
Cats Protecting Birds Revisited with a Spatial Approach

James Gambino1, Marco V. Mart́ınez-Mart́ınez2,

Kehinde Salau3, Edmé L. Soho4
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Abstract

The mesopredator release hypothesis (MRH) suggests that in the absence of large,
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dominant predators, a population of smaller predators increases and, in the process, gener-

ates a decline in the prey community. The MRH has been used in attempts to comprehend

problems involving the management of introduced species in islands and the extinction

or declination of superpredators in an ecosystem due to anthropogenic pressures. The

dynamics of this system were studied using a spatially explicit model with mean field

and pair approximations. We included mathematical analysis of the mean field model, as

well as numerical analysis for both approximations. The results of the simulation support

the claims of the MRH and suggest that control of the mesopredator population is the

most feasible method to ensure the persistence of endangered prey populations. Spatial

modelling is a complex but valuable tool for studying such phenomena occurring in nature.

Introduction

The transformation of natural habitats to agricultural lands, hunting, climate change, introduc-

tion of alien species, and of contaminants have detrimental impacts on biodiversity [25]. One

theory to understand the loss of biodiversity is the Mesopredator Release Hypothesis (MRH).

MRH states that in the absence of large, dominant predators (superpredators), smaller preda-

tors and omnivores (mesopredators) undergo population explosion up to ten times their nominal

level. This process generates a decline in the underlying prey community, sometimes driving

them to extinction [29]. The MRH has been used in attempts to comprehend and resolve two

conservation problems.

The first problem involves the management of introduced species in islands. These alien
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species are a major contributor to the extinction of native species in island ecosystems [3]. In

general, these adaptable species are successful in their new ecosystem because the community

of native species does not possess the evolutionary history to respond to this new interaction.

Furthermore, these alien species encounter relatively few pathogens and parasites [12]. Alien

predators are a major threat to 40% of endangered island bird species, with feral cats (Felis

catus) and mongooses (Hagolestes auropunctatus) among the most notorious and harmful of

the introduced predators [18]. Feral cats have been introduced into at least 65 island groups

where they are responsible for the loss of many large land and seabird colonies, populations, or

even species [22, 19]. Cats also constitute a major threat to many endemic reptile and mammal

species [17, 4, 30].

Programs geared towards controlling the population of cats and other alien predators are

largely recognized as the best way to restore ecosystems. Although eradication of these alien

cat populations has often been attempted, only a few have been successful, and several are still

being evaluated [13]. One reason for the abortiveness of these programs is the simultaneous

introduction of the predator and prey. Many islands have both alien cats and alien rats. Rats

have an extremely deleterious effect on many organisms such as amphibians, reptiles, birds

and mammals [2, 8]. This effect can be indirect, by competition for food, shelter or nest-sites

[28]; or direct, by predation of eggs, chicks, juveniles and even adult ground-nesting seabirds,

land birds and tree-nesting birds [1]. In this case, the removal of the cat population, the top

predators, has caused a surge in the rodent population and may still lead to the extinction

of the bird population. In some particular situations supporting the MRH, the presence of a
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controlled population of cats might be, at least temporarily, more beneficial to the endemic

existence of the prey, since the cats maintain the population of rats at low levels. Although

the cats also prey on the endangered species, the beneficial effects of reducing the population

of rats are superior relative to the damage done by predation to the endemic species [32, 7].

The second problem is the extinction or declination of superpredators in an ecosystem due

to fragmentation (e.g. urbanization), predator suppression (e.g. hunting), and the conversion of

natural habitats to agricultural lands [26]. In areas of Midwestern North America and Coastal

Southern California, where the aforementioned land conversions and predator suppressions have

occurred, the population of coyotes has severely decreased over the past century [9, 26]. These

areas have also seen an increase in the population of small predators including raccoons, foxes,

and possums, a plausible result of declining predation against these mammals. Raccoons are a

preferred prey among coyotes, so the absence of these top predators is a plausible explanation

for the drastic increase in the population of smaller predators [23]. However, increased numbers

of raccoons and other small predator populations could lead to, and in many cases may have

already led to, increased predation on the ground-nested bird population as suggested by the

MRH. Could a controlled population of coyotes restore the stifling bird populations in these

problematic U.S. regions? Studies in the prairie pothole region of North America and the

Chaparral ecosystem of California found there are more flourishing bird populations in areas

with coyotes as opposed to areas without them [23]. While these studies do not prove the

existence of the MRH, they certainly support the claim.

The MRH is considered a possible explanation for the decline and extinction of prey species

4



[29, 23, 15]. However, this claim is difficult to verify for logistic, financial and ethical reasons

[9]. Instead, scientists utilize mathematical models and simulations to asses the validity of the

MRH or pose possible management strategies. A mathematical study by Courchamp et. al [7]

concluded the MRH is plausible and the hasty removal of top predators could very well lead to

the extinction of prey via the rise in mesopredator density. A more recent study by Fan et. al.

[14] concluded that although there are cases where rapid growth of the mesopredator leads to

the eventual extinction of the prey, under certain nontrivial conditions the prey population is

stifled by the mesopredator release but do not go extinct.

Previous models lack explicit spatial considerations. There are many examples which in-

dicate spatial considerations facilitate the persistence of populations in nature [24]. This phe-

nomenon is prevalent in many applications including host-pathogen [33], plant-pollinator [34]

and predator-prey [20] systems.

In this paper we first introduce the general model we used in our analysis of the mesopredator

release (Section 1), then we examine a pair approximation (Section 2) and the mean field

approximation (Section 3). We then introduce the numerical solutions to the approximation

(Section 4) followed by a description of the actual simulation (Section 5). Finally, we conclude

with our results (Section 6).

1 Model

We need a model that would adequately represent the three-species mesopredator system while

taking into account a spatial environment, we develop a stochastic spatial temporal model
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using a spatially discrete lattice and continuous time. It is important to address the relation of

these species because spatial arrangement affects the interactions between them. In particular,

clustering, when a single species densely populates a convex domain within the lattice, is an

important result of spatial arrangement. For example, when prey are clustered, predators only

have access to the perimeter of the clusters and not the entire prey population. Each site on the

lattice contains an integer value as described in Table 1. The model has eight possible events

that can occur on the lattice.

States Description

0 Empty Site

1 Site contains a Prey

2 Site contains a Mesopredator

3 Site contains a Superpredator

Table 1: Lattice States and Description

These states disperse onto the lattice creating a spatial environment where events may

occur. The events are defined by a list of eleven parameters given in Table 2. While most of

the parameters are intuitive a few warrant a more detailed explanation:

• φi with i = 1, 2, 3 is the intrinsic birth rate for the prey, mesopredator and superpredator

respectively. We assume that their dispersal is local meaning the parent site gives birth

to adjacent lattice sites. Realistically, there should be a delay between birth and a new
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Parameters Description SIM Values PA Values MF Values

φ1 prey birth rate 5 9 9

φ2 mesopredator birth rate 12 7 6

φ3 superpredator birth rate 0 0 0

μ1 prey death rate 1
7

2 2

μ2 mesopredator death rate 1
2

1.5 1.5

μ3 superpredator death rate 1
10

.3 .3

ν2 mesopredator foraging rate 1.2 6 5

ν3 superpredator foraging rate 50 10 10

η2 probability that successful meso-

predator predation leads to birth

.6 .6 .5

η31 probability that successful su-

perpredator predation on prey

leads to birth

.02 .15 .15

η32 probability that successful su-

perpredator predation on meso-

predator leads to birth

.04 .35 .35

Table 2: Model parameters with simulation (SIM), pair approximation (PA), and mean field

(MF) values.
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site being occupied but for reasons of simplicity we have ignored that effect. Thus φi is a

per capita birth rate.

• νj with j = 2, 3 is the foraging rate of the mesopredator and superpredator respectively.

We assume the predator can only search for food within its von Neuman neighborhood

(i.e. four orthogonal neighbors) and that it is equally likely to choose any neighbor. Thus,

the predation rate in any given direction is
νj

4
. We also make the assumption that once a

foraging predator locates a prey site, it will consume the prey on that site.

• η2 is the probability that prey consumption by the mesopredator leads to the birth of a

new mesopredator. Once a mesopredator forages successfully and consumes a prey, with

probability η2 it will give birth onto the site that previously contained the prey. It is

important to note that this process is considered one event; and so a 1-site can become a

2-site in one timestep.

• η3k with k = 1, 2 is the probability that the consumption of prey (k = 1) or mesopredator

(k = 2) by the superpredator leads to the birth of a new superpredator. After consumption

of the k-site occupant, the superpredator gives birth on the site with probability η3k; and

this is considered one event.

The summary of possible transitions between states for single sites are as described in Table

3.

• State [0]: State [1], [2], [3] can become State [0] if a prey, mesopredator, or superpredator

dies of non-predatory causes. In addition, states [1] and [2] can become state [0] if they
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[1][2][3] ⇒ [0]

[0] ⇒ [1]

[0][1] ⇒ [2]

[0][1][2] ⇒ [3]

Table 3: Possible state transitions

are consumed but no immediate predator reproduction occurs.

• State [1]: State [0] can become state [1] if a prey is born into the site.

• State [2]: State [0] can become state [2] if a mesopredator is born into the site. State [1]

can become state [2] if a mesopredator consumes a prey and then reproduces at the site.

• State [3]: State [0] can become state [3] if a super predator is born into the site. States

[1] and [2] can become state [3] if a superpredator consumes a prey or mesopredator and

then reproduces at the site.

2 Pair Approximation

Pair approximation is a modeling technique which allows for the introduction of local or long

distance spatial interaction in a mathematical model. With pair approximation, it is assumed

that two nonadjacent sites are independent, given that the state of their common neighbor is

known. The pair approximation model contains a set of differential equations which describe

the configuration of pairs of sites through the probability of the variations of states. The state
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variables are p[ij], the probability that for a pair of adjacent sites chosen at random from the

lattice, the first is in state i and the second is in state j. Pair approximation models are usually

more accurate than the regular approach of spatially implicit mean field approximations. The

pair approximation models assume spatial symmetry without consideration of the directional

orientation (North, South, East, and West), such that for any two states a and b, the prob-

abilities p[ab] and p[ba] would be the same. Throughout this paper, we will assume complete

spatial symmetry, in particular rotational symmetry, i.e.,

p[ij] = p[ji] = p

⎡
⎢⎢⎣

i

j

⎤
⎥⎥⎦ = p

⎡
⎢⎢⎣

j

i

⎤
⎥⎥⎦ ,

for i and j equal to 0, 1, 2, or 3. To construct the pair approximation equations, the different

attainable configurations of pairs of sites were examined with their transitions. There are four

states with sixteen possible pairs. The assumption of spatial symmetry allows for the reduction

of the sixteen possible pairs, since p[01] = p[10], p[13] = p[31], to ten.

Also, all the probabilities must sum to 1 hence, p[00] + 2p[01] + 2p[02] + 2p[03] + p[11] +

2p[12] + 2p[13] + p[22] + 2p[23] + p[33] = 1. A marginal single site probability can be computed

by summing over all the possible ways a site can be in a given state and its neighbour in any

other state. In the case of our model,

p[1] = p[10] + p[11] + p[12] + p[13].

We also define Qj|i to be the conditional probability that a site has a neighbor in state j given

that it is in state i. Thus,

Qj|i =
p(my neighbor is j AND I am i)

p(I am i)
=

p[ij ]

p[i ]
.
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In order to obtain the diagram used to construct the pair approximation equations as shown

in Figure 1, one must verify each of the state variables separately. The main purpose is to

demonstrate that the transitions are allowed, given that only one event can occur at a time.

The full nine equations are contained in Appendix A.

Figure 1: This figure demonstrates the inflow of possible pairs of states that can turn into pair

[12] and the outflow of states that [12] can turn into during a single event via the direction of

the arrows.
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3 Mean Field Approximation

3.1 Definition

The mean field approximation is a method of using systems of differential equations to express

changes in the proportion of states on a lattice. One assumption of the mean field approximation

is that the population is well mixed, and so space is invariant in the dynamics of the model.

In the mean field approximation p[i] represents the probability that a randomly-chosen site is

in state i. To write out the differential equation for each variation of state, we base it on the

main equation:

dp[i]

dt
=

∑
j �=i

p[j]rj−→i

︸ ︷︷ ︸
a

−p[i]
∑
j �=i

ri−→j

︸ ︷︷ ︸
b

,

with a defined as sum of (other state probabilities) * (rates at which they transition into state

i) and b as sum of transition rates out to all other states.

This produces the following system of nonlinear differential equations:

dp0

dt
= μ1p1 + μ2p2 + μ3p3 + ν2 (1 − η2) p2p1 + ν3 (1 − η31) p3p1

+ν3 (1 − η32) p3p2 − (φ1p1 + φ2p2 + φ3p3) p0 (1)

dp1

dt
= φ1p1p0 − (μ1 + ν2p2 + ν3p3) p1 (2)

dp2

dt
= φ2p2p0 + ν2η2p1p2 − (μ2 + ν3p3) p2 (3)

dp3

dt
= φ3p3p0 − μ3p3 + ν3p3p1η31 + ν3p3p2η32. (4)
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Figure 2: The mean-field flow chart. We duplicate the states 0 and 3 so as not to complicate

the flow chart with intersecting arrows.

We could also write down the equation for dp0

dt
, but since all the probabilities must sum to

1, i.e.

dp0

dt
+

dp1

dt
+

dp2

dt
+

dp3

dt
= 0,

then we can replace p0 by 1 − p1 − p2 − p3 in equations 2-4. Therefore, three equations are

sufficient to describe the system.

3.2 Equilibria and Stability

Solving equations (2-4) for the three species yields eight potential steady states. We found ex-

plicit expressions for all equilibria and their biological implications (see Table 4). To determine
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whether the equilibria are locally asymptotically stable (L.A.S.) we use linearization via the

Jacobian:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λφ1 − p1φ1 − μ1 − ν2p2 − ν3p3 −p1φ1 − p1ν2 −p1φ1 − p1ν3

−p2φ2 + η2ν2p2 Λφ2 − p2φ2 + η2ν2p1 − μ2 − ν3p3 −p2φ2 − p2ν3

−p3φ3 + η31ν3p3 −p3φ3 + η32ν3p3 Λφ3 − p3φ3 + η31ν3p1 + η32ν3p2 − μ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

with Λ = 1− p1 − p2 − p3. A sufficient condition for the existence of these steady states is that

0 ≤ pi ≤ 1, since p represents a proportion of sites.

Notation Description

E0 Species-free equilibrium

Ei The persistence of only species i with i = 1, 2, 3

Eij The persistence of species i and j with i, j = 1, 2, 3 and i �= j

E123 The coexistence of all species

Table 4: Equilibria have the form E = (p∗1, p
∗
2, p

∗
3) where p∗i is the equilibrium value of species i.

Even-though the equilibria for the coexistence of species can be computed, we could derive

simple conditions for L.A.S. for E12, E13, E23, orE123.

• E0 = (0, 0, 0).

This is the species-free equilibrium and the proportion of empty sites is exactly equal to

one. This is also referred to as the trivial steady state. The Jacobian matrix evaluated
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at the species-free equilibrium yields the corresponding eigenvalues

φ1 − μ1,

φ2 − μ2,

φ3 − μ3.

And so the conditions for local stability at this equilibrium point are satisfied when all

three eigenvalues are less than zero; thus,

φ1

μ1

< 1,

φ2

μ2

< 1,

φ3

μ3

< 1.

If the intrinsic birth rate of the prey is less than its death rate then it will eventually die

out. If that is the case, the mesopredators must rely solely on their intrinsic birth rate

and if it is smaller than their death rate then they will also go extinct. With no prey

or mesopredators to consume, the superpredator survives only on its own intrinsic birth

rate, if its death rate surpasses its birth rate then finally it will go extinct also. And so,

having the birth rates less than the death rates are sufficient conditions for the L.A.S of

the species-free equilibrium.

• E1 =
(
1 − μ1

φ1
, 0, 0

)
.

This denotes the persistence of the prey population in the absence of the mesopredator

and superpredator populations. This steady state is valid when μ1 < φ1. In order for the
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prey population to persist while the other two species are nonexistent, its intrinsic birth

rate must be greater than its natural death rate.

The eigenvalues for this steady state are:

λ11 = −φ1 + μ1

λ12 =
−φ1μ2 + φ2μ1 + ν2η2φ1 − ν2η2μ1

φ1

λ13 = −φ1μ3 − φ3μ1 − ν3η31φ1 + η31ν3μ1

φ1

this steady state is L.A.S. when the following necessary conditions hold

φ1

μ1

> 1,

φ2

μ2

< 1,

φ3

μ3

< 1. (5)

So, the birth rate of the prey must be greater than its death rate, which also follows

from the existence of this steady state. Furthermore, the intrinsic birth rates of both the

mesopredator and the superpredator must be less than their death rates.

• E2 =
(
0, 1 − μ2

φ2
, 0

)
.

This is the persistence of the mesopredator population in the absence of the prey and

superpredators. The steady state is biologically significant when μ2 < φ2. The intrinsic

birth rate of the mesopredator must exceed its natural death rate for it to survive in the

absence of prey or superpredators. This condition is feasible since mesopredators do not

rely on the availability of a specific prey for sustenance.
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The corresponding eigenvalues are,

λ21 = −−φ1μ2 + φ2μ1 − ν2μ2 + φ2ν2

φ2

λ22 = −φ2 + μ2

λ23 = −φ2μ3 − ν3η32φ2 + ν3η32μ2 − φ3μ2

φ2

and it is L.A.S. when the following necessary conditions are met:

φ2

μ2

> 1,

φ1
1

μ1 + ν2

<
φ2

μ2

φ3

μ3

< 1. (6)

So, the birth rate of the mesopredator must be greater than its death rate so loss of the

prey does not negatively affect the species. The death rate of the superpredator must

exceed its birth rate. Lastly, the number of offspring produced by the prey before natural

death or death via mesopredator predation must be less than the number of offspring

produced by a mesopredator before its death.

• E3 =
(
0, 0, 1 − μ3

φ3

)
.

This is the existence of the superpredator population without any prey or mesopredators in

the environment. This steady state is viable if the intrinsic birth rate of a superpredator is

larger than its death rate. Sole existence of the superpredators is practicable for the same
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reason as that of the mesopredators; their survival is not dependent on the availability of

a specific mesopredator or prey.

The corresponding eigenvalues are

λ31 =
φ1μ3 − φ3μ1 + ν3μ3 − φ3ν3

φ3

λ32 =
φ2μ3 − φ3μ2 + ν3μ3 − φ3ν3

φ3

λ33 = μ3 − φ3.

E3 is L.A.S. when the following necessary conditions are met:

φ3

μ3

> 1,

φ1
1

μ1 + ν3

<
φ3

μ3

φ2
1

μ2 + ν3

<
φ3

μ3

. (7)

The intrinsic birth rate of the superpredator must be greater than its death rate, so it

can survive without the prey or mesopredator. Also, the number of offspring produced

by the prey or mesopredator before natural death or death via superpredator predation

must be less than the number of offspring produced by a superpredator before its death.

• E12 =
(

μ2φ1−φ2μ1+ν2μ2−φ2ν2

ν2(−φ2+η2φ1+ν2η2)
, −μ2φ1+ν2η2φ1+φ2μ1−ν2η2μ1

ν2(−φ2+η2φ1+ν2η2)
, 0

)
.

p1 + p2 � 1 is a sufficient condition for existence. E12 represents the prevalence of the

prey and mesopredator populations in the absence of the superpredators. The existence
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of this steady state is reliant on several necessary conditions:

φ1

μ1

> 1,

η2ν2

μ2

< 1 <
φ2

μ2

,

φ2

μ2

<
φ1

μ1

. (8)

In effect, the birth rate of the prey must be greater than its death rate if it is to survive

at all. The birth rate of the mesopredator is greater than its death rate, and both those

rates exceed its birth rate from predation. So the mesopredator relies on other food

sources for growth. Furthermore, (8) says that the number of offspring produced by the

mesopredator before death must be less than the number of offspring produced by the

prey before its death.

• E13 = (μ3φ1−φ3μ1+ν3μ3−φ3ν3

ν3(η31φ1+ν3η31−φ3)
, 0, −μ3φ1+φ3μ1+ν3η31φ1−μ1ν3η31

ν3(η31φ1+ν3η31−φ3)
).

with

p1 + p3 � 1.

This expression indicates the prevalence of only the prey and superpredator populations.

The existence of this steady state is dependent on the following conditions:

φ1

μ1

> 1,

η31ν3

μ3

< 1 <
φ3

μ3

,

φ3

μ3

<
φ1

μ1

. (9)

Essentially, the prey-superpredator relationship in this case is analogous to that of prey-

mesopredator in E12.
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• E23 = (0, φ2μ3−μ2φ3+ν3μ3−φ3ν3

ν3(η32φ2+ν3η32−φ3)
, −φ2μ3+ν3η32φ2−ν3η32μ2+μ2φ3

ν3(η32φ2+ν3η32−φ3)
).

and

p2 + p3 � 1.

This term signifies the coexistence of mesopredator and superpredator only. For existence

of this equilibrium, the following conditions are necessary:

φ2

μ2

> 1,

η32ν3

μ3

< 1 <
φ3

μ3

,

φ3

μ3

<
φ2

μ2

. (10)

Similarly, the mesopredator-superpredator relationship in this case is similar to the pre-

vious two cases; the mesopredator now acts as the prey.

• E123 = (p∗1, p
∗
2, p

∗
3). Though, the coexistence equilibrium of all three species can be com-

puted, resolving sufficient and biologically-explainable conditions for its existence and

stability is complex, therefore analysis of this state will not be included.

4 Numerical Analysis

We numerically integrate equations 2-4, the mean field model, and equations 11-19, the pair

approximation model using an explicit Dormund-Prince pair (4,5) Runge-Kutta formula (ode45

in MATLAB). Figures 3 and 4 illustrate numerical solutions to the mean field model and the

pair approximation model respectively.
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Figure 3: Mean field equations numerically integrated with parameters found in Table 2 under

MF values.

In the mean field model the mesopredator and superpredator populations rise initially and

then begin to decline as prey becomes scarce and they can no longer supplement their natural

birth rate with additional births from predation. The prey population declines initially and then

rises to a steady state which depends on the particular set of parameters in Table 2. For the

two predator species there are some damped oscillations before reaching a stable equilibrium.

In the pair approximation model we see the same qualitative behavior but the oscillations are

more damped. While there is also coexistence in this model the numerical value of the species

population at equilibria differs from that of the mean field model.

21



0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time
(years)

Pr
op

or
tio

n 
of

 L
at

tic
e 

Si
te

s 
O

cc
up

ie
d

Pair approximations for Mesopredator System

Prey
Mesopredators
Superpredators

Figure 4: Pair Approximation equations numerically integrated with parameters found in Table

2 under PA values.

5 Simulation

We construct an L×L lattice, where L is an integer, using toroidal periodic boundary conditions

i.e. we use wrap around boundary conditions. Next, we decide on the initial distribution of

prey, mesopredators and superpredators. The initial distribution is assumed to be uniformly

random across the lattice. See figure 5 for the realisation of the spatial simulation for the

coexistence of al three-species.

The process is modeled by randomly choosing one of eight events: birth and death events

for all three species and predation events for the two predator species. Depending on the event
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Figure 5: This is a single realization of the the spatial simulation on a 100 × 100 lattice. We

use the simulation parameter values from Table 2 under SIM values.

chosen a cell containing a species of the appropriate type is selected at random. For example,

upon selection of a superpredator predation event, a superpredator is randomly chosen from the

list of superpredator sites. Then, the superpredator randomly chooses one of its neighboring

sites; if the neighboring site is occupied by a prey or mesopredator the superpredator will

consume it and then randomly determine whether to leave the site empty or produce a new

superpredator. The lattice may be produced visually as a grid with each cell set to a specific

value designating one of the 4 states.

We track the pair of lattice coordinates of all four states, as well as, the index of each pair
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of coordinates in the coordinate list. The importance of bookkeeping all 10,000 cells becomes

evident as only certain states can transform into others and the nearby presence of particular

states affect how these transitions can occur. For example, a prey may become an empty site

if it naturally dies or if a nearby predator consumes it and does not populate the site. At the

end of every event we update the lattice of current values, coordinate list and lattice of indices.

The population count of each species is also updated after each event. A check is made to

see if enough time has passed or events have occurred and the population for each species is

then recorded to lists that can be plotted at the end of the simulation. After each event two

final checks are made. First, we check to see if all the species populations are zero; if so we

end the simulation. Second, we check to see if the lattice has reached equilibrium. To do this,

we perform a linear regression on each of the last 100 recorded population proportions versus

time. If the absolute value of the slopes on all three regressions are below the set threshold of

5×10−4, then we conclude that the simulation has reached equilibrium. This test for equilibria

follows the method used by Caswell and Etter [5].

In our program we code rules for each type of events as follows:

• Birth of any of the species is a local event, meaning a populated site can only give birth

onto one of its empty neighbors. A birth event is carried out by first selecting a member

of the species and then randomly choosing one of its 4 cardinal neighboring sites. If the

site is empty then the birth takes place, if not then the birth attempt is wasted.

• Natural death of any species always leaves a site empty. A death event is carried out by

randomly choosing a member of the given species and then removing it from the lattice.
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• Mesopredator predation is a local event. A mesopredator predation event is carried out

by first selecting a mesopredator and then choosing one of its neighbors; if the neighbor is

a prey then the mesopredator consumes the prey, otherwise the attempt is wasted. After

consumption, the mesopredator randomly determines whether or not to populate the site

with a new mesopredator.

• Superpredator predation is also a local event. During a superpredator predation event,

a superpredator is randomly chosen from the list of superpredator sites. Then, the su-

perpredator randomly chooses one of its neighbors, where neighbor is defined using Von

Neumann neighborhood. If the neighboring site is occupied by a prey or mesopredator

then the superpredator will consume it and then randomly determine whether to leave

the site empty or produce a new superpredator.

(The MATLAB code can be obtained from any of the authors.)

5.1 Parameter Estimation

To validate the behavior of our model we want to estimate parameter values with biological

significant. In order to accomplish this, we conducted an extensive bibliographical search and

contacted some experts in the area. In the case of φ1, we utilize the results of Curry [10] for the

species Nesomimus spp. He measured the number of clutches, number of eggs and the percent

of hatches per year, during four years in the Galapagos (tables 1,2 and 3, respectively, [10]).

We take the product of these three average (3.25%, 3.92% and 41%) to calculate φ1 which is

5.22%.
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For φ2, we use the values from the Tamarin and Malecha [31] report for Rattus rattus ;

2.3 litters per year, 5.1 embryos per litter and a final yearly production of 11.8. We also use

the results from Jackson (1962) [cited in Tamarin and Malecha 1972]; 3.2 litters per year,

3.8 embryos per litter and a yearly production of 12.2. The combination of these two yearly

productions yields an average of 12 rats per year. In order to calculate φ3, we assume cats

cannot reproduce without predation giving φ3 = 0; this is feasible because we know these

animals reproduce only when they have sufficient resources [16]. In addition, field work shows

that the birth rate of cats (Felis catus) is small; it is in the order of 1.5 kittens per year [27]. We

determine the mortality rates for each of the three species by inverting their lifespan; birds live

up to 7 years [11], rats live up to 2 years [16] and we calculate an average between free-ranging

cats (5) and domestic cats (15) [21] to have a lifespan of 10 years.

6 Results and Discussion

We divide our results into three primary sections. Section 6.1 will discuss our results with

respect to parameter variation. Section 6.2 reveals our findings from the simulations’ spatial

environment and their implication. Finally, in Section 6.3 we address how our results differ

from previous approaches to the mesopredator release.

6.1 Parameter Results

In order to better understand our model, we compute the variation of the final equilibria with

respect to each of the parameters (for graphs of all of the parameters see Appendix B). Figure
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Figure 6: Plots of simulation equilibria where each point is the average of the last 100 values

of the run over four key parameters on a 300 × 300 lattice: φ2 (a), μ3 (b), ν3 (c), η31, (d)

6 displays the dynamics that occur as a result of parameter variation. Figure 6(a) shows the

final values of each species for the simulation as we vary φ2. The initial increase of φ2 has a
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deleterious effect on the rat population, this is because as the density of the rats increase on

the lattice, the cats are able to eat more rats and, as a result, produce more cats. The bird

population grows as a result of the declination in the number of rats. When the rat population

reaches a low threshold, and as φ2 continues to increase, the population size of birds oscillates

around a maximum for some range of φ2. At this point, birds are the most populous prey for

the cats on the lattice, and so the cats consume more of them; thereby allowing for an increase

in the rat population due to available lattice space. As the population of rats stabilizes and

the cats continue to grow, the bird population suffers a significant decline. In conclusion, the

amplification of φ2 is more beneficial for the cat population as opposed to the rat population.

Figure 6(b) shows the resulting change in coexistence for the three species as we vary μ3.

Increasing μ3 shows an initial decline in the population of cats; this allows for an increase in the

number of birds and an eventual increase in the rat population as a result of less predation. The

increase in the number of rats allows for the survival and later increase in the cat population.

Now, with both predator populations on the rise, the birds suffer a dramatic decline in quantity.

Essentially, increasing the death rate of the cats could have a deadly effect on the population

of birds.

The final population values as a result of varying ν3 are depicted in Figure 6(c). The

increase in the predation rate of the cats causes the rat population to decrease. However, since

the cats benefit from the consumption of rats more so than birds, a decline in the rat population

also transmits to a dip in the cat population. Having both predator populations at low levels

allow for an increase in the number of birds. With the increasing predation of cats, the bird

28



population persists at high levels because the cats maintain the rat population at small numbers

and free up a good amount of lattice space for the birds to produce their offspring. This case is

interesting because one would expect as the predator populations reach a low threshold having

so many birds around would help the cats and rats, however our results suggest otherwise.

Figure 6(d) displays the final results of varying the parameter η31. Above in Figure 6(c),

we found that the cat population declines as it reduces the number of rats, their main source

of nutrition, through predation. On the other hand, an increase in the value of η31 means the

cats are able to attain more nutrition from the consumption of birds, so the steady decline of

cats that is apparent in 6(c) becomes a moderate decrease in 6(d). The reduced population of

rats still causes a significant increase in the bird population. Though, as the rat population

reaches a low threshold and the cats begin to rely more on the nutrition they receive from

the consumption of birds, we begin to see a sharp decline in the bird population. Although

we consider cats to be opportunistic hunters that consume prey based on availability, some

elements of prey switching are evident as we vary η31. This is a byproduct of the spatial

predation structure.

6.2 Spatial Analysis

Before we examine the spatial structure resulting from the simulation, it is important to analyze

the effect of lattice size on our equilibrium population. Figure 7 consists of the time series plots

from simulating our system with the standard parameters on three increasing lattice sizes. All

three simulations began with the same initial proportions for the initial distribution and ran
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(a) 75 × 75 lattice
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(b) 150 × 150 lattice
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(c) 300 × 300 lattice

Figure 7: Simulation run with standard parameters from Table 2 (SIM values) on 75 × 75 (a),

150 × 150 (b), and 300 × 300 (c) lattices.
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for the same amount of time. As you can see in Figure 7(a), the plot for a 75 × 75 grid, the

prey population exhibits oscillation with a large amplitude and a long period. Quadrupling

the total lattice size to 150× 150, as in Figure 7(b), decreases the amplitude and the period of

the oscillations. Another quadrupling of the total lattice size to 300 × 300, as in Figure 7(c),

further decreases the amplitude and the period of the oscillations.

This effect on the oscillations as we increase lattice size is the result of averaging over a larger

lattice. Locally, the lattice is constantly changing, but as we increase the size of the lattice we

have more of these local areas that are being averaged over with the result being smaller total

oscillations over the whole lattice; even though the local dynamics remain unchanged. These

local dynamics lead to the local clustering present in our population map.

The population map develops a definite spatial structure over time in our simulation. The

development of this spatial structure is evident in the population map snapshots of Figure 8

which represent the population over time on a 150×150 lattice. At time zero, the population is

initialized to be randomly distributed on the lattice such that the prey occupy 33% of the lattice

sites, the mesopredators occupy a corresponding 33% of the lattice and the superpredators

occupy 20%. The remaining lattice sites are left empty. Soon after the initial distribution, at

the five year mark in our simulation, the prey and mesopredator population have significantly

decreased, corresponding to the sharp decline on the time-series population graphs in Figure 7.

At this point the superpredator population has risen on the lattice.

As time increases the spatial structure of the lattice begins to develop. At the fifty year mark

the prey have begun to form clusters, while the mesopredators form smaller clusters and the

31



t = 0 years t = 5 years t = 10 years
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Figure 8: Snapshots of population map at various times for standard parameters on a 150×150

lattice.
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Figure 9: Close up of subset of population map at 500 years.

superpredators have become scattered. Once we have simulated until three hundred years the

final spatial structure of the lattice emerges. The prey cluster in in large groups, occupying a

significant portion of the lattice. The mesopredators cluster in various sized smaller groups with

the larger of these groups occupying lattice sites adjacent to prey clusters. The superpredators

are scattered and tend to form rings around the prey clusters and cluster marginally near

mesopredator population. Figure 9 shows a close up image of the lattice and provides a better

view of the various clustering and scattering phenomenon.
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Figure 10: Snapshots of population map at every two years starting at year 300 for standard

parameters.

These clustering effects demonstrate that the simulation has produced natural behavior even

though such behavior was not explicitly added. The clustering of the prey is interpreted as a
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Figure 11: Close up of snapshots of population map at every two years starting at year 300 for

standard parameters.

defense mechanism to protect them from their predators. The mesopredator clustering is a result

of their high birth rate as they swarm through any large open areas on the lattice or through
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prey clusters. In general the mesopredators tend to ‘chase’ the prey since the prey’s birth rate

exceeds the predation rate of the mesopredator. In effect, the prey consume empty space on

the lattice faster than the mesopredators can consume them. The superpredator scattering is

a result of its lack of intrinsic birth rate, since they cannot reproduce to maintain their own

clusters. The ring around prey sites results from the predation rate of the superpredator, as

well as, the the low value in η31. Superpredators will consume prey on the outside edge of a

prey cluster but are not likely to reproduce after consumption. The small amount of clustering

seen in the superpredators near the mesopredator cluster is the result of the higher η32 value

and the mesopredator’s large birth rate. Superpredators will consume the mesopredators and

will tend to wipe out a cluster due to the high availability of the mesopredator from its birth

rate. These dynamic effects are illustrated in Figure 10 which displays the population map at

two-year intervals.

An interesting clustering effect that can only be seen on smaller scales, as in the close up

images of Figure 11, is that the prey can, in effect, kill off the superpredator. Notice that

in the center of the large prey cluster depicted in Figure 11 there exist a small number of

superpredators. This particular structure could only occur by the prey giving birth to new

prey over time and surrounding the superpredators. Over time this superpredator population

decreases until it finally dies out. This example demonstrates how superpredators are dependant

upon the mesopredator population; superpredators cut off from a mesopredator cluster will

eventually die out over time, even when surrounded by prey.
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6.3 Comparisons and Recomendations
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Figure 12: Time series of the Mesopredator Release with μ3 changing from 1
10

to 1
5

on a 150×150

lattice.

The mesopredator release suggests that a decline in the superpredator population causes a

significant rise in the mesopredator population and leads to the extinction of the prey. One of the

explored control strategies for aiding endangered prey species is the removal of superpredators

from the ecosystem. In many cases, this is not the optimal strategy as it may lead to an increase

in smaller predators followed by the extinction of the endangered species. Previous studies

[7, 14], as well as, the results of our spatial model, support the existence of this hypothesis.

In our model, we developed a simulation that displays coexistence between the three species.

We then increased μ3 to simulate rapid eradication of superpredators from the ecosystem; this

immediately led to an increase in the mesopredator population, and then the annihilation of

the prey population (see Figure 12).
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Studies by Courchamp et. al. also give rise to other scenarios of coexistence that the spatial

model can reaffirm [7]. For instance, coexistence between both predators in the absence of the

prey population are feasible when prey death rate or mesopredator predation rate is relatively

greater than the standard parameters values that would give coexistence (see Appendix B,

figures 17(c) and 19(c)). Coexistence is practicable because mesopredators are omnivorous and

can survive in the absence of prey, while the superpredators maintain their population from

a persistent number of mesopredators. Another interesting phenomenon is the case where the

superpredators drive the mesopredators to extinction and not the prey. This occurrence can

be observed in the simulation when the prey has a moderately high birth rate (see Appendix B

figure 13). In essence, the mesopredators go extinct as a result of being outcompeted for space

by the growing prey population, and the superpredators survive because of the availability of

prey.

By introducing space to the study of superpredator-mesopredator-prey dynamics we include

functional response of the predators as originally suggested and utilized by Fan et. al. [14]. The

term functional response refers to the interference between predators of the same species when

foraging for food; this occurrence is also known as intraspecific competition. Since foraging

is a local event in our model, having two predators on adjacent sites of the lattice reduces

the effectiveness of their search for food (for more explanation and pictorial understanding see

Section 6.2 above).

Extinction is a threat many species face across the world, especially island bird popula-

tions. The purpose of this research was to develop a more realistic model of superpredator-
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mesopredator-prey dynamics and, through analysis of the model, determine a more practical

control method for the conservation of endangered prey species. The most realistic management

method for maintaining the prey at high levels and the predators at relatively low levels is to

control the mesopredator population (increased death rate) (see Appendix B Figures 17(c) and

18(c)).

7 Conclusion

We conclude that the inclusion of space in our model has a significant effect on the results

of the model, particularly with respect to the parameters (see Appendix B). Space plays an

important role in analysis of the system and its inclusion will produce nonintuitive results for

varying some parameters. For example, we observed that increasing the natural birth rate

of the mesopredator can have a deleterious effect on their population level; an effect that is

both unexpected and unrepresented in both approximation models. The importance of space

is also noted in the resulting ‘real-world’ behavior of the species in the simulation. This result,

though intuitive, cannot fully be represented in the spatially-implicit mean field model or the

spatially-local pair approximation model.

Furthermore, the results presented here coincide with reports from previous models. And

to our knowledge, this is the first study to incorporate space into the study of superpredator-

mesopredator-prey systems, which was one of the recommendations that Courchamp and collab-

orators mentioned in their work [7]. Finally, we can have a persistent population of prey solely

by controlling the population of mesopredators. Also, the suppression of the superpredator has
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a negative effect on the prey population.

Our recommendations for future work lie in three main areas: more inclusive, realistic

simulations, biologically sound parameter values, and more precise approximation methods.

We recommend that future simulations of our model look at the inclusion of heterogenous

landscapes for the species to live on. In our model, we have ignored any effect that a clustered

landscape could have on our system. Simulations including non-torodial boundary conditions,

such as Dirichlet or Neuman boundary conditions, where the entire lattice could represent a

single island system are also future possibilities. Since a simulation of this magnitude would

possibly require an exceptionally large lattice size, we also look forward to creating a version

of our simulation that can run on these lattice sizes (over 1000 × 1000), and possibly develop

the model in a parallel environment. Our parameters need to be refined in order to see if our

simulation does accurately model reality; in particular, the values for the various η parameters

need further verification. The mean field and pair approximation methods do not adequately

capture the complex spatial dynamics of our model and as such more accurate approximations

that account for large regions of space need to be applied to the model.
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A Appendix

This Appendix lists the nine pair approximation equations:

dP [00]
dt

= 2P [01]
(

μ1 +
3
4
ν2Q2|1 (1 − η2) +

3
4
ν3Q3|1 (1 − η31)

)

+2P [02]
(

μ2 +
3
4
ν3Q3|2 (1 − η32) + 2P [03]μ3

)

−2P [00]
(

3
4
φ1Q1|0 +

3
4
φ2Q2|0 +

3
4
φ3Q3|0

)
(11)

dP [01]
dt

= P [00]
3
4
φ1Q1|0 + P [11]

(
μ1 +

3
4
ν2Q2|1 (1 − η2) +

3
4
ν3Q3|1 (1 − η31)

)

+P [12]
(

μ2 +
3
4
ν3Q3|2 (1 − η32)

)
+ P [13]μ3

−P [01]
(

μ1 + φ1

(
3
4
Q1|0 +

1
4

)
+

3
4
φ2Q2|0 +

3
4
φ3Q3|0 +

3
4
ν2Q2|1 +

3
4
ν3Q3|1

)
(12)

dP [02]
dt

= P [00]
3
4
φ2Q2|0 + P [12]

(
μ1 + ν2

(
3
4
Q2|1 +

1
4

)
(1 − η2) +

3
4
ν3Q3|1 (1 − η31)

)

+P [22]
(

μ2 +
3
4
ν3Q3|2 (1 − η32)

)
+ P [23]μ3 + P [01]

3
4
Q2|1ν2η2

−P [02]
(

μ2 +
3
4
ν3Q3|2 +

3
4
φ1Q1|0 + φ2

(
3
4
Q2|0 +

1
4

)
+

3
4
φ3Q3|0

)
(13)

dP [03]
dt

= P [00]
3
4
φ3Q3|0 + P [01]

3
4
Q3|1ν3η3|1 + P [02]

3
4
Q3|2ν3η32

+P [13]
(

μ1 +
3
4
ν2Q2|1 (1 − η2) + ν3

(
3
4
Q3|1 +

1
4

)
(1 − η31)

)

+P [23]
(

μ2 + ν3

(
3
4
Q3|2 +

1
4

)
(1 − η32)

)
+ P [33]μ3

−P [03]
(

μ3 +
3
4
φ1Q1|0 +

3
4
φ2Q2|0 + φ3

(
3
4
Q3|0 +

1
4

))
(14)
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dP [11]
dt

= 2P [01]φ1

(
3
4
Q1|0 +

1
4

)

−2P [11]
(

μ1 +
3
4
ν2Q2|1 +

3
4
ν3Q3|1

)
(15)

dP [12]
dt

= P [02]
3
4
φ1Q1|0 + P [01]

3
4
φ2Q2|0

+P [11]
3
4
ν2η2Q21

−P [12]
(

μ1 + μ2 + ν2

(
3
4
Q2|1 +

1
4

)
+ ν3

(
3
4
Q3|1 +

3
4
Q3|2

))
(16)

dP [13]
dt

= P [03]
3
4
φ1Q1|0 + P [01]

3
4
φ3Q3|0

+P [11]
3
4
ν3η31Q3|1 + P [12]

3
4
ν3η32Q3|2

−P [13]
(

μ1 + μ3 +
3
4
ν2Q2|1 + ν3

(
3
4
Q3|1 +

1
4

))
(17)

dP [22]
dt

= 2P [02]φ2

(
3
4
Q2|0 +

1
4

)

+2P [12]ν2η2

(
3
4
Q2|1 +

1
4

)

−2P [22]
(

μ2 +
3
4
ν3Q3|2

)
(18)

dP [23]
dt

= P [03]
3
4
φ2Q2|0 + P [02]

3
4
φ3Q3|0

+P [13]
3
4
ν2η2Q2|1 + P [12]

3
4
ν3η31Q3|1 + P [22]

3
4
ν3η32Q3|2

−P [23]
(

μ2 + μ3 + ν3

(
3
4
Q3|2 +

1
4

))
(19)

B Appendix

This is a list of figures that depict the change in the mean field approximation, pair approxi-

mation and the simulation when changing our eleven parameters.
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Figure 13: Plots of Mean Field Model (a), Pair Approximation (b) and Simulation Equilibria

(c) versus φ1
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Figure 14: Plots of Mean Field Model (a), Pair Approximation (b) and Simulation Equilibria

(c) versus φ2
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Figure 15: Plots of Mean Field Model (a), Pair Approximation (b) and Simulation Equilibria

(c) versus φ3
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Figure 16: Plots of Mean Field Model (a), Pair Approximation (b) and Simulation Equilibria

(c) versus μ1
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Figure 17: Plots of Mean Field Model (a), Pair Approximation (b) and Simulation Equilibria

(c) versus μ2
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Figure 18: Plots of Mean Field Model (a), Pair Approximation (b) and Simulation Equilibria

(c) versus μ3
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Figure 19: Plots of Mean Field Model (a), Pair Approximation (b) and Simulation Equilibria

(c) versus ν2
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Figure 20: Plots of Mean Field Model (a), Pair Approximation (b) and Simulation Equilibria

(c) versus ν3
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Figure 21: Plots of Mean Field Model (a), Pair Approximation (b) and Simulation Equilibria

(c) versus η2

0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0.3

η31

Eq
ui

lib
riu

m
 P

ro
po

rti
on

s

MF: Prey
MF: Meso
MF: Super
Standard Values

(a)

0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0.3

η31

Eq
ui

lib
riu

m
 P

ro
po

rti
on

s

PA: Prey
PA: Meso
PA: Super
Standard Values

(b)

0.01 0.015 0.02 0.025 0.03
0

0.05

0.1

0.15

0.2

0.25

η31

Eq
ui

lib
riu

m
 P

ro
po

rti
on

s

SIM: Prey
SIM: Meso
SIM: Super
Standard Values

(c)

Figure 22: Plots of Mean Field Model (a), Pair Approximation (b) and Simulation Equilibria

(c) versus η31

52



0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

η32

Eq
ui

lib
riu

m
 P

ro
po

rti
on

s MF: Prey
MF: Meso
MF: Super
Standard Values

(a)

0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

η32

Eq
ui

lib
riu

m
 P

ro
po

rti
on

s

PA: Prey
PA: Meso
PA: Super
Standard Values

(b)

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
0

0.1

0.2

0.3

0.4

0.5

0.6

η32

Eq
ui

lib
riu

m
 P

ro
po

rti
on

s

SIM: Prey
SIM: Meso
SIM: Super
Standard Values

(c)

Figure 23: Plots of Mean Field Model (a), Pair Approximation (b) and Simulation Equilibria

(c) versus η32
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