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Abstract

Malaria and HIV are two of the most deadly diseases in Africa. Combined they account

for 4 million deaths each year, and according to the Center for Disease Control and

Prevention (CDC), there is an estimated 5 percent increase in malaria deaths due to

HIV infection in Sub-Saharan Africa. Since the co-infections was recorded, malaria has

seen a 28 percent increase in its prevalence. Malaria associated death rates have nearly

doubled for those with co-infections. We introduce a system of differential equations

linking the host-vector system of malaria with co-infection with HIV. We use data

from Sub-Saharan Africa in general and Malawi in particular where co-infections from

both disease in order to motivate and guide the behavior of our model. We discovered

that when parameter ρ is alter it will effect the way the diseases interact with each
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other as well as separately.

1 Introduction

The Sub-Saharan region of Africa has many endemic diseases including malaria and HIV,

which are two of the most deadliest diseases of our time [7]. The geographic overlap of

these diseases (see Figures 1 and 2) in Sub-Saharan Africa facilitates co-infections with

HIV and malaria [15]. Since both diseases are endemic and the length of infection for both

diseases can be several years, the burden of co-infection is a real and pressing problem.

Malaria is an old disease that has been well studied since the late 1800’s by Ross

[14]. Despite over 100 years of study and advanced biological, medical, and mathematical

understanding, we have yet to come to a viable solution for this disease that has already

killed hundreds of millions of individuals. HIV/AIDS, by contrast, is a relatively new

disease that has only been studied since the 1980’s. Like malaria, HIV has received

considerable attention from the scientific community and continues to kill millions while

we search for a cure. While AIDS (last HIV stage) is characterized by the process of

opportunistic infections, malaria is not typical in this regard. The co-infection between

HIV/AIDS and malaria is not well understood. It is our hope that through our model the

joint effects of co-infections are better understood.

The prevalence of HIV in east and south Africa is about 30 percent. From about one

quarter to one third of the malaria patients are infected because of a weakened immune

system caused by HIV infection [9]. On the other hand, malaria increases the viral load

in HIV patients but this effect may be reversed with malaria treatment [7]. Because of

the increase in viral loads in HIV patients from malaria, HIV transmission is thought to

become twice as likely to be passed on to a noninfected individual [15].

In this study we propose a mathematical model for the joint dynamics of HIV and

malaria co-infections. Our model is given by a set of six differential equations (which we

later reduce to four). The details of the co-infection are very complicated, yet, we have
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managed to model the effects of co-infections in a simple setting (a detailed discussion

is deferred to Section 2). The remainder of the paper is organized as follows: below we

give a brief discussion of HIV/AIDS and malaria. In Section 2 we analyze the stability of

our model and find the basic reproductive number of our model, using the next generator

operator approach. In Section 3, we discuss some simplifying assumptions, reduce our

model to a system of four equations, and carry out the corresponding stability analysis.

In Section 4, we examine the model in the absence of malaria and also in the absence of

HIV. In Section 5, we discuss our conclusions, list avenues for potential future work and

acknowledgements are in section 6. Finally we include mathematical derivations of R0

and Matlab code in the Appendix.

1.1 HIV/AIDS

HIV has killed an estimated 25 million individuals world wide [1]. Since it was discovered

in 1981, HIV has become one of the leading causes of death, globally, affecting mostly

impoverished people already suffering from poor nutrition and health[15]. HIV stands for

human immunodeficiency virus; it is a virus that attacks the immune system. While HIV

does not kill, it causes the immune system to become defenseless against other opportunis-

tic diseases it could normally fight off. An estimated 25 million people are infected with

HIV each year in Africa [15].

1.2 Malaria

According to the CDC, malaria was first discovered centuries ago by the Chinese in 2700

BC. However it was in the late 1800’s when Ross made his ground breaking discoveries

that led to our understanding of the mechanics behind malaria infection [8]. Malaria is

a mosquito borne disease and kills about 1 to 2 million people a year, of which most are

children [11]. If left untreated malaria attacks the liver and moves through the bloodstream

infecting every organ it can until the body shuts down leading to death. In Africa an

estimated 350 million individuals are infected with the disease [1]. Although malaria is
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Figure 1: Global Prevalence of HIV according to WHO

[17]

treatable, the drugs can be too expensive or too difficult to distribute to the general public

in countries where it is endemic. Like HIV it affects mostly impoverished people and, like

HIV, it is a contributor to the impoverishment of many countries in Sub-Saharan Africa.
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Figure 2: Global Prevalence of Malaria according to WHO

[17]

2 Full Model

There are many challenges in the derivation of an HIV/malaria co-infection model. HIV

has many methods of transmission; the principles being: heterosexual and homosexual

contact, intravenous needle sharing and mother to child transmission. The age group

most affected by each method of transmission varies widely. Malaria is transmitted by a

vector (mosquito), but the exact species varies from region to region. Mostly children die

from malaria. For simplification we assume that our susceptible population is the general

population that is at risk to getting an HIV infection at a rate proportional to the density

of HIV infected people. Similarly, our susceptible population is also assumed to be at risk

to get malaria at a rate proportional to the density of infected mosquitoes.

We divide the total human population, N , into 4 different classes: S, represents the

susceptible class; IM , represents infectious malaria class; IH , represents infectious HIV

class; IHM , represents infectious with both HIV and malaria class; the total mosquito

population, NV , is divided into 2 different classes: V , represents the susceptible vector
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class; and IV , represents the infectious vector class;

It is known that there is an incubation period for malaria [1], but since we are interested

in long term dynamics we ignore any latent or exposed classes. We also assume the total

vector population is constant, but since death is a major concern for people infected with

HIV or malaria, we do include disease induced mortality for people. Thus, the human

population is not assumed to be constant, in fact Malawi has an estimated growth rate

of 2.6 percent. Instead we assume a constant recruitment rate in the S class. We also

assume susceptible people can not simultaneously get infected with malaria and HIV since

the transmission mechanics are completely different for the two diseases. To get to the

IHM class a person must first enter either the IH or the IM class. However, a person in the

IHM class can transmit both diseases. Furthermore, since a person’s immune system is

compromised, that person has a higher probability of transmission given a “contact” has

occurred. Here a “contact” is any process that can transmit an infection. We model this

with an amplification factor ρi, where i depends on classes involved in the transmission.

We arrive at the following system of equations for the Full Model:

dS(t)
dt

= Λ − βV M
IV (t)
NV

S(t) − βH
IH(t)

N S(t) − ρ1βH
IHM (t)

N S(t) + γIM (t) − αS(t)

dIM (t)
dt

= βV M
IV (t)
NV

S(t) − βH
IH(t)

N IM (t) − ρ2βH
IHM (t)

N IM (t) − γIM (t) − (μM + α)IM (t)

dIHM (t)
dt

= ρ3βV M
IV (t)
NV

IH(t) − γkIHM (t) − (μHM + α)IHM (t)

dIH(t)
dt

= βH
S(t)
N IH(t) + ρ1βH

S(t)
N IHM (t) − ρ3βV M

IV (t)
NV

IH(t) + γkIHM (t) − (μH + α)IH(t)

dV (t)
dt

= μV NV − βMV
IM (t)

N V (t) − ρ4βMV
IHM (t)

N V (t) − μV V (t)

dIV (t)
dt

= βMV
IM (t)

N V (t) + ρ4βMV
IHM (t)

N V (t) − μV IV (t)
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Figure 3: Full Model. Note there are two modes of transmission from the classes IM to

IHM , S to IH , and V to IV

Where parameter definitions are given in Table 1, note that the rates relating to the

human population have been rescaled by the initial total population for numerical stability.

7



Table 1: Parameter Definitions
Parameter Definition Malawi Sub-Saharan Africa Ref

Λ Human recruitment rate 0.00039 0.00038 Approx

βH Effective contact rate for HIV infection 0.0005 0.0005 Approx

βMV Rate of infection of people infected by mosquitoes 0.0030 0.12 Approx

βV M Rate of humans which become infected following

bite of an infectious mosquitoes

0.12 0.0030 Approx

γ per capita recovery rate for humans from malaria 0.00001 0.00001 Approx

k reduction factor of the recovery rate for malaria

HIV co-infection

1
2

1
2 Approx

N Total Population of Humans 12800000 767000000 [10]

μH Rate of mortality of humans infected with HIV 2.3∗10−4 2.3∗10−4 [10]

μM Rate of mortality of humans infected with Malaria 3.454∗10−4 3.454∗10−4 [3]

μHM Rate of mortality of humans infected with HIV

and Malaria

1.4∗10−3 1.4∗10−3 Approx

μV Vector daily natural mortality rate 0.1429-0.0714 0.167 [3], [1]

α per capita mortality rate of humans 6.0883∗10−5 5.7078∗10−5 [10]

ρi=1,2,3,4 Amplication factor 4,4,4,4 4,4,4,4 Approx

2.1 Local Stability of the Full Model

The disease free equilibrium (DFE) is straight forward to calculate by setting the infectious

classes (IM ,IH ,IHM ,IV ) equal to zero:

DFE = (So, Io
M , Io

H , Io
HM , V o, Io

V ) = (
Λ
α

, 0, 0, 0, NV , 0)

This implies that the population, in the absence of diseases, will reach a demographic

equilibrium. It remains to study the stability of this equilibrium point.

The basic reproductive number represents the average number of secondary infectious

caused by a “typical” infectious individual in a mostly susceptible population. It is the

threshold parameter that usually determines the stability of the DFE. We use the next
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generation operator approach [5] to arrive at the following R0

R0 = max {R0 H ,R0 M}

where

R0H =
βH

μH + α

and

R0 M =

√
βMV βVM

μv (μM + γ + α)
.

A formal proof is deferred to the Appendix. R0H represents the rate at which HIV is

transmitted (βH) times the average time spent in the HIV class ( 1
μH+α). R0M , represents

the square root of the transmission rate from human to vector (βMV ) times the average

time spent in the infectious vector class ( 1
μV

) times the transmission rate from vector

to human (βV M ) times the average time spent in the infectious malaria class ( 1
μM+γ+α).

There is a square root in this term because malaria is a two step process, meaning for an

infected individual to infect another individual a mosquito must transmit the disease.

We then arrive at the following theorem: If R0 < 1, the DFE is locally asymptotically

stable. The DFE of the Full Model is unstable if R0 > 1 see Appendix for a proof.

We remind the reader that our goal is to understand the dynamics of HIV and malaria

co-infections using the simplest possible model. While R0 gives us insight, physical in-

tuition, and the numerical solutions indicate there should be a co-infection equilibrium

(CE). Unfortunately, our model is too complicated to arrive at an explicit solution for

the CE. Previous work [1] and numerical solution (see Figure 4) pose a possible answer:

the mosquito population is on a fast time scale relative to the dynamics of the human

population. We use this difference in time scale to simplify our model.
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Figure 4: The dynamics of the vectors are on a much faster time scale than the dynamics

of the humans.

3 Reduced Model

We reduce our full model to a system of 4 nonlinear equations as follows: First we note that

the birth rate going into the vector classes is equal to the mortality rate going out of them,

that is the total vector population is constant. Hence, we set V = NV − IV . Furthermore,

we assume that the vector dynamics are fast relative to the humna dynamics, allowing

us to make the pseudo steady state approximation. That is we assume that the vector

system is at a steady state and substitute for V to get:
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I∗V =
βMV NV (IM + ρ4IHM )

βMV IM + ρ4βMV IHM + μV N

Where I∗V is the equilibrium value of the IV class, this is simply a rational function

of IM and IHM . Using the fact that the vector dynamics go a lot faster than human

dynamics lead to the following reduced model:

Figure 5: Reduced Model. The vector population is assumed to reach its equilibrium much

faster than the human population.
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dS(t)
dt

= Λ − βVM βMV (IM+ρ4IHM )S
βMV IM+ρ4βMV IHM +μV N − βHIHS+ρ2βHIHM S

N + γ IM − α S

dIM (t)
dt

= βVM βMV (IM+ρ4IHM )S
βMV IM+ρ4βMV IHM +μV N − βHIHIM+ρ1βHIHM IM

N − μMIM − γ IM − α IM

dIH(t)
dt

= βHIHS+ρ2βHIHM S
N − ρ3βVM IHβMV (IM+ρ4IHM )

βMV IM+ρ4βMV IHM +μV N − μHIH + kγ IHM − α IH

dIIM (dt)
dt

= βHIHIM+ρ1βHIHM IM
N + ρ3βVM IHβMV (IM+ρ4IHM )

βMV IM+ρ4βMV IHM +μV N − μHM IHM − kγ IHM − α IHM

3.1 Local Stability of the Reduced Model

The disease free equilibrium of the Reduced Model (DFER) can be derived from the DFE

and carries the analogous interpretation.

DFER = (So, Io
M , Io

H , Io
HM ) = (

Λ
α

, 0, 0, 0)

Similarly the stability analysis and R0 calculations follow directly from that of the Full

Model.

R0 = max {R0 H ,R0 M}

R0H =
βH

μH + α

R0 M =

√
βMV βVM

μv (μM + γ + α)

Where R0H and R0M have the same biological interpretations as before. It was our hope

that the reduced model would lend itself to an analytical calculation of the coexistence

equilibrium point. However, even with the use of a computer algebra system we were

unable to get an analytical form for it. Instead we employ numerical solutions and single

disease models to gain insight into our problem of co-infection.
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4 Single Disease Vs Co-Infection

To evaluate the effects of co-infection in our model we look at the case of only a single

disease for comparison. The HIV only model is a simple SI model obtained by setting

the infectious malaria classes (IM , IHM and IV ) to zero. The dynamics of this model

are known, the DFE is stable when R0H < 1 and there is a stable HIV only endemic

equilibrium when R0H > 1 [5]. Figure 6 is the phase portrait of the HIV only model with

the parameters from Malawi. Similarly the malaria only model is obtained by setting IH

and IHM to zero. It is a vector-host SI model with essentially the same dynamics as the SI

model. Figure 7 shows the phase portrait of the malaria only model with the parameters

from Malawi.

Figure 6: L = Λ, m = μH , b = βH , a = α
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Figure 7: L = Λ = 0.00039, m1 = μV , m2 = μM , b1 = βV M , b2 = βMV , a = α,

N = S + IM

4.1 Comparison with Co-Infection: Mortality

HIVInsite estimates that additional mortality due to co-infection may increase by less

than 5 percent to 118 percent. Figure 8 compares the total deaths calculated from that

HIV only model, malaria only model, and Full Model. These deaths are calculated with

varying ρ where ρi = ρ for i = 1, 2, 3, 4, we make the assumption that all the (ρi)′s are

equal for simplicity. Since the HIV and malaria only models do not have any co-infections,

they are constant with respect to ρ. With ρ = 1 (there is no additional infectivity due

to co-infection) the increased deaths due to co-infection was approximately 3 percent and

with ρ at approximately thirty, the number of deaths double, agreeing with the HIVInsite

estimate.
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Figure 8: Death Due to Diseases

Since it is not known what the additional infectivity due to co-infection is, we plotted

the diseases induced deaths vs ρ in Figure 9. For ρ small there was very little increased

mortality, but if ρ was larger than 25 then co-infection deaths dominate total deaths.
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Figure 9: Total deaths are dominated by co-infection deaths when ρ is larger than 25 in

the Full Model.
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4.2 Sensitivity Analysis

Table 2: Sensitivity Index for HIV and Malaria
R0 Parameter ∂R0

∂parameter
parameter

R0
Values for Malawi Values for Sub-Saharan Africa

R0H βH 1 1 1

R0H μH − μH

μH+α −0.6969230846 −0.8011759871

R0H α1 − α
μH+α −0.3030769154 −0.1988240130

R0M βMV
1
2

1
2

1
2

R0M βV M
1
2

1
2

1
2

R0M μV − 1
2 − 1

2 − 1
2

R0M μM − 1
2 ∗ μM

μM+γ+α −0.2631486722 −0.03384629978

R0M γ − 1
2 ∗ γ

μM+γ+α −0.1904666128 −0.4605605355

R0M α 1
2 ∗ α

μM+γ+α −0.04638471514 −0.005593164735

Getting reliable data is a ubiquitous problem in mathematical biology. While we were

able to find many of the parameters in Table 1, some parameters were estimated. Thus

we would hope our estimate of R0 is not very sensitive to parameter values. We perform

a sensitivity analysis on R0 with respect to our parameters [3]. The sensitivity index S is

defined as:

S =
partialR0

partialP
∗ P

R0

where P is the parameter of interest.

The sensitivity index is a local estimate of the best way to reduce R0. The larger mag-

nitude of the sensitivity index, the more ’sensitive’ R0 is with respect to that parameter.

For example if we know R0 is dominated by HIV infection, then a 10 percent decrease in

the transmission rate corresponds, roughly, to a 10 percent decrease in R0. However a 10

percent decrease in the death rate corresponds to a 7 percent increase in R0 for Malawi

and an 8 percent increase for Sub-Saharan Africa. Then we are interested in the indices

with the largest magnitude, thus if R0 is dominated by R0H , we want to control βH . On
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the other hand, if R0 is dominated by R0M , then we wan to control βV M , βMV , or μV .

5 Conclusion

A model for the co-infection of HIV and malaria was constructed and analyzed. We

started with a simple system of six equations which we reduced to four. We observed it

was not necessary to explicitly model the vector population to capture the dynamics of

co-infection. Although there is an increase in mortality due to co-infection, this increase

is not pronounced until the amplication factor is approximately 25. In fact, if we assume

their is no additional infectivity due to co-infection, the increased mortality is only 3

percent. However, the mortality nearly doubles when the increased infectivity is 30. The

biological integrations between the malaria parasite and HIV are not fully understood, but

it is conceivable that the parasite or viral load can increase by an order of magnitude due

to co-infection. Future studies should include fitting parameters to data. An investigation

of the co-infection at a cellular level would also be interesting. In our framework we did

not include treatment for simplicity, but treatment is a major component of any approach

to a solution of the HIV and malaria epidemics.
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A Calculation of R0

The next generation operator method is a systematic way to calculate R0 [10]. R0 is

defined as the spectral radius of the next generation matrix. First we separate the classes

into two groups, infectious and non-infectious. Vector F is composed of the new infection

terms of the infectious classes.

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βVM vI s
M

βH iHs+ρ2βH iHM s
N

0

βMV iMv+ρ4βMV iHM v
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The vector V is composed of the remaining terms of the infectious classes.

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βH iH iM+ρ1βH iHM iM
N + μM iM + γ iM + α iM

ρ3βVM iHvI
M + μHiH − kγ iHM + α iH

−βH iH iM+ρ1βH iHM iM
N − ρ3βVM iHvI

M + μHM iHM + kγ iHM + α iHM

μV vI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F and V are the Jacobians of F and V with respect to the infectious classes, respectively.

Then the next generation matrix is defined as V−1F evaluated at the DFE, and R0 is the

dominant eigenvalue of this matrix.

V−1F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 βVM Λ
α MμV

0 βH
μH+α

βHkγ
(μH+α)(μHM +kγ+α) + ρ2βH

μHM +kγ+α 0

0 0 0 0

βMV Mα
Λ (μM+γ+α) 0 ρ4βMV Mα

Λ (μHM +kγ+α) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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For the Reduced Model we have

F =

⎡
⎢⎢⎢⎢⎢⎣

βVM βMV (iM+ρ4iHM )s
βMV iM+ρ4βMV iHM +μV N

βH iHs+ρ2βH iHM s
N

0

⎤
⎥⎥⎥⎥⎥⎦

V =

⎡
⎢⎢⎢⎢⎢⎣

βH iH iM+ρ1βH iHM iM
N + μM iM + γ iM + α iM

ρ3βVM iHβMV (iM+ρ4iHM )
βMV iM+ρ4βMV iHM +μV N + μHiH − kγ iHM + α iH

−βH iH iM+ρ1βH iHM iM
N − ρ3βVM iHβMV (iM+ρ4iHM )

βMV iM+ρ4βMV iHM +μV N + μHM iHM + kγ iHM + α iHM

⎤
⎥⎥⎥⎥⎥⎦

Then the next generation matrix is

V−1F =

⎡
⎢⎢⎢⎢⎢⎣

βVM βMV

μV (μM+γ+α) 0 βVM βMV ρ4

μV (μHM +kγ+α)

0 βH
μH+α

βHkγ
(μH+α)(μHM +kγ+α) + ρ2βH

μHM +kγ+α

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

Note R0M is now
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