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Abstract

Progression from infection with the Human Immunodeficiency Virus (HIV) to AIDS is a complex
process that remains poorly understood. While mathematical models representing the ongoing battle
between HIV and the immune system have been successful, they remain focused on cellular, as
opposed to humoral, immunity. This situation remains in spite of the fact that recent evidence
has shown the mediators of humoral immunity, the B cells, to represent a significant factor in the
progression to AIDS. We propose here a mathematical model of HIV infection, which, in addition
to B cells, includes a population of so-called ”dysfunctional B cells.” These cells are improperly
activated by HIV and contribute towards the progression to AIDS as they waste valuable immune
resources and promote autoimmunity, which often accompanies HIV infection. By including more
relevant aspects of the immune system into our model, we intend to suggest useful experiments as
well as gain a more comprehensive picture of HIV infection.

1 Introduction

Primary infection with the Human Immunodeficiency Virus (HIV) is characterized by a rapid decrease
in the number of CD4+ lymphocytes, otherwise known as T helper cells. These cells are responsible for
a wide range of functions regulating the responses of other cells in the immune system. The immune
system reacts to the initial, or primary, HIV infection by using both CD8+ cytotoxic T lymphocytes and
antibodies produced by B cells to eliminate most of the virus and restore CD4+ numbers in the blood.
However, the CD4+ lymphocytes never fully recover and the ensuing chronic infection involves a gradual
decrease in CD4+ numbers, culminating in a diagnosis of acquired immune deficiency syndrome (AIDS).
Without treatment, AIDS invariably results in opportunistic infections and death.

It is less well known that the B cells of patients with primary HIV infection are also decreased in
number and show a number of phenotypic and functional changes, most of which continue throughout
chronic infection [1, 2]. A number of these changes occur even before CD4+ numbers begin to decrease
[2, 3]. They include abnormal regulation of activation and differentiation as well as an impaired response
to vaccinations with T cell-dependent and T cell-independent antigens [1, 4, 5]. This and other evidence
suggests the possibility that HIV may act directly on B cells, contributing to disease progression [6].

We propose here a mathematical model simulating the relationship between HIV and the humoral
immune system during HIV infection, the aim of which is to provide a system of equations that would
suggest experiments based on the assumptions and predictions of the model. The model is unique in
that it considers the dynamic between free virus, T cells, and B cells when one assumes HIV acts on
immature B cells resulting in a dysfunctional B cell. Recent evidence suggests such a population of cells
exists and is responsible for the majority of the B cell dysfunctions in HIV infection [4, 5]. By introducing
the dysfunctional B cell, the model aims to provide evidence supporting a more complex view of the
causes behind the progression to AIDS. If the mechanism(s) responsible for such effects upon B cells
were discovered, new directions towards the treatment of HIV might be possible.

Observations focused on a hormone called B cell activation factor (BAFF) in part inspired the creation
of our model. BAFF is a crucial survival factor for many B cells in the body and was found in HIV patients
in levels nearly double that of healthy controls [7]. The excess BAFF could be partially responsible for
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the fact that two of the main B cell dysfunctions in HIV infection are autoantibody production and
hypergammaglobulemia, an excess of antibodies in the blood [8]. Most of the evidence used in the model
relating B cell dysfunctions to BAFF comes from the groups of Moir et al. and De Milito textslet
al.. Collectively, these researchers have provided evidence that during HIV infection, B cells display an
increased turnover rate, decreased binding to BAFF, and a 4 fold increased rate of antibody secretion
[4, 9].

2 The Presentation of the Model

In oder to illustrate this unusual phenomenon, we will examine the interaction between eleven variables:
antigen presenting cells, infected cells, heathy T cells, CD+8 cells,T2 B cells, virus, plasma B cells, B
memory cells, dysfunctional B cells, BAFF levels, and antibodies. Here in Figure 1, we introduce a flow
diagram between the virus and the immune response .
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Figure 1: The flow diagram of the HIV model.

From the flow chart, we were able to derive the following system of differential equations:
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İ = r1AcV + r2V T − d1I − c2BpV − γ1IC

1 + I
(1)

Ȧc = Λ1 + g1(V ) − r1AcV − d2Ac (2)

Ṫ = Λ2 + g2(V ) − r2V T − d3T (3)

Ċ =
γ1IC

1 + I
+ G − α1CI − d4C (4)

Ḃ2 = γ2BF − r3B2Ac − r4B2V − d5B2 (5)

V̇ = n1r1AcV + n2r2V T − r5BP V − d6V (6)

ḂP = ρr3B2AC − d7BP + α2Bm (7)

Ḃm = (1 − ρ)r3B2AC − d8Bm (8)

ḂD = r4B2V − d10BD (9)

ḂF = Λ3 + γ3Ac − d9BF (10)

ȦB = α3BD + α4BP − d11AB (11)

All variables and parameters of the system of differential equations are stated in Table 1 and Table 2.
The explanation of these equations follows:

Table 1.Variables for HIV-1 model.

Variable Definition
Ac activated antigen presenting cells
C CTL
T activated helper T-cells
V virus
B2 T2 B cells
I infected cells (infected activated antigen presenting cells and activated helper T-cells)

BF BAFF
BP plasma cells
Bm memory cells
BD dysfunctional cells
AB antibodies
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Table 2. Conditions and parameter values for HIV-1 model.

Variable Definition Value Units References
r1 rate at which Ac become infected by virus 8.0 x 10−12 /day-virion Bajaria (2003) [10]

r2 rate at which T become infected by virus 8.0 x 10−12 /day-virion Stafford (2000) [11]

r3 rate of B2 cells becoming plasma B and memory B cells 0.06 /day estimated

r4 rate of B2 cells becoming dysfunctional B cells No better data

r5 rate of which antibodies from plasma B cells clears virus No better data

d1 death rate of I 0.50 /day Stafford (2000) [11]

d2 death rate of Ac 0.2 /day Stafford (2000) [11]

d3 death rate of T 0.2 /day Stafford (2000) [11]

d4 death rate of CTL 0.015 /day

d5 death rate of B2 0.1 /day Na (2005) [12]

d6 constant clearance rate of virus 4 /day Perelson (1996) [13]

d7 death rate of plasma B cells 0.08 /day De Milito (2004) [9]

d8 death rate of memory B cells 0.003 /day estimated

d9 death rate of dysfunctional B cells 0.26 /day Na (2005) [12]

d10 clearance rate of BAFF 0.5 /day estimated

d11 clearance rate of antibodies 0.18 /day Na (2005) [12]

c2 the rate at which antibodies from BP kills infected cells 4 x 10−12 /day-B plasma cell estimated

g1(V ) function describing AC increase due to virus unknown

g2(V ) function describing T increase due to virus unknown

n1 rate of virus production by infected Ac 500 /day-infected cell Bajaria (2003) [10]

n2 rate of virus production by infected T 500 /day-infected cell Bajaria (2003) [10]

α1 the rate at which CTL kills infected cells No better data

α2 rate of plasma B increase due to division from memory B cells No better data

α3 rate of antibody production by dysfunctional B cells 114 ng/mL/day De Milito (2004) [9]

α4 rate of antibody production by plasma B cells 14 ng/mL/day De Milito (2004) [9]

Λ1 constant rate of Ac production 0.004 /day Stafford (2000) [11]

Λ2 constant rate of T production 0.004 /day Stafford (2000) [11]

Λ3 constant BAFF production 0.5 /day estimated

γ1 rate of CTL increase due to infected cells No better data

γ2 rate of B2 cells surviving due to BAFF 4000 /mL/day Na (2005) [12]

γ3 BAFF production rate from Ac No better data

ρ proportion of r3 that is plasma B cells No better data
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İ = r1AcV + r2V T − d1I − c2BpV − γ1IC

1 + I

Infected cells – Our model considers all antigen presenting cells and helper T cells viable for infection.
Some infected cells are killed via the mechanism of antibody dependent cellular cytotoxicity (ADCC).
However, this rate is dependent on the number of plasma B cells and not the total antibody levels because
the dysfunctional B cells are known to produce unspecific antibodies. There is also infected cell death
due to the presence of CD8+ killer cells at a ratio dependent rate.

Ȧc = Λ1 + g1(V ) − r1AcV − d2Ac

Antigen Presenting cells – Some APCs are always present in the bloodstream and are responsible for
cleaning up debris and introducing antigens to the immune system. APCs in our model are considered
to be monocytes, macrophages, and dendritic cells all capable of being infected. Their numbers are
increased as a function of virus levels. APCs are the primary cells responsible for BAFF production.

Ṫ = Λ2 + g2(V ) − r2V T − d3T

CD4+ T helper cells – The main target of HIV. These regulators of the immune system are essential
for activation and proper functioning of CD8+ killer cells as well as B cells. They are assumed to be
produced at a constant rate before introduction of the virus. After introduction, the number of CD4+

cells increases as some function of the virus level and decreases as a product of their concentrations.

Ċ =
γ1IC

1 + I
+ G − α1CI − d4C

CD8+ Cytotoxic T lymphocytes– They play a vital role in fighting viral infections by searching the
body for infected cells and killing them. Some CD8+ T cells are produced at a constant rate but are
mostly dependent on the number of infected cells in the body.

Ḃ2 = γ2BF − r3B2Ac − r4B2V − d5B2

T2 B cells These B cells derive from B1 cells in the bone marrow and are at the first stage of BAFF
dependent development. These cells go on to become memory B cells and plasma B cells at a rate
dependent on the number of antigen presenting cells in the body. Importantly, our model assumes that
B2 cells go on to become dysfunctional B cells at a rate dependent on the level of virus.

V̇ = n1r1AcV + n2r2V H − r5BP V − d6V

Virus – HIV. Can infect antigen presenting cells and T helper cells. Free virus is cleared non-specifically
by constant mechanisms and specifically by the antibodies from functional plasma B cells.

ḂP = ρr3B2AC − d7BP + α2Bm

Plasma B cells – Reside in the bone marrow and secrete large amounts of antibodies. A portion of
these cells are specific to HIV. Plasma B cells can be derived either from the T2 B cells or the memory
B cells. Rho refers to the portion of maturing T2 cells that become plasma cells instead of memory cells.

Ḃm = (1 − ρ)r3B2AC − d8Bm

Memory B cells – Memory cells are highly specific for antigen previously encountered in the body and
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are the source of long term immunity. Memory B cells derive from T2 cells. The level of memory B cells
is cut in half during chronic HIV infection. This fact may be modeled by making the parameter rho a
function of viral load.

ḂD = r4B2V − d10BD

Dysfunctional B cells – Characterized by nonspecific antibody secretion, short lifespan, and aberrant
markers of activation and differentiation. These cells are produced from T2 B cells at a rate dependent
on the level of virus.

ḂF = Λ3 + γ3Ac − d9BF

B Cell Activation Factor (BAFF) – An important hormone involved in B cell survival. Some is
produced constantly by epithelial cells in areas of immune development and some is produced by antigen
presenting cells.

ȦB = α3BD + α4BP − d11AB

Antibodies – proteins secreted by plasma B cells as well as dysfunctional B cells. Antibodies made
by plasma cells can neutralize the virus by binding it and recruiting other immune cells to destroy it.
Antibodies can similarly bind infected cells that display foreign antigen on their surface resulting in their
death by ADCC.

3 Reformulation

Although we were able to find the majority of the parameters needed for our model in the current
literature, there were some parameters - such as the rate of T2 B cells becoming dysfunctional B cells
and the rate of BAFF production from the antigen presenting cells - for which there are hardly any
experimental data available. This fact, in addition to the number of equations and their complexity led
us to simplify the model by reducing the number of equations from 11 to 5. The new model more clearly
states the assumptions being made and allows for the removal of a number of parameters unavailable in
the literature. The equations eliminated represent the following: antigen presenting cells, T2 immature
B-cells, dysfunctional B-cells, the B cell survival factor BAFF and antibodies. How this simplification
was done was by getting rid of the antigen presenting cells due to its dynamics were very small as
compared to the other variables in the system. In addition, we decided to include five variables and its
affects into one variable B using the fact that some variables behave in the same dynamic as others.
Thus, we propose a flow chart (Figure 2) to illustrate the relationship between the five variables: CD4+

cells (or T cells), CD8+ cells (or CTL cells), infected cells, the virus, and B cells and their respective
parameters stated in Table 3 and Table 4.

Ṫ = λ − βV T − d1T (12)

Ė = φ +
bEI

I + Kb
E − dEI

I + Kd
E − d2E (13)

İ = βV T − kEI − δI (14)

V̇ = NT δI − cBV − d3V (15)

Ḃ = baffV B − d4B (16)
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Figure 2: Flow Chart of the Simplified Model

The central assumption of the model remains essentially unchanged and states that HIV infection
results in a population of dysfunctional B-cells. The number of normal B-cells becoming dysfunctional
is related to the viral load. While the dysfunctional B-cells no longer have their own equation, their
numbers can be represented by the term (baffV B) in the B cell equation. A secondary assumption was
simplified that allowed for the elimination of 3 equations, Ȧc, Ḃ2, and ḂF . This assumption states that
B-cell survival is dependent on BAFF levels, which were found in AIDS patients to be present in levels
nearly double that of healthy people. In the original model, BAFF levels were dependent on antigen
presenting cell numbers that increased in response to vial load. The T2 B-cells were dependent on BAFF
for their survival and the number of plasma B-cells were dependent on the T2 cells. This complicated and
indirect mode of virus influencing plasma B cell numbers is now simply stated as the term (baffBV ), the
parameter baff representing the increases in B-cell numbers in response to the virus. The fifth equation,
antibodies, was easily eliminated by assuming that antibody levels are proportional to B-cell numbers
and by representing the effect of antibodies on virus levels with the term (cBV ) in the Virus equation.
In addition to the reduction of our model, we also included two Michealis-Menten saturation nonlinearity
terms for the immune response ( bEI

I+Kb
E and dEI

I+Kd
E ) as suggested by Bonhoeffer et al. . They describe

a saturation of immune stimulation and a saturation of immune impairment at high virus levels [14, 15].
In the B cell equation, we assume B cells are already present in the body and will increase due to the
hormone BAFF and decrease due to natural death. Though it makes biological sense to have a clearance
rate between the interaction of the CD8+ cells and the virus, to simplify the model we did not consider
this.

Table 3.Variables for second HIV-1 model.

Variable Definition

T healthy CD4+ cells

C CTL or CD8+

I infected cells

V virus

B B cells
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Table 4. Conditions and parameter values for the second HIV-1 model.

Parameters Definition Value Units References

λ T cell production rate 10 estimated

β rate at which T become infected by virus 0.05 Galvani (2005) [16]

d1 death rate of T cells 0.009 day−1 Galvani (2005)) [16]

φ constant rate of CTL cell production 9.9085e-03 cells
mL·day

Adams (2007) [15]

bE maximum birth rate for CTL cells 1.0 day−1 estimated

Kb saturation constant for CTL birth 3.9087e-01 cells
mL

Adams (2007) [15]

dE maximum death rate for CTL cells 1.0213e-01 day−1 Adams (2007) [15]

Kd saturation constant for CTL death 8.379e-01 cells
mL

Adams (2007) [15]

d2 death rate of CTL 7.0299e-02 day−1 Adams (2007) [15]

k immune-induced clearance rate 3.099e-02 mL
cells·day

Adams (2007) [15]

NT virions produced per infected cell 1.5e10 day−1 Adams (2007) [15]

δ infected cells death rate 0.003 day−1 Adams (2007) [15]

c death rate of virus due to the B cells 2.5e-05 estimated

d3 virus natural death rate 38.4 day−1 Galvani (2005) )[16]

baff the rate at which B cells are being produced 100 unknown

d4 death rate of B cells 1.6e-02 day−1 Galvani (2005) )[16]

T0 initial T-cell count 1111.1 calculated

E0 initial CTL cell count 0.14095 calculated

I0 initial infected cell count 0 estimated

V0 initial virus count 10 estimated

B0 initial B cell count 4.0e05 calculated

4 Stability and Analysis of the Disease Free Equilibrium

In epidemiology the average number of secondary infections per primary infection in a pathogen-free
population is known as the basic reproductive number or R0 [17]. In viral population dynamics, the
basic reproductive number is the average number of secondary infected cells arising from a single infected
cell in a host that is otherwise free of virus [18]. At the disease-free equilibrium, we can conclude that if
R0 > 1, the amount of virus grows through a chain reaction of new infections, and if R0 < 1 the amount
of virus (or infected cells) steadily decreases and the infection dies out. The basic reproductive number
R0 is calculated as follows: we let I = 0 and V = 0 in our 5-dimensional model to determine the disease
free equilibrium

Z0 = (T0, E0, I0, V0, B0) = ( λ
d1

, φ
d2

, 0, 0, 0)

where its Jacobian is

J =

⎛
⎜⎜⎝

−βV − d1 0 0 −βT 0

0 bEI
I+Kb

− dEI
I+Kd

− d2
bEE

I+Kb
− bEIE

(I+Kb)2
− dEE

I+Kd
+ dEIE

(I+Kd)2
0 0

βV −kI −kE − δ βT 0
0 0 NT δ −cB − d3 −cV
0 0 0 baff B baff V − d4

⎞
⎟⎟⎠ . (17)

The Jacobian evaluated at the Z0 can be computed as follows
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J0 =

⎛
⎜⎜⎜⎜⎜⎝

−d1 0 0 −βλ
d1

0
0 −d2

bEφ
d2Kb

− dEφ
d2Kd

0 0
0 0 −kφ

d2
− δ βλ

d1
0

0 0 NT δ −d3 0
0 0 0 0 −d4

⎞
⎟⎟⎟⎟⎟⎠

. (18)

We know that Z0 is locally asymptotically stable if and only if all eigenvalues of the matrix J0 have a
negative real part [19]. From J0, it is easy to obtain three eigenvalues of J0 namely,

λ1 = −d1,
λ2 = −d2,
λ3 = −d4,

and leaving us with a 2 × 2 matrix, which we will call A

A =
( −kφ

d2
− δ βλ

d1

NT δ −d3

)
. (19)

Assuming we do not know the values of the parameters, we still could determine stability from (19). We
know that if the trace of a 2 × 2 matrix is negative and the determinant is positive, then the system of
differential equation is locally asymptotically stable. Here we will apply this theorem

tr(A) = tr

( −kφ
d2

− δ βλ
d1

NT δ −d3

)
= −kφ

d2
− δ − d3 < 0 (20)

det(A) = det

⎛
⎜⎝ −kφ

d2
− δ βλ

d1

NT δ −d3

⎞
⎟⎠ > 0

⇔ −d3(−kφ
d2

− δ) − βλ
d1

NT δ > 0

⇔ d3(kφ
d2

+ δ) > βλ
d1

NT δ

⇔ NT < d1d3kφ
d3λβδ + d1d3

λβ

(21)

As a result, we have
Theorem Z0 = ( λ

d1
, φ

d2
, 0, 0, 0) is locally asymptotically stable if and only if the following holds

NT <
d1d3kφ

d3λβδ
+

d1d3

λβ
. (22)

Since the tr(A) < 0 and the det(A) > 0 is true if the above condition (22) holds, then it could be
concluded that our system of differential equations is locally asymptotically stable at the disease free
equilibrium. Here NT is a critical value, which indicates the average number of secondary infections per
primary infection, but we can also compute the basic reproductive number R0 from (21) as follows:

det(A) = −d3(−kφ
d2

− δ) − βλ
d1

NT δ > 0

⇔ d3(kφ
d2

+ δ) > βλ
d1

NT δ

⇔ R0 = d2NT λβδ
d1d3(kφ+d2δ) < 1.

(23)

If R0 < 1 then the virus will not spread, since every infected cell will on average produce less than
one other infected cell. If on the other hand, R0 > 1, then every infected cell on average produces more
than one newly infected cell.
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The basic reproductive number that was found in (23), holds true for the disease free equilibrium,
however, B0 = 0, which gives us no information on the dynamics of B-cells when virus is not introduced
into the system. Hence, we will introduce another basic reproductive number based on the level of B cells
RB as follows: each infected cell produces NT virus particles. The average lifetime of a virus particle is

1
cB+d3

, so that the infectious potential of an infected cell is given by βNT

cB+d3
. The number of CD4+ cells

at the onset of the infection is T̂ , which is equivalent to T0 at the disease-free equilibrium (T̂ ⇔ T0 = λ
d1

).

Hence, an infected cell at the beginning of an infection can give rise to RB = βNT T̂
cB+d3

newly infected cell
per unit of time. Whether or not an infection takes off depends on the level of the immune response.
Protection from infection is provided if the strength of the immune response exceeds the critical level
Bthreshold. At this threshold, we find ourselves at the knife’s edge between a successful and unsuccessful
infection and hence RB = 1. This level can now be calculated from βNT T̂

cBthreshold+d3
= 1, which is equivalent

to

Bthreshold =
βNT T̂ − d3

c
. (24)

We can now work out how long the hormone BAFF will provide protection. As long as the level of
immune response exceeds Bthreshold the infection cannot take off. Therefore, the period of time over
which the host is protected can be calculated from Bve−d4t = Bthreshold, where Bv is the immune
response generated through BAFF, which gives

t =
1
d4

ln
Bv

Bthreshold
=

1
d4

ln
cBv

βNT T̂ − d3

. (25)

This formula tells us that the hormone BAFF provides long protection if the loss of immune cells is
slow and the immune system has a long memory (d4 small), if the immune response against the virus is
effective (high c) or it elicits a strong response (high Bv) albeit that the two latter effects only work in
the logarithm of the response. Long protection is also associated with a low transmission rate β, with a
scarcity of target cells or with a small burst size, NT .

The basic reproduction rate R0, found in (23), does not seem to have any correlation with the levels
of B cells. However, the correlation between the two could be found through the commonalities of
parameters in the Bthreshold as follows:
Corollary R0 (23) is dependent on the levels of B cells, Bthreshold (24), if and only if

R0 =
d2

kφ + d2δ
(
Bthreshold

d3c
+ 1) (26)

(for calculations see Appendix A)
We know if R0 < 1 then the infection dies out, then we know that if

Bthreshold+1
d3c < kφ+d2δ

d2

Bthreshold < (kφ
d2

+ δ − 1) d3c

5 Coexistence Equilibrium

The coexistence of T cells, CTL cells, infected cells, free virus, and B cells is given by

Z∗ = (T ∗, E∗, I∗, V ∗, B∗) (27)

where
T ∗ = λbaff

βd4+d1baff
,

E∗ = φ
dE

I+Kd
I− bE

I+Kb
I+d2

,

V ∗ = d4
baff

,

B∗ = NT δbaff

cd4
I − d3

c .

10



Here I is the solution of the third degree polynomial P1I
3 +P2I

2 +P3I +P4 = 0 (see Appendix B) where

P1 = δ(bE − dE − d2) − kφ,

P2 = Ψ(dE − bE + d2) − δ(dEKb − bEKd + d2Kd + d2Kb) − kφ(Kb + Kd),

P3 = Ψ(dEKb − bEKd + d2Kd + d2Kb) − KbKd(δd2 + kφ),

P4 = Ψ(d2KbKd),

Ψ = λβd4
βd4+d1baff

.

This polynomial could have one, two or three solutions when set equal to 0. Though the equilibrium
components T ∗, E∗, V ∗, B∗ were easily calculated, I∗ was not. As a result, we decided to plot the third
degree polynomial I∗ = 0 implicitly to observe the dynamics between I∗ and one of its parameters. Here
in Figure 3, we plot I∗ with respect to the hormone BAFF:

Figure 3: The number of infected cells versus the hormone levels of BAFF given by I with parameters
from Table 4. Here the number of infected cells is held at a very low state as the hormone BAFF increase;
but at a certain time, the infected cells are not influenced by the hormone, thus increasing its numbers
rapidly. Because of the excess level of BAFF in the body, this could lead to the dysfunction of the B
cells.

From this graph, we were able to notice the growth rate of the infected cells is held at a very low
number by the level of the B cell activation factor hormone initially for some time. However, at a
certain point, the affects of the hormone wears off, as a result, the number of infected cells increases
rapidly. This result, clearly shows B cells influencing the progression of HIV. Since the hormone BAFF
is responsible for the survival of the B cells, the production of antibodies is crucial for suppression of the
HIV infection [20]. However, the excess of BAFF has been seen to increase autoantibody levels resulting
in a population of dysfunctional B cells. As seen in Figure 3, there exists such a population that results
from unproportionately high autoantibody levels in HIV patients due to the affects of BAFF, which
impacts the growth of HIV.

6 Simulations and Results

One obstacle we encountered with our first model was the number of parameters and their lack of
experimental data in the current literature. With several assumptions though, we were able to simplify
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our model to consider only five variables resulting in the reduction of the number of parameters. Seen
in Table 4, the majority of the parameters were derived from two mathematical papers by Adams et al.
and Galvani [15, 16]; from these parameters, we were able to estimate and calculate others. However,
we were not able to obtain specific levels of BAFF, since there are hardly any experimental value, so we
left the parameter to be varied in our simulations. At the level of baff = 100, we were able to acquire
the following figure,

Figure 4: The simulation of the simplified model describing HIV dynamics using various parameters
found from current literature and from our own estimations and calculations seen in Table 4.

After running some simulations, we were able to determine, in the acute phase of the disease (in
Figure 4), the dynamics of the log of the viral load decreases rapidly initially then fluctuating for about
150 days and then increasing towards a steady state as time increases. As one of the main variables
in HIV dynamics, the CD4+ T cells initially decreases quickly, due the increase of virus in the body;
but their numbers gradually recovers fluctuating towards a steady state. Along with these two immune
elements, the number of CD*+ or CTL cells rapidly increases due to the present of HIV, but then
decreases to a steady state for the rest of the infected period. In sync with the viral load, T cells and
CTL cells, the level of the B cells initially rapidly increases; however, in a few days, their level decreases
to a certain level and to a steady state. This demonstrates the effectiveness of the B cells suppressing
the viral load at the beginning of the infection; then decreasing and maintaining a level where its affects
still remains as the viral load increases. In addition to these graphs, we also considered the progression
of the infection with respect to T cells, B cells and log of the viral load in Figure 5.
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Figure 5: The simulation of the simplified model describing dynamics between the T cells, B cells and
the log(viral load) using various parameters seen in Table 4.

In Figure 5, we are able to see these three variable fluctuating over time towards a steady state, thus
illustrating the effects of HIV dynamics. In the acute phase of the infection, the dynamics of the T cells,
B cells, and CTL cells demonstrates their reliance on one another in order to eliminate as much of the
virus before they can reproduce. Especially seen in the B cells, we could see the population of B cells is
dependent on the level of BAFF in order to increase its population and produce antibodies to fight off the
infection. However, the affects of the B cell wears down as the viral load begins to decrease, concluding
the cells have become dysfunctional. As one of the most interesting properties of BAFF is its ability to
preferentially increase autoantibody levels, which at abnormally high levels, causes the dysfunction of B
cells and the progression of HIV. Though BAFF seems to play a crucial role in both B cell activation
and autoantibody production in HIV infection, the case is far from closed. What leads to the increased
levels of BAFF in the blood stream? May be BAFF doesn’t lead to production of B cells, but follows
it. If HIV or autoimmunity were generating B cells through some other mechanism, the body would
need to raise the level of BAFF to support the population. There is evidence to suggests that HIV,
utilizing unknown mechanisms, activates B cell non-specfically leading to a reduction in the memory B
cell response, while at the same time increasing autoantibody levels out of proportion with the observed
increase in total antibody levels.

7 Conclusion

Despite the numerous significant advancements in the research of the Human Immunodeficiency Virus
(HIV), much still needs to be known about virus and its interaction with the immune system in order to
develop an adequate treatment and/or vaccine, which has been proven as a difficult obstacle. To study
the dynamics of the virus, one must examine whole immune systems and its components, not just its
main targets (i.e. CD4+ T cells). For reasons not fully known, patients with HIV show a relatively high
rate of autoimmune disease and as a result, the B cells usually show signs of abnormal activation, thus
leading to a population of dysfunctional B cells. In this paper, we proposed two mathematical models to
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showcase the immune system’s dependence on B cells during the infection and to investigate the affects
of the hormone BAFF towards autoantibody production creating a dysfunctional B cell population and
its influence to the progression of HIV.

The models suggests that the hormone BAFF does play a crucial role in both B cell activation and
autoantibody production in HIV infection. For a certain amount of time, BAFF, and other factors, are
able to hold the number of infected cells at a very low level; however, at a certain time, the affects of the
hormone wears off and the growth rate of infected cells rapidly increases. This illustrates the immune
system’s dependency on the B cells to fight of the infection, however, with the excess of antibodies in the
body B cells are improperly activated thus creating a population of dysfunctional B cells, which leads
to the progression and persistence of HIV in the body and the death of many. For future experiments
towards the development of treatments and/or vaccines and mathematical models, consideration of B
cells should also be observed as an important component in the fight against HIV.

For future work, we would like to do more mathematical analysis to further support this hypothesis.
We would also like to model the same problem using delay differential equations to consider the effects
of time delay in the HIV infection to get a better understanding of this interesting story. In addition,
we would so like to consider the affects of nutrition deficiency and its affects on the infection. Hopefully
in considering such topics as these we could suggest ways to eradicate this disease.
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Appendix

A Appendix

To determine the correlation between R0 and the level of B cells the following calculation was necessary

R0 = d2NT λβδ
d1d3(kφ+d2δ) Bthreshold = βNT T̂−d3

c

Bthreshold

d3c = βNT λ
d1d3

− 1

Bthreshold

d3c + 1 = βNT λ
d1d3

R0 = d2
k2φ+d2δ (Bthreshold

d3c + 1)

Here we are able to see there is the level of B cells do influence the basic reproduction rate.
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B Appendix

To derive the coexistence equilibrium we set (12), (13), (14), (15), (16) equal to zero and solve for each

variable. From equation (16) we can solve for V ∗ as follows:

Ḃ = baff V B − d4B = 0

baff V B = d4B

V ∗ = d4
baff

Next we will solve for T ∗ from (12)

Ṫ = λ − βV T − d1T = 0

λ = T (βV − d1)

T ∗ = λ
βV ∗+d1

T ∗ =
λbaff

βd4+d1baff

Now we will solve for E∗ from equation (13)

Ė = φ + bEI
I+Kb

E − dEI
I+Kd

E − d2E = 0

φ = E( dEI
I+Kd

− bEI
I+Kb

+ d2)

E∗ = φ
dEI

I+Kd
− bEI

I+Kb
+d2

To find B∗ we solve equation (15) as follows

V̇ = NT δI − cBV − d3V = 0

NT δI = V (cB + d3)

B∗ = NT δ
cV ∗ I − d3

c

B∗ =
NT δbaff

cd4
I − d3

c

To find the I component of the equilibrium, we set (14) equal to zero and solve as follows:

İ = βV T − kEI − δI = 0

İ = βV ∗T ∗ − kE∗I − δI = 0

0 = β d4
baff

· λbaff

βd4+d1baff
− k φ

dEI

I+Kd
− bEI

I+Kb
+d2

I − δI

0 = λβd4
βd4+d1baff

− kφI
dEI

I+Kd
− bEI

I+Kb
+d2

− δI

Let Ψ = λβd4
βd4+d1baff

then 0 = Ψ − kφI
dEI

I+Kd
− bEI

I+Kb
+d2

− δI

Ψ − δI =
I3(kφ)+I2(kφKb+kφKd)+I(kφKbKd)

I2(dE−bE+d2)+I(dEKb−bEKd+d2Kb+d2Kd)+KbKdd2

I3(kφ) + I2(kφKb + kφKd) + I(kφKbKd) = (Ψ − δI)[I2(dE − bE + d2) + I(dEKb − bEKd + d2Kb + d2Kd) + KbKdd2]

0 = I3[δ(bE − dE − d2) − kφ] + I2[Ψ(dE − bE + d2) − δ(dEKb − bEKd + d2Kb + d2Kd)−
kφ(Kb + Kd)] + I[Ψ(dEKb − bEKd + d2Kb + d2Kd) − KbKd(δd2 + kφ)] + ΨKbKdd2

0 = AI3 + BI2 + CI + D

where
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A = δ(bE − dE − d2) − kφ,

B = Ψ(dE − bE + d2) − δ(dEKb − bEKd + d2Kd + d2Kb) − kφ(Kb + Kd),

C = Ψ(dEKb − bEKd + d2Kd + d2Kb) − KbKd(δd2 − kφ),

D = Ψ(d2KbKd),

Ψ = λβd4
βd4+d1baff

.
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