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Abstract

Zidovudine and Didanosine are administered in cycles as a part of
an HIV drug therapy. Both are Reverse Transcriptase Inhibitors (RTIs)
that is, they inhibit the replication of the virus in the infected CD4+ T-
cells. A mathematical model is formulated that incorporates four types
of viruses: wild, resistant to Zidovudine, resistant to Didanosine and
resistant to both. The lower bounds for drug efficacies were found by
calculating the basic reproductive number assuming constant efficacies.
A systematic study of drug therapy schemes via numerical simulations
with emphasis on the dynamics of viral count as a function of drug
resistance is performed. The results show that although there is no
optimal schedule for switching of drugs, it is generally better to switch
them within shorter time periods.
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1 Introduction

Over 70 million people are infected with HIV globally with a third of them
expected to die from AIDS [10]. Although there is no cure for this disease, it
has been observed that single-dose and combinations of antiretroviral drugs
can delay the progression of HIV. The major problem associated with the
control of HIV comes from the immune system’s inability to control the
amount and variability of viruses via mutations that are reproduced over
the life span of the infected individuals.

There are four classes of antiretroviral drugs available for treatment
of HIV infected individuals: non-nucleoside reverse transcriptase inhibitors
(NNRTI), nucleoside/nucleotide reverse transcriptase inhibitors (NRTI), pro-
tease inhibitors (PI), and entry/fusion inhibitors (EI). The Highly Active
Antiretroviral Therapy (HAART) has been shown to temporarily suppress
viral loads in infected individuals to a very low level that cannot be de-
tected by assays and tremendously increased the uninfected T-cell counts in
the body [2]. Despite the variety of drug therapies, they still fail to contain
the virus completely in part because of patient’s non adherence to prescribed
dosages, severe side effects, and development of drug resistance [1].

The evolution of drug resistant HIV is of major concern. Many mathe-
matical models have been introduced to study the effect of drug resistance
in the immune system [2, 3, 5, 8, 9, 10, 12]. Models that focus on the impact
or timing of initiating an antiretroviral drug therapy with the goal of maxi-
mizing treatment effect have been studied by [2]. There Jeffrey explores the
use of antiretroviral drugs as control inputs and the results show that the
treatment steady states are dependent upon drug efficacy and model param-
eters, but are independent of when antiretroviral therapy is initiated. This
idea is essential because effective drug therapy can maintain T-cell count,
suppress viral level, and prolong the transition from HIV to AIDS.

With all the complications in HIV, many researchers study different
methods for optimizing the control of the spread of disease throughout the
immune system. There has been continuous work in the study of epidemiol-
ogy and mathematic modelling in HIV for optimal control, for example [4].
The results of this paper give an insight to how important it is for drug ther-
apy adherence. Impulsive differential equations (combinations of systems of
ordinary differential equations and difference equations) have been used to
examine the dynamics of drug resistance with respect to non adherence to
drug protocols (failing to take prescribed dosages) [12]. Between impulses,
the system is continuous and at impulse points there is an instantaneous
rate of change in one or all the variables. The model shows that drug re-
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sistance might appear in both intermediate and high drug concentrations
whereas at low drug levels resistance would not emerge. The emergence of
drug resistance during therapy is modelled in [9]. The results found in this
paper show that drug resistance is more likely to emerge in the presence
of antiretroviral treatment if the basic reproductive ratios of the wild-type
strain and the mutant strain are very close. In addition, the author conclude
that perfect adherence to regimen protocols will suppress the viral load of
the drug sensitive virus while drug resistant strains develop slowly.

In this paper, we administer two RTI, and assume 100 percent adherence.
We do not administer the drugs in combination, but switch between them.
By computing the basic reproductive number we derive a lower bound for
drug efficacy that will result in a disease free equilibrium. Numerical sim-
ulations of the model are used to evaluate how well treatment schedules
suppress the viral load below 50 cells / mL.
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2 Model Description

In order to study the dynamics of drug resistance within a population of
individuals undergoing multi-drug treatment, we introduce a simple model
that incorporates two forms of treatment.

Figure 1: A wild strain of HIV and three different mutant virus strands are
considered in a model describing the effects of drug therapy. The variable
description of the compartment model are in Table 1.
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Model Equations

dTs

dt
= Λ − β0TsV0 − β1TsV1 − β2TsV2 − β3TsV3 − γsTs

dT0

dt
= u0β0TsV0 − γ0T0

dT1

dt
= u1β0TsV0 + (1 − w1)β1TsV1 − γ1T1

dT2

dt
= u2β0TsV0 + (1 − w2)β2TsV2 − γ2T2

dT3

dt
= u3β0TsV0 + w1β1TsV1 + w2β2TsV2 + β3TsV3 − γ3T3

dV0

dt
= N0γ0T0 − c0V0

dV1

dt
= N1γ1T1 − c1V1

dV2

dt
= N2γ2T2 − c2V2

dV3

dt
= N3γ3T3 − c3V3

(1)

Table 1: Definition of Variables

Variables Description
Ts the concentration of non-infected CD4+ T-cells.
T0 concentration of CD4+ T-cells infected with the wild virus.
T1 concentration of CD4+ T-cells infected with the a mutant virus

resistant to Zidovudine.
T2 concentration of CD4+ T-cells infected with the a mutant virus

resistant to Didanosine.
T3 concentration of CD4+ T-cells infected with the a mutant virus

resistant both to Zidovudine and Didanosine.
V0 concentration of wild HIV type.
V1 the concentration of the mutant HIV that is resistant to Zidovu-

dine.
V2 concentration of the mutant HIV that is resistant to Didanosine.
V3 concentration of the mutant HIV that is resistant to Zidovudine

and Didanosine.
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Table 2: Parameter List

Parameters Description Values references

c0 per capita clearance rate of wild virus 23 day−1 [9]
c1 per capita clearance rate of virus resistant to Zidovudine 23 day−1 [9]
c2 per capita clearance rate of virus resistant to Didanosine 23 day−1 [9]
c3 per capita clearance rate of virus resistant to both drugs 23 day−1 [9]
γs per capita death rate of un-infected T-cell 0.01 day−1 [9]
γ0 per capita death rate of T-cell infected with wild virus 1 day−1 [9]
γ1 per capita death rate of T-cell infected with virus resistant

to Zidovudine
1 day−1 [9]

γ2 per capita death rate of T-cell infected with virus resistant
to Didanosine

1 day−1 [9]

γ3 per capita death rate of T-cell infected with virus resistant
to both drugs

1 day−1 [9]

k0 infection coefficient of CD4+ T cells by wild virus 2.4 x 10−8 mL (day−1) [9]
k1 infection coefficient of CD4+ T cells by virus resistant to Zi-

dovudine
2.0 x 10−8 mL (day−1) [9]

k2 infection coefficient of CD4+ T cells by virus resistant to Di-
danosine

2.0 x 10−8 mL (day−1) [9]

k3 infection coefficient of CD4+ T cells by virus resistant to both
drugs

1.67 x 10−8 mL (day−1) approx.

Λ net inflow constant of T-cells from proliferation and other
sources

104 day−1 [2]

N0 average number of virions produced per T cell infected with
wild virus

3000 [9]

N1 average number of virions produced per T cell infected with
virus resistant to Zidovudine

2000 [9]

N2 average number of virions produced per T cell infected with
virus resistant to Didanosine

2000 [9]

N3 average number of virions produced per T cell infected with
virus resistant to both drugs

1333.3 approx.

u0 proportion of wild virus that remain nonresistant to to both
drugs

1 − (u1 + u2 + u3) —

u1 proportion of wild virus that becomes resistant to Zidovudine
during replication

3 x 10−5 [7]

u2 proportion of wild virus that becomes resistant to Didanosine
during replication

3 x 10−5 [7]

u3 proportion of wild virus that becomes resistant to both drugs
during replication

3 x 10−5 [7]

w1 proportion of virus resistant to Zidovudine that becomes re-
sistant to both drugs during replication

3 x 10−5 [7]

w2 proportion of virus resistant to Didanosine that becomes re-
sistant to both drugs during replication

3 x 10−5 [7]
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Susceptible T-cells have a constant input of (Λ) and death rate (γs).
From the interaction of susceptible T-cells and each class of free virus, Vi,
the T-cells become infected at a rate βi that will enter infected classes Ti.
It is assumed that these infected T-cells die at the per capita rate γi.

βi = ki(1 − εi) for i = 0, 1, 2, 3, (2)

where ki are the maximum rate of infection of susceptible T-cells infected
by Vi. The variable εi represents the efficacy of Zidovudine or Didanosine
when these drugs are applied.

After a cell is infected, it begins to produce a large number of viruses
until the cell ruptures and releases these, Ni, new viruses. Virus are cleared
from the body at the rate ci due to the efficacy of the drug therapy and
other factors.

The formula used for drug efficacy is based on the intake of drug into
the cell because it is necessary to take into account the absorbtion time of
medicine [2]. Initially, there is an increase of efficacy because the cell is
absorbing the drug and after the efficacy reaches its peak, the drug decays
so there is a decrease in the efficacy [2]. The formula is given by

ε(t) =

⎧⎨
⎩

ηv + ηw(1
2 − e

−(t−t1)
τr ), t1 < t < tmax,

ηv + ηw(e
−(t−tmax)

τd − 1
2), tmax < t < t2,

ηv is the median efficacy value, ηw is the range of efficacy values, τr is the
rise constant, τd is the decay constant, and tmax is the time until maximum
efficacy is reached. t1 is the start time of dosage, t2 is the end time of dosage,
the values for these parameters can be found in table 3.

Let u0, u1, u2, and u3 to be the probability of T-cells infected with
the wild virus that will remain unresistant to both drugs, build resistance
to Zidovudine, build resistance to Didanosine, and build resistance to both
drugs, respectively. Since the sum of these probabilities is 1, u0 = 1 − u1 −
u2 −u3. Assume w1 and w2 are probabilities of T-cells infected with V1 and
V2 that build resistance to both drugs respectively. Hence, the terms (1−w1)
and (1 − w2) denote the probability that the T-cells which are infected by
V1 and V2 do not mutate.
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Table 3: Parameters of the efficacy function

Parameters Description Values references
ηv median efficacy value see table 4 see table 4
ηw difference between the upper and lower efficacy bounds .2 approx.
τr rise time constant after each dose 0.0144 days approx.
τd decay time constant after each dose 0.0866 days [6]

tmax time it takes for the efficacy to reach its maximum 0.167 days [2]

Figure 2 shows how the efficacy varies over time for a period of five days.

Since there are four viruses and two drugs, there are eight possible values
for ηv depending on which drug is being administered and which virus it is
affecting. The values are shown in Table 4.

Table 4: Efficacy values

Vi efficacy of Zidovudine reference efficacy of Didanosine reference

V0 0.9 [11] 0.85 approx.
V1 0.38 approx. 0.85 approx.
V2 0.9 [11] 0.4 approx.
V3 0.38 approx. 0.4 approx.
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3 Mathematical Analysis

For the mathematical analysis, both drugs are administered simultaneously
for a combined efficacy. Our system has a unique disease free equilibrium
(DFE). The DFE is the state at which no virus or infected cells exist in the
body and is denoted by

E0 = ( Λ
γs

, 0, 0, 0, 0, 0, 0, 0, 0).

Note, that Ts = Λ
γs

is constant. To find the basic reproductive number
we use the next generator operator method (see appendix for derivation).
R0 is given by:

R0 = max(r0, r1, r2, r3),

where

r0 =
Λ
γs

N0β0 (1 − u3 − u1 − u2)
1
c0

,

r1 =
Λ
γs

N1β1 (1 − w1)
1
c1

,

r2 =
Λ
γs

N2β2 (1 − w2)
1
c2

,

r3 =
Λ
γs

N3β3
1
c3

(3)

The biological interpretation of R0 is the average number of infected T-
cells generated by introducing one infected T-cell in an otherwise susceptible
environment during the entire infectious period.

r0 gives the reproductive number for T-cells infected by wild virus. In
other words, it is the average number of T-cells infected with wild strain
generated by one T-cell infected with wild strain. Similarly, r1, r2, r3 are
the reproductive numbers associated with infected T-cells that are resistant
to Zidovudine, Didanosine and both drugs respectively.
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If R0 < 1 then the DFE is locally asymptotically stable, meaning that
the virus is eradicated. Using this criteria and equation (2), we derive the
following expressions for the lower bounds of the drug efficacies.

ε0 >
−γsc0

N0k0Λ(1 − u1 − u2 − u3)
+ 1

ε1 >
−γsc1

N1k1Λ(1 − w1)
+ 1

ε2 >
−γsc2

N2k2Λ(1 − w2)
+ 1

ε3 >
−γsc3

N3k3Λ
+ 1.

Figure 2 shows that the virus populations’ solutions approach DFE when
R0 < 1. When R0 > 1 they approach another equilibrium point as shown
in Figure 3. The parameter values used are from Table 2 except for εi which
are varied.

Figure 2: Numerical simulation using ε0 = 0.6905, ε1 = 0.4349, ε2 = 0.4349
and ε3 = 0.001. In this case R0 < 1.
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Figure 3: Numerical simulation using ε0 = .6805, ε1 = 0.4349, ε2 = 0.4349
and ε3 = 0.001. In this case R0 > 1.

4 Numerical Simulation

The main focus of the numerical simulations is to measure the effective-
ness of drug cycling. Single simulations are run to study the dynamics of
the concentrations of the virus. Multiple runs are used to vary the time
between switching drug therapies. The multiple simulations are run over
approximately a ten year span because this is the average time it takes an
HIV infected patient to develop AIDS [6]. When running these simulations
we consider schedules for switching drugs that suppress virus concentration
below 50 viruses per mL, the level that physicians consider to be successful
[13]. The multiple simulations are run for all possible combinations of treat-
ment periods ranging from 10 days to 200 days in increments of 10 days. We
keep a record of how many plots meet these criteria and record the results
in Figure 4. We also performed a sensitivity analysis with respect to the
parameters Ni, ci, ki, and γi.
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Figure 4: Using the parameters from Table 2 with the initial conditions
Ts = 106 cells/ml and V0 = 500 viruses/ml we run multiple simulations.
The times for the treatment periods are given on the sides of the grid.

4.1 Drug treatment time

One point that arises from the idea of switching between two drugs is the
optimal time to switch. One could choose among any possible combination
of treatment period. Figure 4 shows that for the initial parameters, cy-
cling quickly keeps viral concentration lower than cycling slowly. The virus
initially has a concentration of 500 viruses/ml that quickly drop below 50
viruses/ml due to treatment. After this point, we consider a successful treat-
ment one that maintains the suppression of the virus below 50 viruses/ml.
If a drug is given for too much time, the virus concentration that is resistant
to the drug will be able to increase above 50 viruses/ml. Thus, in general,
short time spans are more successful at keeping virus concentration low.

However, as Figure 4 shows, decreasing the period for one drug is not
always advantageous in keeping virus concentrations low. For instance, when
Zidovudine is administered for 50 days, changing the treatment time for
Didanosine from 20 days to 10 days results in a higher viral concentration.
This occurs because the separation between the periods of the two drugs
is very large. Thus, one can conclude that switching very quickly for both
drugs would be the best way to keep viral concentration low.

Unfortunately, there are some exceptions for this rule. Figure 5 shows
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the result of increasing the burst size and the infection rate of V3. Even
though both rise above 50 viruses/ml, it takes more time for the second
plot to reach that mark. Thus, the periods used in the second plot keep
virus concentration low for a longer period of time. Therefore, cycling very
quickly is not always the most successful way to keep virus concentration
low.

Figure 5: Changing k3 = 1.67x10−8 to k3 = 1.9x10−8 and N3 = 1333.3 to
N3 = 1900 gives us these figures. The first plot is when Zidovudine is given
for 10 days and Didanosine is given for 10 days. The second plot is when
Zidovudine is given for 10 days and Didanosine is given for 60 days. Notice
that the first plot reaches 50 viruses/ml at around 400 days and the second
plot reaches 50 viruses/ml at around 500 days.

4.2 Sensitivity Analysis

We determine the sensitivity of a parameter according to how significantly
the dynamics of the system change when the parameter is changed. A
sensitivity analysis is performed by varying parameters values for infection
rate (ki), burst size (Ni), clearance rate (ci), and rate for infected T-cells (γi).
One can conclude that increasing infection rate, burst size, and T-cell death
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rate and decreasing clearance rate produces a higher virus concentration.
Thus, to test the sensitivity each infection rate, burst size, and T-cell death
rate are increased by 10 percent one at a time and each clearance rate is
decreased by 10 percent. The effects of increasing k0 on the dynamics of
virus concentration are shown in Figure 6.

Figure 6: The first plot is for the parameters in Table 2. The second plot is
when k0 = 2.4x10−8 is changed to k0 = 2.64x10−8.

To measure the sensitivity we measure the time it takes to reach 50
viruses/ml and stay below that concentration. Table 5 shows these times
for changing each of the parameters by 10 percent when Zidovudine is ad-
ministered first and when Didanosine is administered first. From the table,
it is evident that infection rate, burst size, and clearance rate are more
sensitive than infected T-cell death rate. In addition, when Zidovudine is
administered first the parameters associated with the virus resistant to Zi-
dovudine (V1) are more sensitive and when Didanosine is administered first
the parameters associated with the virus resistant to Didanosine (V2) are
more sensitive. The most sensitive parameters are average amount of viral
production of virus resistant to Zidovudine (N1) and the clearance rate of
the virus resistant to Didanosine c2 depending on which drug is given first.
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Another way to measure the sensitivity is to examine the region of ef-
fective control while varying the times that each drug is administered. k0 is
increased by 10 percent and the effects are shown in Figure 7. Notice that
there are less treatment times that maintain virus concentration below 50
viruses/ml. The number of treatment times that maintain low levels of virus
concentration are shown in Table 6. The fewer number of treatment times
that are effective implies that the parameter is more sensitive. Thus, the
parameters associated with V1 are the most sensitive. From this analysis,
k1, N1, N2, and c1 are the most sensitive parameters.

Figure 7: This region of effective control differs from Figure 4 because k0 =
2.4x10−8 is changed to k0 = 2.64 x 10−8.
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Table 5: In this table we consider the time it takes the total virus to decrease
and remain below 50 virus/mL. In each row, we vary the indicated parameter
to the value that is specified.

Parameter Values Zidovudine given 1st Didanosine given 1st

Parameters values in Table 2 84.91 0.11
k0 = 2.64 x 10−8 85.12 0.11 days
k1 = 2.2 x 10−8 99.29 0.11 days
k2 = 2.2 x 10−8 84.81 102.55 days
k3 = 1.83 x 10−8 84.9 0.11 days

c0 = 20.91 84.94 0.12 days
c1 = 20.91 99.63 0.11 days
c2 = 20.91 84.81 102.66 days
c3 = 20.91 84.9 0.11 days
N0 = 3300 84.93 0.14 days
N1 = 2200 99.46 0.11 days
N2 = 2200 84.78 102.75 days

N3 = 1466.7 84.79 0.11 days
γ0 = 1.1 84.86 0.11 days
γ1 = 1.1 86.74 0.11 days
γ2 = 1.1 84.76 90.82 days
γ3 = 1.1 84.89 0.11 days

Table 6: This table shows the number of times that virus concentration is
maintained at 50 virus/mL with the specified Zidovudine and Didanosine
cycle time. The parameters vary in the same manner as Table 5.

Parameter Values # of boxes filled on the grid

initial Parameters 113
k0 = 2.64 x 10−8 98
k1 = 2.2 x 10−8 47
k2 = 2.2 x 10−8 57
k3 = 1.83 x 10−8 113

c0 = 20.91 113
c1 = 20.91 47
c2 = 20.91 57
c3 = 20.91 113
N0 = 3300 113
N1 = 2200 47
N2 = 2200 47

N3 = 1466.7 113
γ0 = 1.1 113
γ1 = 1.1 113
γ2 = 1.1 103
γ3 = 1.1 113
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4.3 Conclusions

First we assumed a constant efficacy for each virus. This gave critical values
for εi that would produce a DFE. If RTI treatment remained this effective,
the virus will eventually be eradicated resulting in a cure for HIV.

However, the efficacies are not constant because of mutations that cause
resistance to the drugs. Thus, we had to complicate the analysis by making
the efficacies change with time. After cycling and non-constant efficacies
were added to the model, numerical analysis had to be used analyze the
dynamics of the system. A combination of single runs as well as multiple
runs were used to analyze the dynamics of this more complicated model.

Using numerical simulations we study the effects of changing the amount
of time that each drug is given. The results show that in general cycling
in shorter periods of time keeps viral concentration lower than cycling in
longer periods of time. In addition, choosing two periods that are far apart
does not allow enough time for one of the viruses to decrease resulting in a
higher virus concentration.

When the infection rate and burst size for V3 are increased Figure 5 shows
a situation when quickly cycling between drugs is not the optimal treatment
for keeping virus concentration low. When infection rate and burst size for
V3 are increased, the lower bound for ε3 becomes high enough to be able to
compete against V1 and V2. When this occurs, using Didanosine lowers the
rate of growth more since it has a higher efficacy for the V3. Thus, a longer
period for Didanosine will keep virus concentration below 50 viruses/ml
longer.

Furthermore, a sensitivity analysis is run to find which parameters should
be changed in order to lower virus concentration to a greater degree. The
results show that infection rate, burst size, and clearance rate are more sen-
sitive than infected T-cell death rate. Also parameters that are associated
with V1 were more sensitive than parameters that were associated with the
other viruses. Finally, it seemed that N1 was the most sensitive parame-
ter. This information is important in identifying ways to optimize treatment
using this drug switching method. Since infection rate, burst size, and clear-
ance rate were the most sensitive parameters, treatments that change these
parameters would be the most effective. In addition, since N1 is the most
sensitive parameter, adding a protease inhibitor, which lowers the number
of infectious viruses that are produced [2], could be very effective for this
treatment method.
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5 Future Works

Further study is required to fully understand the effects and benefits of an-
tiretroviral drug therapy on the progression of HIV. To better understand
the immune response to HIV and drug therapy, we can alter the model by
introducing a class of CD8+ T-cells. This CD8+ T-cell compartment will
capture the effects of how CD8 cells help kill infected T-cells. To this end,
we could also model the input of drugs that helps boost the strength of
these cells in the body. In this model, we consider the time switching of
drug therapy. However, the model does not account for the time delays
associated with the immune response and treatment of the wild strain of
HIV-1. Modeling this time delay will exhibit the actual development of im-
mune responses caused by infection and absorption of treatments. Another
idea we could explore in this paper is optimal drug therapies and strategies
based on variable switching time parameters that could further delay the
progression of HIV.
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A Appendix Next Generator Operator Method

Let �̇x = �F − �V , where �̇x is define as a vector whose elements are the differen-
tial equation of the model, �F represents rate of appearance of new infections
in the compartment of infected T-cells and �V represents the rate of interac-
tion between viruses and T-cells in each compartment. �F and �V are denoted
as follows.
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�F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

(1 − u1 − u2 − u3) β0TsV0

u1β0TsV0 + (1 − w1) β1TsV1

u2β0TsV0 + (1 − w2) β2TsV2

u3β0TsV0 + w1β1TsV1 + w2β2TsV2 + β3TsV3

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Λ + β0TsV0 + β1TsV1 + β2TsV2 + β3TsV3 + γsTs

γ0T0

γ1T1

γ2T2

γ3T3

−N0γ0T0 + c0V0

−N1γ1T1 + c1V1

−N2γ2T2 + c2V2

−N3γ3T3 + c3V3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The Jacobian matrix of �F and �V vectors are:

J�F
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

(1 − u1 − u2 − u3) β0V0 0 0 0 0 (1 − u1 − u2 − u3) β0Ts 0 0 0

u1β0V0 + (1 − w1) β1V1 0 0 0 0 u1β0Ts (1 − w1) β1Ts 0 0

u2β0V0 + (1 − w2) β2V2 0 0 0 0 u2β0Ts 0 (1 − w2) β2Ts 0

u3β0V0 + w1β1V1 + w2β2V2 + β3V3 0 0 0 0 u3β0Ts w1β1Ts w2β2Ts β3Ts

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

J�V
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0V0 + β1V1 + β2V2 + β3V3 + γs 0 0 0 0 β0Ts β1Ts β2Ts β3Ts

0 γ0 0 0 0 0 0 0 0

0 0 γ1 0 0 0 0 0 0

0 0 0 γ2 0 0 0 0 0

0 0 0 0 γ3 0 0 0 0

0 −N0γ0 0 0 0 c0 0 0 0

0 0 −N1γ1 0 0 0 c1 0 0

0 0 0 −N2γ2 0 0 0 c2 0

0 0 0 0 −N3γ3 0 0 0 c3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

19



The Jacobian matrices J�F and J�V evaluated at the DFE are:

J�F
(DFE) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

0 0 0 0 0
(1−u1−u2−u3)β0Λ

γs
0 0 0

0 0 0 0 0
u1β0Λ

γs

(1−w1)β1Λ
γs

0 0

0 0 0 0 0
u2β0Λ

γs
0

(1−w2)β2Λ
γs

0

0 0 0 0 0
u3β0Λ

γs

w1β1Λ
γs

w2β2Λ
γs

β3Λ
γs

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

J�V
(DFE) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γs 0 0 0 0
β0Λ
γs

β1Λ
γs

β2Λ
γs

β3Λ
γs

0 γ0 0 0 0 0 0 0 0

0 0 γ1 0 0 0 0 0 0

0 0 0 γ2 0 0 0 0 0

0 0 0 0 γ3 0 0 0 0

0 −N0γ0 0 0 0 c0 0 0 0

0 0 −N1γ1 0 0 0 c1 0 0

0 0 0 −N2γ2 0 0 0 c2 0

0 0 0 0 −N3γ3 0 0 0 c3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The inverse of the Jacobian of J�V (DFE) is:

J
−1
�V

(DFE) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γs
−1 − N0β0Λ

γs2c0
− N1β1Λ

γs2c1
− N2β2Λ

γs2c2
− N3β3Λ

γs2c3
− β0Λ

γs2c0
− β1Λ

γs2c1
− β2Λ

γs2c2
− β3Λ

γs2c3

0 γ0
−1 0 0 0 0 0 0 0

0 0 γ1
−1 0 0 0 0 0 0

0 0 0 γ2
−1 0 0 0 0 0

0 0 0 0 γ3
−1 0 0 0 0

0
N0
c0

0 0 0 c0
−1 0 0 0

0 0
N1
c1

0 0 0 c1
−1 0 0

0 0 0
N2
c2

0 0 0 c2
−1 0

0 0 0 0
N3
c3

0 0 0 c3
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The Multiplication of J�F (DFE) and J−1
�V

(DFE) is:
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

0
(1−u1−u2−u3)β0Λ N0

γsc0
0 0 0

(1−u1−u2−u3)β0Λ
γsc0

0 0 0

0
N0β0Λ u1

γsc0
(1−w1)β1Λ N1

γsc1
0 0

u1β0Λ
γsc0

(1−w1)β1Λ
γsc1

0 0

0
N0β0Λ u2

γsc0
0

(1−w2)β2Λ N2
γsc2

0
u2β0Λ
γsc0

0
(1−w2)β2Λ

γsc2
0

0
N0β0Λ u3

γsc0
w1β1Λ N1

γsc1
w2β2Λ N2

γsc2
β3Λ N3

γsc3
u3β0Λ
γsc0

w1β1Λ
γsc1

w2β2Λ
γsc2

β3Λ
γsc3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The eigenvalues obtained from J�F (DFE)J−1
�V

(DFE) matrix are:

λ6 =
Λ
γs

N0β0 (1 − u3 − u1 − u2)
1
c0

,

λ7 =
Λ
γs

N1β1 (1 − w1)
1
c1

,

λ8 =
Λ
γs

N2β2 (1 − w2)
1
c2

,

λ9 =
Λ
γs

N3β3
1
c3

.

(4)
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