

and also given that only one event can occur at a time. In order to get the system of five

differential equations, one must take the probability of each state (e.g P [NI], P [II], and

P [NS]) going into the state variable (e.g P [SI]), then multiply the probability with its

respective transitioning rate into the target state. Then, we need to subtract the product

of the probability of the current state (e.g P [SI]) and the sum of the rates transitioning

out of the state. The rate rA→B denotes the rate of transition from state A to state B.

The rate r∗a→Sa denotes the rate of transition from a pair where one site is in state ∗ and

the other is in state a to a pair where one site is in state S and the other is in state a,

here ∗ ∈ {N, I, S} and a ∈ {N, I}

6



Figure 1: The possible transitions into and out of each state variable.
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The system of five differential equations with all possible transitions are given by:

dP [SI]
dt

= P [NI]r∗a→Sa + P [II]r∗a→Sa + P [NS]rN→I (3)

− P [SI](r∗a→Sa + r∗∗→SS + rS→N ),

dP [NI]
dt

= P [NN ]rN→I + P [SI]rS→N − P [NI](r∗a→Sa + r∗a→Sa + r∗∗→SS + rN→I),

(4)

dP [II]
dt

= 2P [NI]rN→I − P [II](r∗∗→SS + 2r∗a→Sa), (5)

dP [NS]
dt

= P [SS]rS→N + P [NN ]r∗a→Sa + P [NI]r∗a→Sa (6)

− P [NS](rS→N + rN→I + r∗a→Sa + r∗∗→SS),

dP [SS]
dt

= 2P [SI](r∗a→Sa + r∗∗→SS) + 2P [NI]r∗∗→SS + 2P [NS](r∗a→Sa + r∗∗→SS) (7)

+ P [NN ]r∗∗→SS + P [II]r∗∗→SS − 2P [SS]rS→N .

In this paper, QI|N is used to describe the conditional probability that one’s neighbor

is infested given that he is normal. In order to find this conditional probability one must

divide P [NI] by P [N ], therefore

QI|N =
P [NI]
P [N ]

=
P [NI]

1− P [NI]− 2P [SI]− P [II]− P [SS]− P [NS]
. (8)

The probability that a particular neighbor of a sprayed site is also sprayed is given by β,

where

β = c

(
1− 1

2

(
1
b1

+
1
b2

))
. (9)

This is the probability that the first site is not on the edge of the block (implying that

its neighbor is also contained within the block), and that the neighbor is also successfully

affected by the spraying.
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With substitutions made for the rates:

dP [SI]
dt

= P [NI]σ(1− β) + P [II]σ(1− β) + P [NS]
3
4
φQI|N − P [SI](σ + µ), (10)

dP [NI]
dt

= P [NN ]
3
4
φQI|N + P [SI]µ− P [NI]

(
2σ(1− β) + σβ +

1
4
φ +

3
4
φQI|N

)
, (11)

dP [II]
dt

= 2P [NI]
(

1
4
φ +

3
4
φQI|N

)
− P [II]

(
σβ + 2σ(1− β)

)
(12)

dP [NS]
dt

= P [SS]µ + P [NN ]σ(1− β) + P [NI]σ(1− β)− P [NS]
(

µ +
3
4
φQI|N + σ

)
,

(13)

dP [SS]
dt

= 2P [SI]σ + 2P [NI]σβ + 2P [NS]σ + P [NN ]σβ + P [II]σβ − 2P [SS]µ. (14)

In Equation 10, 3
4 arises from 3

4φQI|N because we know that one adjacent neighbor is

protected, therefore 3 out of 4 neighbors remaining can infest the target site. Also, in

Equation 11, the 1
4φ term arises because the normal site may become infested by its

neighbor within the block which is known to be already infested. Note that the system of

five differential equations above is not in terms of the state variables since the substitution

for P [NN ] and QI|N is not done. Pair approximation is very useful when we are dealing

with spatial models. Although computer simulations generate more accurate results, one

would prefer to use pair approximation because results are generated much more quickly.

3.3 Computer Simulation

Computer simulations were designed by imlementing continuous-time Poisson processes.

Continuous-time Poisson processes have independent times between events. To simulate

such a process, the time of the next event is calculated by adding the time of the previous

event to an exponentially distributed random number with parameter one over the sum of

the rates of the possible events, where L is the lattice size, and the time of the next event
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is given by:

ti = ti−1 + rand

[
exp

(
1

φP [I] + µP [S] + L2σ
c(b1×b2)

)]
. (15)

All of the computer simulations were carried out on a lattice size of 200, meaning the

dimensions of the landscape is 200×200. A “step” in the model is defined to be L2 events.

This means that on average, each site is updated once every step. The boundaries in the

simulation are wraparound, meaning that the landscape is shaped like a torus. The sim-

ulation stops after the proportions P [N ], P [S], and P [I] have equilibrated. A proportion

was determined to be equilibrated when a linear regression was fit over the values for that

proportion over the last 100 simulation steps and the slope of the regression line was less

than 0.001. The simulation was run five times and the average values of P [N ], P [S], and

P [I] over the five runs were used for data collection.

The pseudocode for the computer simulation is as follows:

Place initial sprayed, infested, and normal sites on lattice according to

the initial proportions specified

While the simulation is not equilibrated

Calculate the probability of an infestation event

Calculate the probability of a spray (protection) event

Calculate the probability of a spray wearoff event

Calculate the time of the next event

Get next event based on probabilities of the events

If infestation event

Choose infested site
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Attempt to infest the infected site’s neighbor

If wear off event

Choose sprayed site

Change sprayed site to normal

If spray event

Choose a target site

Make a b1 x b2 or b2 x b1 sized block around the target

site where each site within the block has

probability c of being protected

Check if simulation equilibrated by doing regression

Stop if equilibrated

A screenshot of a running computer simulation is shown in Figure 2.

4 Mean-field Approximation

Mean-field approximations are different from pair approximations since mean-field ap-

proximations do not involve space. The mean-field approximation reduces to an N , S, I

model that does not involve pairs of states. Some of the variables which we used in pair

approximation b1, b2, and concentration c, do not appear in mean field approximations

because these variables only apply to the spatial component of the model. Concentration

is related to space because it tells the quantity per unit area, and area is a spatial char-

acteristic. Quantities b1 and b2 involve space because they describe the width and length

of the given blocks. Mean-field approximations allow for basic analysis due to the fact

that we can compute the equilibrium points and perform a stability analysis on them.

However, in pair approximation a computer may need to be used to solve numerically for

the equilibrium solutions and a general, analytical answer can not always be found. In the
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Figure 2: A screenshot of a running computer simulation where µ = 4, φ = 3, σ = 1,
c = 0.8, b1 = b2 = 5, and P [N ] = 0.73, P [S] = 0.19, P [I] = 0.06 at equilibration. Normal
sites are dark gray, sprayed sites are black, and infested sites are light gray.
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mean-field approximation, N , S, and I represent the proportion of normal, sprayed, and

infested sites respectively, N + S + I = 1. So dN
dt + dI

dt + dS
dt = 0 and S can be written in

terms of N and I where S = 1−N − I.

The mean-field approximation for this system is:

dN

dt
= S · rS→N + I · rI→N −N · (rN→I + rN→S), (16)

dI

dt
= N · rN→I + S · rS→I − I · rI→S − I · rI→N . (17)

The rate going from sprayed (S) to normal (N) in (16) is the rate of protection wearing

off, µ. The rate going from infested (I) to N in (16) and (17) is the rate that an infested

plant will become normal. This rate is equal to zero because an infested plant can become

normal only through being sprayed first. The rate that sites turn from N to I in (16)

and (17) is the rate of sites becoming infested, represented by φ. The rate that sites turn

from S to I in (17) is the rate that plants become infested from a sprayed site. This rate

will be equal to zero because one cannot go directly from the sprayed state to the infested

state without first going through the normal state. The rate that sites turn from I to S

in (17) is the rate of infested sites becoming sprayed or protected. The equations for (16)

and (17) are obtained by figuring out all of the states that can become normal or infested

and all the states that normal or infested can change to within one event. Equations (16)

and (17) then become:

dN

dt
= Sµ−N(φI + σ), (18)

dI

dt
= NIφ− Iσ. (19)

In equations (18) and (19), Nφ is multiplied by I because normal sites can only become
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infested by a neighboring infested site.

The equilibrium points for (18) and (19) are:

(N1, I1) =
(

µ

µ + σ
, 0

)
, (20)

(N2, I2) =
(

σ

φ
,

µ

µ + σ
− σ

φ

)
. (21)

To find the stability of (N1, I1), the eigenvalues of the Jacobian matrix of equations (18)

and (19) are obtained. The eigenvalues are:

λ1 = −(µ + φ) and (22)

λ2 =
µφ

µ + φ
− σ. (23)

An equilibrium point is locally asymptotically stable when the real part of the eigenvalues

is negative. The real part of (22) is always negative because the parameters for the

equations are always positive. The real part of (23) is negative when µφ
(µ+σ)σ < 1. So the

infestation-free equilibrium point, (N1, I1), is stable when

R0 =
µφ

(µ + σ)σ
< 1. (24)

R0 is known as the basic reproductive number. It gives the average number of new

infestations produced by a typical infested site in a collection of normal sites [10, 2]. The

same expression for R0 can be obtained using the next generation operator method [18].

In this case, R0 is given by the proportion of N sites which can be infested, µ
µ+σ , times

the average time before spraying, 1
σ , times the rate at which sites become infested, φ.

Theorem 1. If R0 < 1 then the infestation-free equilibrium (N1, I1) is locally asymptoti-

cally stable. If R0 > 1 then the infestation-free equilibrium is unstable [3].
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If the infestation-free equilibrium point is unstable then the endemic equilibrium (N2, I2)

is born and is locally asymptotically stable.

5 Applications

5.1 Crop Protection

One application of a three state model with normal, infested, and protected states is the

protection of agricultural crops such as citrus groves and vineyards from damage due to

Argentine ants. The Argentine ant lives in warm, moist climates such as California and the

southeastern United States and is an invasive species originally from Argentina. Argentine

ants are usually associated with outbreaks of mealybugs and aphids which cause damage

to agricultural crops.

The Argentine ant collects honeydew which is secreted by the aphids as its principal

food source. In return the Argentine ant protects the aphids and mealybugs from natural

predators and parasites. It is the aphids and mealybugs, not the Argentine ant, that

actually attack the plant. In order to help the agricultural economy by reducing crop

damage by the aphids and mealybugs it is highly desirable to protect crops from the

Argentine ant. The most common agricultural practice is to spray barrier pesticide on the

crops which repel the Argentine ant. Eliminating or sharply reducing the population of

Argentine ants will greatly lower the population of aphids and mealybugs which will lower

the amount of crop damage [7].

In a mathematical model, the damage to the crops caused by the presence of the

Argentine ant can be studied by considering the possible states of the crop only without

directly considering the ants, aphids, or mealybugs. The state of an individual plant

could be normal (no ant infestation or protection from pesticide), sprayed (protected by

pesticide), or infested (with ants). The events that can cause a change of state are spraying
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of pesticide, the protection from the pesticide wearing off, and the spread of the infestation.

5.2 Influenza

Influenza is a respiratory infection which produces symptoms such as fever, sore throat,

muscle pains, severe headache, cough, along with general feelings of weakness and fatigue.

Influenza rapidly spreads from person to person and is spread by droplets from the nose

or throat of an infected person to another nearby person [8]. If influenza spreads in a

closed environment such as a classroom in an elementary school, bunk beds in boarding

school, or office space then it can be spread locally unlike in a global environment which

will allow the flu to jump to a distant neightbor because infected people could travel

far distances. The influenza vaccine provides immunity against a virus strain or “closely”

related virus strains contained in the vaccine. With influenza the pair approximation states

become susceptible, infected, and vaccinated/recovered. The possible transitions between

the states include a person becoming infected with influenza, a person recovering, people

being vaccinated, and people becoming susceptible to another strain of influenza.

A person who is susceptible is neither sick nor vaccinated or recovered. A susceptible

person can become infected by a neighboring person who is infected. People would also

be able to become vaccinated from any state, but they may transition out of the vacci-

nated/recovered class by becoming susceptible to other strains of influenza. If a person is

infected they may recover and move to the vaccinated/recovered class meaning that they

will not immediately be susceptible to the same strain of influenza. In this model the

effect of cross-immunity is not taken into account.
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6 Three-state Model for Influenza

6.1 Pair Approximation Model

The influenza model is very similar to the original pair approximation model. In the in-

fluenza model, S represents the susceptible state, N in the original model, the infested

state I becomes the infected state I, and the sprayed state S becomes the vaccinated/re-

covered state V in the influenza model.

There is also one additional rate not found in the original model, ρ. It is the rate

of individuals recovering from influenza, the rate of transition from state I to state V .

Vaccinations (protection events) still occur in blocks which can cause transitions from

any state (S, I) to state V . In the influenza model, β has the same meaning as in the

original model. The difference is that the β here is equal to the old β times the probability

that a site that became vaccinated was vaccinated as part of a block and did not recover

individually, that is

β = c

(
1− 1

2

(
1
b1

+
1
b2

))(
σ

σ + ρ

)
. (25)

All other parameters and rates have the same meaning and describe the same transitions

as in the original model.

The differential equations which describe the pair approximation model for influenza
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are:

dP [V I]
dt

= P [SI]σ(1− β) + P [II] (σ(1− β) + ρ) + P [SV ]
3
4
φQI|S − P [V I](σ + µ) (26)

dP [SI]
dt

= P [SS]
3
4
φQI|S + P [V I]µ− P [SI]

(
2σ(1− β) + σβ +

1
4
φ +

3
4
φQI|S + ρ

)

(27)

dP [II]
dt

= 2P [SI]
(

φ

4
+

3
4
φQI|S

)
− P [II] (σβ + 2σ(1− β) + ρ) (28)

dP [SV ]
dt

= P [V V ]µ + P [SS]σ(1− β) + P [SI](σ(1− β) + ρ)− P [SV ]
(

µ +
3
4
φQI|S + σ

)

(29)

dP [V V ]
dt

= 2P [V I](σ + ρ) + 2P [SI]σβ + 2P [SV ]σ + P [SS]σβ + P [II]σβ − 2P [V V ]µ

(30)

6.2 Mean-field Approximation

The mean-field approximation of the influenza model is very similar to the mean-field

approximation of the original model presented in equations (18) and (19). Replacing N ,

S, and I with S, I, and V and adding in the rate ρ for individual transitions from state

I to state N the mean-field approximations become:

dS

dt
= V µ− S(φI + σ), (31)

dI

dt
= SIφ− I(σ + ρ). (32)

As before, V = 1 − S − I. These equations are exactly the same as the mean-field

equations (18 and 19), except that equation (32) contains an I(σ + ρ) rather than an Iσ.

This is because a site that is infected can become vaccinated/recovered by either being

vaccinated as part of a block at rate σ or recover individually at rate ρ.
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The equilibrium solutions for (31) and (32) are as follows:

(S1, I1) =
(

µ

µ + σ
, 0

)
, (33)

(S2, I2) =
(

σ + ρ

φ
,

1
σ + ρ + µ

[
1− σ + ρ

φ
− σ(σ + ρ)

φ

])
. (34)

To find the stability of (S1, I1), the eigenvalues of the Jacobian matrix of equations

(31) and (32) are obtained. The eigenvalues are:

λ1 = −(µ + φ) and (35)

λ2 =
µφ

µ + φ
− (σ + ρ). (36)

An equilibrium point is locally asymptotically stable when the real parts of the eigen-

values are negative. The real part of (35) is always negative because the parameters for

the equations are always positive. The real part of (36) is negative when φµ
(µ+φ)(σ+ρ) < 1.

So the infection-free equilibrium point, (S1, I1), is stable when

R0 =
φµ

(µ + σ)(σ + ρ)
< 1. (37)

In this case R0 is given by the proportion of susceptible individuals which can be infected,

µ
µ+σ , times the average time before vaccination or recovery, 1

σ+ρ , times the rate at which

individuals become infected, φ. The same result for the condition of stability for (S1, I1)

can be obtained using the next generation operator method.

Theorem 2. If R0 < 1 then the infection-free equilibrium (S1, I1) is locally asymptotically

stable. If R0 > 1 then the infection-free equilibrium is unstable.

If the infection-free equilibrium point is unstable then the endemic equilibrium (S2, I2) is
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born and is locally asymptotically stable.

6.3 Parameters

Estimated values for the individual recovery rate ρ and infection rate φ from the 2002-2003

influenza season in the US were used [6]. These values are ρ = 1.224 and φ = 9.99. The

parameter c was taken to be the proportion of individuals who receive the flu vaccine. The

CDC estimates the percentage of individuals who receive a flu vaccine for various categories

including at-risk adults, in this case, the elderly, and children, and these percentages vary

widely depending on the category [5]. A concentration of c = 0.80 was chosen, meaning

that 80% of the population received the vaccine. The vaccination rate, was taken to be

the rate at which blocks of the population are vaccinated.

An influenza vaccine doesn’t wear off over time, but instead in a multiple strain model

of influenza like the one considered here the vaccine only protects against a particular strain

of influenza. Influenza vaccines are only effective against antigenically similar strains of

the virus, and in influenza seasons where antigenically different strains of the virus are

prevalent, an influenza vaccine can have a low efficacy rate [17, 4]. The rate of transition

from state V to state S, µ, was related to the vaccine efficacy rate. A lower µ qualitatively

corresponds to a higher vaccine efficacy rate, and a higher µ corresponds to a lower vaccine

efficacy rate. For instance, in an influenza season with several antigenically different strains

of the virus and a vaccine which only protects against one strain, µ would be relatively

high.
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Figure 3: Original model: Varying concentration and block size for pair approximation
and computer simulations. µ = 4, φ = 3, σ = 1.

7 Results

7.1 Crop Protection Model

The equilibrium solutions for pair approximation were numerically found using MATLAB.

The source code can be found in Appendix A. The stochastic simulation code for MATLAB

can be found in Appendix B. There is an alternative source code for the stochastic

computer simulation written in C which runs much more quickly.
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Figure 4: Original model: Varying concentration as a function of block size where k = 8
and c = k

b1×b2
. µ = 4, φ = 3, σ = 1, square n× n blocks were used.

Figure 3 shows that as the concentration c increases, the proportions of N increase a

lot faster in the computer simulation than the proportions of N for the pair approximation.

The same is true for I, for simulation it decreases very fast compared to the proportion

of I for the pair approximation. This shows that as concentration increases the pair

approximation can not predict what’s happening with proportions of N, I.

Figure 4 shows how k number of sites are affected regardless of block size:
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k = c ∗ (b1 × b2) = 8 (38)

c =
k

b1 × b2
(39)

while keeping k constant and allowing c and b1 × b2 to change. The figure shows that

at small block size the porportions of N is higher and as the block size are larger that

proportions of N levels off for the stochastic simulations. For the pair approximation the

leveling off occurs at small block size and stays the same as the block size is increasing.

Figure 5 shows proportions of P [N ], P [S], and P [I] for the pair approximation, stochas-

tic simulation, and the mean-field approximation. This graph shows that the mean-field

approximation does not accurately reflect the qualitative dynamics of the system. Re-

calling that mean-field does not take into account the spatial characteristic of our model,

therefore we can see from the pair approximation that spatial correlation is very strong

for our model.

One can also see that the pair approximation does not reflect what the stochastic

simulation is showing as the spraying block sizes are increasing. Pair approximation was

considered because it is a very fast and easy way to approximate the solution to our

model at small block sizes. It is easy since MATLAB can numerically solve the system of

differential equations to approximate the solution.

For the stochastic simulation Figure 6 shows that as µ increases then the proportion

of P [I] also increases. The proportion of P [I] for the pair approximation differs from the

computer simulation because the pair approximation values for P [I] starts decreasing at

some value of µ, may be due to the overestimation of P[I] for smaller µ. From this figure,

the pair approximation can approximate the solution very well for this model around

µ = 6. Pair approximation is faster than computer simulation, although it does not
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spray blocks.
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varying µ.
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Figure 7: Original model: Comparison of pair approximation and computer simulations
varying c with µ(c) = r

log(c)−log(x∗) where r = 10, x∗ = 0.05.

always accurately approximate the computer simulation results.

The rate µ in Figure 7 was chosen to be an inverse logarithmic decaying function of c

to mimic how pesticide effectiveness decreases over time. Pesticide loses its effectiveness

gradually over a period of time, so to capture this once the pesticide level decreased

below the threshold x∗ the pesticide was said to be ineffective. The dependence of µ on

an inverse logarithmic decaying function says that if the pesticide is sprayed at a higher

concentration, it will take longer for the pesticide to lose its effectiveness.

Figure 7 shows the results of changing mu as a function of c where
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Figure 8: Influenza model: Comparison of pair approximation and computer simulations
varying σ. φ = 9.99, µ = 15, b1 × b2 = 3× 3, c = 0.8, and ρ = 1.224

µ(c) =
r

log(c)− log(x∗)
. (40)

Letting µ be a function of c, then one can see that as c is increasing the pair approxi-

mation and stochastic simulation agree very closely in their approximation.
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Figure 9: Influenza model: Comparison of pair approximation and computer simulations
varying µ. φ = 9.99, σ = 1, b1 × b2 = 3× 3, c = 0.8, and ρ = 1.224

7.2 Influenza Model

Figure 8 shows that the vaccinated (V ) proportion agrees very well for the pair approx-

imation and stochastic simulation. But, for infected (I) there’s definitely a gap between

the pair and stochastic, but both still follow a general trend of decreasing and reaching

zero. Also, notice that pair approximation over estimates the amount I compared to the

stochastic simulation.

In Figure 9, the pair approximation does approximate it as accurately as the stochastic
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simulation. Varying µ shows that the amount of V agrees for pair and stochastic method.

For the amount of I, the pair approximation over estimates compared to the stochastic.

It also shows that amount of susceptibles (S) are going to level off for both the pair

approximation and stochastic simulation.

8 Discussion

There have been several studies thus far dealing with pair approximations. The model

examined in this paper is different because we have three states with only a proportion

of sites within a given block are protected. For applications to our three state model,

we used Argentine ants infesting crops and influenza spreading among neighbors in a

closed environment. It is beneficial to use pair approximation over traditional models,

such as mean-field approximation, because mean-field approximation fails to account for

spatial characteristics which are of great importance in the model studied in this paper.

Although pair approximation is not accurate for large block sizes, it is desirable to use

pair approximation because it is much faster to obtain results than in using stochastic

simulation. The pair approximation results in this paper would have been improved if

more detailed spatial correlations were included beyond the ones stated in this paper,

such as larger block (i.e. 2× 2 or 4× 1) local structure approximations.

Several biological conclusions can be drawn from this model. In the original model

applied to crop protection, the most effective technique to control infestation is to spray

high concentrations of pesticide over large areas. However, this would be rarely possible

due to limitations on resources. If constraints on resources exist, it is more effective to

spray in smaller blocks at a high pesticide concentration rather than larger blocks at a

lower pesticide concentation even if the same number if sites on average are sprayed. Also,

longer-lasting pesticides are most effective. In the influenza model, a higher vaccination
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rate leads to a lower proportion of people infected. If there are many antigenically different

influenza strains prevalent which the vaccine does not protect against, then the proprotion

of infected people increases. An effective influenza vaccine given to many susceptible people

is an effective strategy to control influenza.
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A Numerical Integration Source Code

% lan t s .m

% numerical i n t e g r a t e s the pa i r approximation equa t i ons f o r a g iven s e t o f

% parameters

% order o f parameters : x 1 i x 2 i x 3 i x 4 i x 5 i t f ph i mu sigma b i b2 c

function l a n t s (d , e , f , g , h , t f , phi ,mu, sigma , b1 , b2 , c )

t0=0; %i n t i a l t ime

tspan=[ t0 t f ] ; %time span

x0=[d ; e ; f ; g ; h ] ; %i n t i a l condt ions f o r d i f f . eqs .

beta=c ∗(1−0.5∗(1/b1 + 1/b2 ) ) ;

[ t , x]=ode45 (@ants , tspan , x0 , [ ] , phi ,mu, sigma , b1 , b2 , c , beta ) ; %so l u t i o n output

x 1=x ( : , 1 ) ;

x 2=x ( : , 2 ) ;

x 3=x ( : , 3 ) ;

x 4=x ( : , 4 ) ;

x 5=x ( : , 5 ) ;

pn=1−x 4 −2.∗x 3−x 2−x 1−x 5 ;

ps=x 1+x 3+x 5 ;

po i=1−ps−pn ;

hold on

plot ( t , pn , ’b− ’ ) ;

plot ( t , ps , ’ r− ’ ) ;

plot ( t , poi , ’ g− ’ ) ;

xlabel ( ’ time ’ ) ;
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ylabel ( ’ P robab i l i t y ’ ) ;

legend ( ’ t vs . P [N] ’ , ’ t vs . P [ S ] ’ , ’ t vs . P [ I ] ’ ) ;

t i t l e ( ’Change o f Probab i l i t y over Time ’ ) ;

P N=pn( t f ) %re turns P[N] , P[ S ] , and P[ I ] a t e q u i l i b r a t i o n

P S=ps ( t f )

P I=poi ( t f )

% end o f l a n t s .m

% ants .m

% conta ins pa i r approximation equa t i ons c a l l e d by l a n t s .m func t i on

function dx=ants ( t , x , phi ,mu, sigma , b1 , b2 , c , beta )

dx = zeros ( 5 , 1 ) ;

%x (1)=P[ SS ]

%x (2)=P[ I I ]

%x (3)=P[ SI ]

%x (4)=P[NI ]

%x (5)=P[NS]

%%Five Equat ions%%

dx (1) = 2 .∗ x (3 ) ∗ sigma + 2 .∗ x (4 ) ∗ sigma∗beta + 2.∗ x (5 ) ∗ sigma + x (2) ∗ sigma∗beta

+ (1 − 2 .∗ x (4 ) − 2 .∗ x (5 ) − 2 .∗ x (3 ) − x (2 ) − x (1 ) ) ∗ sigma∗beta − 2 .∗ x (1 ) ∗
mu ;

dx (2 ) = 2 .∗ x (4 ) ∗ ( ( phi /4) + (3/4) ∗phi ∗x (4 ) / (1 − x (4 ) − 2 .∗ x (3 ) − x (2 ) − x

(1 ) − x (5 ) ) ) − x (2 ) ∗( sigma∗beta + 2∗ sigma∗(1−beta ) ) ;

dx (3 ) = x (4) ∗ sigma∗(1−beta ) − x (3 ) ∗( sigma+mu) + x (2) ∗ sigma∗(1−beta ) + x (5)

∗ (3/4) ∗phi ∗( x (4 ) / (1 − x (4 ) − 2 .∗ x (3 ) − x (2 ) − x (1 ) − x (5 ) ) ) ;

dx (4 ) = (1 − 2 .∗ x (4 ) − 2 .∗ x (5 ) − 2 .∗ x (3 ) − x (2 ) − x (1 ) ) ∗ (3/4) ∗phi ∗( x (4 ) / (1

− x (4 ) − 2 .∗ x (3 ) − x (2 ) − x (1 ) − x (5 ) ) ) + x (3) ∗mu − x (4 ) ∗(2∗ sigma∗(1−
beta ) + sigma∗beta + ( phi /4) + (3/4) ∗phi ∗( x (4 ) /(1 − x (4 ) − 2 .∗ x (3 ) − x (2 )

−x (1 ) − x (5 ) ) ) ) ;
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dx (5) = x (1) ∗mu + (1 − 2 .∗ x (4 ) − 2 .∗ x (5 ) − 2 .∗ x (3 ) − x (2 ) − x (1 ) ) ∗ sigma∗(1−
beta ) + x (4) ∗ sigma∗(1−beta ) − x (5 ) ∗(mu + sigma + (3/4) ∗phi ∗( x (4 ) /(1 − x

(4 ) − 2 .∗ x (3 ) − x (2 ) − x (1 ) − x (5 ) ) ) ) ;

%%Five Equat ions%%
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B Computer Simulation Source Code

% antsim .m

% order o f parameters : ph i mu x sigma b1 b2 c in in i n i s d i s p l a y e v e r y

g raph i c s (0 =

% graph i c s )

% 0=normal , 1=sprayed , 2=i n f e s t e d

function [ time , p op l i s t ]=antsim ( phi ,mu, x , sigma , b1 , b2 , c , in in , i n i s ,

d i sp l ay eve ry , g raph i c s )

s t e p s i z e =1000; % for r e g r e s s i on to c a l c u l a t e e q u i l b r a t i o n o f s imu la t i on

wait t ime=x ˆ2 ;

r eg r da ta1=zeros (1 ,100) ;

r eg r da ta2=zeros (1 ,100) ;

r eg r da ta3=zeros (1 ,100) ;

r e g r t ime =1 :1 :100 ;

p o p l i s t=zeros (3 ,1000000) ; % l i s t wi th P[N] , P[ S ] , and P[ I ] over time

Lat t i c e=zeros (x , x ) ;

popn=f loor ( i n i n ∗xˆ2) ; % i n i t i a l normal , sprayed , and i n f e s t e d d e n s i t i e s

pops=f loor ( i n i s ∗xˆ2) ;

popi=xˆ2−popn−pops ;

cpopi =0; % cumulat ive i n f e s t e d and sprayed

cpops=0;

i n f e s t e d c o o r=zeros ( x ˆ2 ,2) ; % l i s t o f i n f e s t e d and sprayed s i t e s

sprayed coor=zeros ( x ˆ2 ,2) ;
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while cpopi<popi % place i n f e s t e d s i t e s on l a t t i c e and save in i n f e s t e d s i t e

l i s t

r=unidrnd (xˆ2) ;

i f ( La t t i c e ( r )==0)

cpopi=cpopi +1;

La t t i c e ( r ) =2;

[ i , j ]= ind2sub ( s ize ( La t t i c e ) , r ) ;

i n f e s t e d c o o r ( cpopi , 1 )=j ;

i n f e s t e d c o o r ( cpopi , 2 )=i ;

end

end

while cpops<pops % place sprayed s i t e s on l a t t i c e and save in sprayed s i t e

l i s t

r=unidrnd (xˆ2) ;

i f ( La t t i c e ( r )==0)

cpops=cpops+1;

La t t i c e ( r ) =1;

[ i , j ]= ind2sub ( s ize ( La t t i c e ) , r ) ;

sprayed coor ( cpops , 1 )=j ;

sprayed coor ( cpops , 2 )=i ;

end

end

pop l i s t ( 1 , 1 )=(xˆ2−cpopi−cpops ) /x ˆ2 ;

p o p l i s t ( 2 , 1 )=cpops/x ˆ2 ;

p o p l i s t ( 3 , 1 )=cpopi /x ˆ2 ;

time (1 ) =0;

ne ighbor =[0 , −1 ;0 , 1 ; −1 ,0 ; 1 , 0 ; ] ; % n , e , s ,w, ne ighbor s h i f t s

i =0;
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modi=0;

while (1 )

i=i +1;

i f (mod( i , s t e p s i z e )==0)

modi = modi + 1 ;

end

i n f e s t p r ob=phi ∗ cpopi /( phi ∗ cpopi+mu∗ cpops+xˆ2∗ sigma /( c∗b1∗b2 ) ) ; %

p r o b a b i l i t y o f i n f e s t a t i o n event

wearo f f = mu∗ cpops /( phi ∗ cpopi+mu∗ cpops+xˆ2∗ sigma /( c∗b1∗b2 ) ) ; %

p r o b a b i l i t y o f p r o t e c t i on wearing o f f event

time ( i +1)=time ( i )+exprnd (1/( phi ∗ cpopi+mu∗ cpops+xˆ2∗ sigma /( c∗b1∗b2 ) ) ) ; %

time o f next event

rnum=rand ;

i f (rnum<i n f e s t p r ob ) % in f e s t a t i o n event

t a r g e t=unidrnd ( cpopi ) ;

t a rge tx=i n f e s t e d c o o r ( target , 1 ) ;

t a rge ty=i n f e s t e d c o o r ( target , 2 ) ;

i f ( La t t i c e ( targety , ta rge tx ) ˜=2)

error ( ’ impos s ib l e e r r o r #i n f e s t a t i o n event ! ’ ) ;

end

rne ighbor=unidrnd (4 ) ;

rne ighborx=targe tx+neighbor ( rneighbor , 1 ) ; % Choose a ne ighbor

rne ighbory=targe ty+neighbor ( rneighbor , 2 ) ;

newx=mod( rneighborx−1+x , x )+1; % wraparound boundar ies

newy=mod( rneighbory−1+x , x )+1;

i f ( La t t i c e (newy , newx)==0) % i f normal s i t e , i n f e s t i t

Lat t i c e (newy , newx)=2;

cpopi=cpopi +1;

i n f e s t e d c o o r ( cpopi , 1 )=newx ;

i n f e s t e d c o o r ( cpopi , 2 )=newy ;

end

e l s e i f (rnum<(wearo f f+i n f e s t p r ob ) ) % pro t e c t i on wearing o f f event
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t a r g e t=unidrnd ( cpops ) ;

t a rge tx=sprayed coor ( target , 1 ) ;

t a rge ty=sprayed coor ( target , 2 ) ;

i f ( La t t i c e ( targety , ta rge tx ) ˜=1)

error ( ’ impos s ib l e e r r o r #wear o f f event ! ’ ) ;

end

Lat t i c e ( targety , ta rge tx )=0;

sprayed coor ( target , 1 )=sprayed coor ( cpops , 1 ) ;

sprayed coor ( target , 2 )=sprayed coor ( cpops , 2 ) ;

cpops=cpops−1;

else % spray event

t a r g e t=unidrnd (xˆ2) ;

[ targety , ta rge tx ]= ind2sub ( s ize ( La t t i c e ) , t a r g e t ) ;

i f (rand<0.5)

newb1=b2 ;

newb2=b1 ;

else

newb1=b1 ;

newb2=b2 ;

end

for k=1:newb1

for m=1:newb2

i f (rand<c )

newx=mod( targetx−1+x+k , x )+1; % wraparound boundar ies

newy=mod( targety−1+x+m, x )+1;

i f ( La t t i c e (newy , newx)==0) % i f normal
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Lat t i c e (newy , newx)=1;

cpops=cpops+1;

sprayed coor ( cpops , 1 )=newx ;

sprayed coor ( cpops , 2 )=newy ;

e l s e i f ( La t t i c e (newy , newx)==2) % i f i n f e s t e d

Lat t i c e (newy , newx)=1;

cpops=cpops+1;

sprayed coor ( cpops , 1 )=newx ;

sprayed coor ( cpops , 2 )=newy ;

global t a rg e t2

for ( i i =1: cpopi )

i f ( i n f e s t e d c o o r ( i i , 1 )==newx & i n f e s t e d c o o r ( i i , 2 )==

newy)

ta rge t2 = i i ;

end

end

i n f e s t e d c o o r ( target2 , 1 )=i n f e s t e d c o o r ( cpopi , 1 ) ;

i n f e s t e d c o o r ( target2 , 2 )=i n f e s t e d c o o r ( cpopi , 2 ) ;

cpopi=cpopi −1;

end

end

end

end

end

i f ( g raph i c s==0)
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colormap ( [ 0 0 0 ;1 0 1 ;1 1 0 ] ) ; % black−normal magenta−sprayed ye l low−
i n f e s t e d

end

i f ( (mod( i , d i s p l ay ev e r y )==0) & ( graph i c s == 0) )

image( La t t i c e +1) ;drawnow ; % draws s imu la t i on g raph i c s

end

i f (mod( i , s t e p s i z e )==0)

p op l i s t (1 , modi+1)=(xˆ2 − cpopi − cpops ) /x ˆ2 ;

p o p l i s t (2 , modi+1)=cpops/x ˆ2 ;

p o p l i s t (3 , modi+1)=cpopi /x ˆ2 ;

end

i f ( i > wait t ime )

i f (mod( i , s t e p s i z e )==0)

r eg r da ta1=c i r c s h i f t ( regr data1 , [ 0 −1]) ;

r eg r da ta1 (100)=pop l i s t (1 , modi+1) ;

poly1=polyf it ( regr t ime , regr data1 , 1 ) ;

r eg r da ta2=c i r c s h i f t ( regr data2 , [ 0 −1]) ;

r eg r da ta2 (100)=pop l i s t (2 , modi+1) ;

poly2=polyf it ( regr t ime , regr data2 , 1 ) ;

r eg r da ta3=c i r c s h i f t ( regr data3 , [ 0 −1]) ;

r eg r da ta3 (100)=pop l i s t (3 , modi+1) ;

poly3=polyf it ( regr t ime , regr data3 , 1 ) ;

i f ( (abs ( poly1 (1 ) ) <= 0 . 1 ) & ( i >= wait t ime + 100∗ s t e p s i z e )

& (abs ( poly2 (1 ) ) <= 0 . 1 ) & (abs ( poly3 (1 ) ) <= 0 . 1 ) )

break ; % e q u i l i b r a t i o n

end

end
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end

end

i f ( g raph i c s == 0)

image ( La t t i c e + 1) ; drawnow ;

end

figure ;

% p l o t the time s e r i e s

hold on

grid on

plot ( time ( 1 : modi ) , p o p l i s t ( 1 , 1 : modi ) , ’ g− ’ ) ; % normal s i t e s

plot ( time ( 1 : modi ) , p o p l i s t ( 2 , 1 : modi ) , ’ r− ’ ) ; % sprayed s i t e s

plot ( time ( 1 : modi ) , p o p l i s t ( 3 , 1 : modi ) , ’b− ’ ) ; % in f e s t e d s i t e s

legend ( ’ t vs . P [N] ’ , ’ t vs . P [ S ] ’ , ’ t vs . P [ I ] ’ ) ;

P N=pop l i s t (1 , modi ) % output P[N] , P[ S ] , and P[ I ]

P S=pop l i s t (2 , modi )

P I=pop l i s t (3 , modi )
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