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Abstract

In recent years, communicable diseases, such as The Avian Flu and SARS, have
dominated the news, and in the process, they have had tremendous impact on public
health policies. In this paper, we introduce a mathematical model that is used to
study epidemics and pandemics. The work is motivated by data on the 1918-1919
influenza pandemic in two cities of Canada, Montreal and Winnipeg. We estimated
model parameters for the two cities using 1918 fall wave epidemic data through non-
linear least square fitting. We then explore the role of heterogeneity via a two-patch
(city) model. For the two-patch version of the model, we derive a formula for a final
size epidemic and the basic reproduction number (Ry). Ry is found to be 9.9695 for
Montreal and 5.5234 for Winnipeg. It is surprising to find that a decrease in infectivity
of infected individuals in the region increases the final epidemic size. The number
of asymptomatic cases in Montreal and Winnipeg were found to be approximately

19,000 and 60,000, respectively. We surmise that the low reporting and high number



of asymptomatic cases can be explained by a lack of public health facilities, and higher

severity of the disease during that period.

1 Introduction

History tells us that influenza viruses have caused even larger amounts of morbidity and
mortality than smallpox, malaria, and West Nile. Influenza rapidly mutates, increasing
its potential ability to wipe out large portions of the human population. It takes five to
eight months to develop partially-effective treatments to combat some influenza strains
[10]. The aim of this paper is to quantify the impact of the associated outbreak in the
cities of Winnipeg and Montreal, in terms of the effect of socioeconomic conditions on the
final size epidemic of the disease.

The pandemic influenza discussed in this paper was a highly contagious viral disease
which emerged in 1918. The disease was transmitted by direct contact via respiratory secre-
tions. Individuals infected with this strain of influenza experienced common flu symptoms;
that is body aches, muscle and joint pain, headache, sore throat, unproductive cough, and
occasional harsh breathing [9]. These symptoms are common to many diseases and often
lead to misdiagnosis. The 1918 flu often progressed into the secondary pneumonia (often
fatal) bacterial infection. The World Health Organization estimates that about 40 to 50
million individuals died during 1918-1919 pandemic [5].

We have focused on studying two cities of Canada, Winnipeg (W) and Montreal (M).
W ass not very dense, and it exhibited a large socioeconomic divide [16]. The northern
area was mainly populated by immigrants holding blue collar jobs. The southern area was
mainly populated by wealthier settlers. M was a port city, and the disease entered the city
by soldiers passing through, since World War I was just ending.

We approximate some epidemiological parameters from data on daily reported cases
and deaths during the fall wave of the influenza pandemic of 1918, in the two mentioned

cities. To this end we study the 1918 influenza outbreak in Winnipeg and Montreal. We



assume that individuals in the poor region would be more susceptible and less aware of the
disease.

In section 2, we describe the model and discuss model assumptions. Here, we define
the model parameters. In section 3, we provide some mathematical analysis, including an
Ry expression, and the final epidemic size relation. In Section 4 we discuss our numerical

results.

2 Model Description
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The fall wave lasted 114 days in Winnipeg |7] and 38 days in Montreal [4]. Consequently,
we do not include births and deaths, since the time scale of interest is short. During our

investigation, we noticed that the population of Winnipeg was significantly divided by the



availability of health care [16]. We therefore decided to focus on the role of socioeconomic
differences on this pandemic. The southern area of the city had more resources, and the
northern zone was occupied by immigrants and working class citizens [16]. More cases per
population were reported in the south than in the north [16].

Some individuals from the north went to work in the south, since the south was the
center of the economy for the city [16]. Although the movement of the people from south
to north was considered relatively low, both populations naturally interacted.

The population is stratified into the following classes: susceptible (S;), latent (L;),
asymptomatic (A;) who always recover, infected and not reported (I;), reported (J;), re-
covered (R;), or dead (D;), where the indices ¢ = n, s correspond to north and south,
respectively. We assume no unreported infectives per unit of time in the south (no Is). N

is the total population; that is N; + N,,.
Bn([n+QnAn+ann
N

We model the mixing as follows: )Sn denotes the number of people
per unit of time in the north infected by residents of the north, and w& the
number of people per unit of time in the south infected by residents of the south. We define
¢; and p; to be the reduction factors in the transmissibility of A; and J;, respectively, with
0<¢g <1,and 0 <p; <1 (see8]).

The number of people of the south infecting people of the north is ﬂsnSnlsAs%, and
the number of people of the north infecting people of the south is ﬁm&%. In this
case, (3;; is the transmission coefficient of infectives from region ¢ infecting susceptibles from
region j. We define [; to be a reduction factor in the transmissibility of A; with 0 < [; < 1,
and k; a reduction factor in the transmissibility of J; with 0 < k; < 1.

Setting [Bsn, and Bhs both equal to zero would represent the north and south each
spreading the disease within their own group. If we consider a population stratified like
the one in the north, we would have a reduced version of this model. In this model,
individuals as classified as susceptible (5), latent (L), asymptomatic (A), infected and not
reported (I), reported (J), recovered (R), or dead (D). N is the total population, and
N(t) = S(t) + L(t) + A(t) + I(t) + J(t) + R(t) at time t [8]. The new infection per unit



time is B(I + gA +pJ)%, where ¢ and p are reduction factors in the transmissibility of A

and J respectively, and 0 < ¢,p < 1.

The reduced model is used for studying the dynamics of both cities, whereas the two-

patch model is discussed in terms of conditions in Winnipeg.

Our model is given by
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where n stands for the northern region, and s stands for southern region of Winnipeg.

Mixing between the north and south populations occurs when S, and f(,s are not

equal to zero.

Table 1 displays the parameters, definitions, and values we use for the two-patch model,

and Table 2 displays those for the one-patch model.



Parameter | Definitions Values Source
Bn, Bs Transmission coefficient related to people in same group | 8 per day, 5.75 per day [8]
Bsny Bns Transmission coefficient due to infectives in south 5.26 per day [8]
(north) infecting susceptiples in north (south)
Gn, Qs Reduction factor of asymptomatic class from same sec- 0.5 [5]
tion
Pn, Ps Reduction factor of clinically diagnosed class 1.0 [5]
ls,ln Reduction factor of asymptomatic class from other sec- 0.5 [5]
tion
ks, kn Reduction factor of clinically diagnosed class from other 1.0 [5]
section
€ Proportion of latent class who proceed to infective class 0.667 [5]
in northern
I Proportion of latent class who proceed to clinically di- 0.667 [5]
agnosed class in southern
K,y Ks Rate of leaving latent class 0.526 per day [18]
Ny Ns Rate of going to recovery class from asymptomatic class 0.244 per day [18]
p Proportion of infectives who recover in northern 0.4 estimated
o Proportion of infectives who get diagnosed in northern 0.58 estimated
Yy Vs Rate of leaving infective class (clinically diagnosed class) 0.244 per day [18]
« Rate of leaving clinically diagnosed class in northern 0.333 per day estimated
P Proportion of clinically diagnosed class who recover in 0.6635 estimated
northern
é Proportion of clinically diagnosed class who recover in 0.3318 data & estimated

southern class

Table 1: Model parameters and their values




Parameter | Definitions Values Sources

J6] Transmission coefficient between people of Montreal 5.75 per day [8]

q Reduction factor of asymptomatic class 0.5 [5]

P Reduction factor of subclinical class 1.0 [5]

€ Proportion going from latent class to subclinical class 0.667 [5]

K Rate of leaving latent class 0.526 per day [18]

n Rate of leaving asymptomatic class 0.244 per day [18]

p Proportion recovering from infective class 0.4 estimated & [5]

o Proportion of entering clinically diagnosed class from 0.58 estimated & [5]
infective class

y Rate of leaving infective class 0.244 per day [18]
Proportion recovering from clinically diagnosed class 0.9953 data & [17]

« Rate of leaving clinically diagnosed class 0.333 per day estimated

Table 2: Parameters of the reduced model
3 Mathematical Analysis

3.1

Basic Reproductive Number

The basic reproductive number (Rp) is an essential concept in studying the dynamics of

the spread of communicable diseases. As mentioned in [22] it is defined as the spatial

radius of the next generation matrix operator. Since the disease-free state is not unique in

our model, we use the method described in [3] for calculating Ry.

For the disease-free equilibria,

Sn—NnyLn:An:In: nzoass—N57As:Js:
Thus the Ry for our model is given by
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where Ny =

Ny, (0) + N4(0).



We consider the first bracketed term.
The first term of this,

611(]71(1 - 6) %
Mn No’
represents the total number of newly infected people generated by one person in the
A,, class. The term

Bnpneo %
« Ny

gives us the total number of newly infected people in the north generated by one individual

of the J, class. In a similar way, the term

Pn€ Sny

Yn No
represents the total number of newly infected people in the north generated by an individual
of the I,, class.

The three other bracketed terms represent the newly infected individuals generated by
cross-infection from north to south, the newly infected individuals in the south, and the
newly infected individuals generated by cross-infection from south to north, respectively.

Since almost everyone is susceptible at the beginning of the epidemic, we assume that
So = Np for Montreal, so that % = 1. Taking this case into account, we find that the

basic reproduction number for our reduced model is given by

€ 1—e€ o€
RO — ﬁ(, + M + L)
gl U A
In this case, ﬁ%, ﬁ@, and BE7 represent the total number of newly infected people

generated by the I class, the A class, and the J class, respectively.

3.2 Final Size of Epidemic

We assume that L,, = Lgy = Ap, = Asy = Jpy =0and L, =Ls_ = A, = As, =

o]

Jnoy = I, =0.



The final epidemic size is given by

So(InSp, —In S, ) < Soﬁn[(v—ﬁn + q"(;n_ 2 p’;“)(sno ~5,) 2)
+1n, (7171 + %)] + SofBsn (lsun:”) + k;f)(Sso —Ss.).

If N were constant, we would be able to write (2) as an equality, with the right side
divided by N (see appendix).

The total number of disease deaths in the model is given by
(1-p— U)’Ynfn +(1— T/J)an +(1— 5)’78js =1 —=p—0)(Sng — Sno) + Ino)
(1 =) [0 (e(Sng = Snos) + Ing))] + (1 = 6)[1(Ssy — Sse) + Lo

The total number of asymptomatic cases is given by

WnAn + 7751213 = (1= €)(Snp — Snoe) + (1 = 1) (Sso — Ss.)
The total number of unreported or untreated cases is given by

Pindn = ple(Ssg = Ss.) + Ing)-

Similarly, the final size epidemic relation for the reduced model under the assumption

of constant population N and no one being infected at the end of the epidemic is given by
Sol 1—
So(ln So —1In Soo) < SORO(SO - SOO) + % (RO B ﬁq<776)) (3)

As described above, we can tabulate total number of disease deaths, asymtomatic cases

and unreported cases for the reduced model.

4 Numerical Results

4.1 Parameter Estimation

Literature review was carried out to obtain point estimates of most of the parameters.

The remaining parameters were obtained from our estimation procedure using the Matlab



function Isqcurvefit for each of the two cities. The nonlinear best curve fit for daily reported
cases is obtained for the reduced model based on the epidemiological data.

The duration for the fall wave was 38 days in Montreal, and 114 days in Winnipeg
(given in Table 3). In 1918, the total population of Montreal was 640,000, and the total
population in Winnipeg was 183,595 [17]. Since the north was occupied by more immigrants
and poor people, we assume that the population in northern Winnipeg was larger than
that of southern Winnipeg. For numerical simulations, we assume that 2/3 of the total
population of Winnipeg lived in the north, and 1/3 lived in the south. The estimates of
the parameters are shown in Table 4.1. The best curve fit for Montreal and Winnipeg are
shown in Figure 1(a) and Figure 1(b), respectively.

The average infectious period of unreported cases is % We estimated the parameter
to have a value of .1231 per day (infectious period of 8.12 days) and .1 per day (infectious
period of 10 days) for Montreal and Winnipeg, respectively. Therefore, these values lie in
the interval of 6 to 10 days, as reported by [13].

[ data data
curvefit +— curvefit |
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g

(a) Represents the fit curve of the model of Win-  (b) Represents the fit curve of the model of Mon-
nipeg in the epidemic data of 1918 in Winnipeg. treal in the epidemic data of 1918 in Montreal.

Figure 1: Best curve fit using simple model through Isqcurvefit funtion of MATLAB.

We estimated the total number of asymptomatic cases, unreported cases, and deaths
for the fall wave of the 1918-1919 influenza pandemic in Montreal and Winnipeg. Matlab

ode4 5 solver was used to find the following numbers using their own estimated parameters
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Parameters | Montreal | Winnipeg Units

I} 4.434 1.5 per day

q 0.2754 0.01 dimensionless
v 0.1231 0.1 per day

n 0.1 0.4 per day

p 0.8992 0.9771 dimensionless
Ay 1 30 Individuals
Iy 3 7 Individuals
Ly 0 10 Individuals

Table 3: Table of Estimated Parameters using Reduced Model

given in Table 3. For Montreal these numbers were found to be 19000, 35000, and 3500,

respectively. For Winnipeg the numbers are 60000, 47000, and 2300, respectively.

4.2 Final Size of the Epidemic

The analysis of the final size of the epidemic is carried out using a two-patch model where
parameter values were taken from Table 1.

Since people in the north were mainly poor, we assumed that they are more susceptible
and infective than people in the south. For the purpose of understanding the effect of
socioeconomic status on the final epidemic size in Winnipeg, we introduced two variables:
susceptibility (ks) and infectivity (k;) of an individual in the north relative to an individual
in the south, where kg, k; > 1. Hence, we are able to find the relationship between different
transmission coefficients in our model (8, = Bun = kiksB, Ons = ki3, Bsn = ks, and
Bs = Pss = B). That is, (;; represents the transmission coefficient which is due to an
infective from ¢ infecting a susceptible from j, where ¢ = n,s. We also considered p < €
and n, < ns by the same reasoning.

We calculated the proportion of final size of north (and south) under the above as-

11



sumptions. We use ode4) solver in Matlab to solve the model system for different values
of ks and k;.

We found that the proportion of the final size of epidemic of the north is approx. 0.6
(and hence, the proportion in the south is approx. 1 — 0.6 = 0.4) for all values of kg and
k;. There is a monotonic increase in the proportion of the final size of the epidemic in the
north (south) with an increase in the value of parameter ks . Moreover, the rate of increase
is more for smaller values of ks . The rate of change is large up to a point (ks = 1.5).
The proportion of the final size changes steadily if ks is increased beyond this point. The
proportion of final size changes steadily. It was surprising to find that reduction in the
infectivity, up to a point, of infected individuals in the north increases the proportion of
the final epidemic size (Figure 2).

The proportion of the final epidemic size in the north decreases with an increase in k;
for any fixed value k5. The rate of change is large between zero and some critical value of
k;. For example, this value is approximately 2.2 for ks = 1.2. The change seems negligible

beyond this critical value.

5 Discussion

There are only a few studies on the influenza pandemic of 1918-1919. We decided to focus
on this disease, particularly the 1918 pandemic, because more susceptible people were from
younger generations, which is usually not seen in pandemic influenzas. We chose to focus
on the Canadian cities of Winnipeg and Montreal, for various reasons. For one thing,
these two cities had large populations for the time (Winnipeg had 183,595 and Montreal
had 640,000). Secondly, Montreal is a port city on the coast, so more people were passing
through during this time, especially since World War I ended in 1919. This may have
caused more infection in this city. For Winnipeg, we were able to find information about
the division of economic classes, divided by geographic location.

For our work, we used a compartmental epidemic model, where we divided the popu-
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Figure 2: Proportion of final size epidemic in the north as a function of susceptibility ks

lation of Winnipeg into two parts, rich (south) and poor (north). The model was reduced
into a simplified version in order to compare the outcomes of the two cities. We considered
the fall wave data of 1918-1919 from the Health Department of Canada for both of the
cities.

We estimated the number of asymptomatic cases, unreported and undiagnosed cases,
and deaths, using the simplified model. The model considers the homogeneous mixing
population.

We found that the basic reproductive number, Ry, was 9.9695 for Montreal, and 5.5234
for Winnipeg. In pandemic influenza, Ry ranges from 4 and 16 [13]. Our estimates lie
between this range.

There are some limitations in our model, and it may be inappropriate to model future
pandemic outbreaks in some cities using the model considered here. Although our aim
here is to study the effect of susceptibility and infectivity on the final epidemic size, we

can incorporate education and awareness into the population.
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We should also study the way the population size influences the quantity of the popu-
lation that acquires the disease. We must stress the fact that giving the higher economic
society all the methods needed combat diseases will help them only temporarily. In the
long run, the disease would be spread everywhere. For these reasons, medical procedures

should be provided proportionally to all populations.
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Appendix

Derivation of Basic Reproductive Number (R))

In this subsection we explain how we found the basic reproductive number for the complex
version of the model corresponding to Winnipeg, and the basic reproductive number for
the simple version of the model corresponding to the city of Montreal. We found the Ry

for both cities using a formula from [3].

Ry = tr(IIDQyoB(0, yo, z0)bV 1= B(0,y0, 20)bV " TIDQyq

For the calculation of the Ry for Winnipeg, we use the following transformations:
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Bs = p1a1, Bn = p1a2, Bsn = P201, Bns = p2a2

and
QnZQS:dapn:ps:ﬁals:ln:iaks:kn:l%-

We also use the following matrices

T
1000000
1 —
0100000
10
D = ,
01
o= [ ¥
0 %
Yo = [Sn(0), SS(O)]T
Bxb = | 0 0 pig+pol pol+piq pip+pok pok+mp p1+p2]7
L 0 0 00 0 0]
0O &+ 0 00 0 0
D0 000 0 0
vl o= 0 &80 po0 0 0 |,
ge o 0 0 i 0 ¢
u 1
0 £ 0 00 L o0
€ 1
= 0 0 00 0 L]
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The Ry for the complex model becomes

RO _ |:/8TLQ71(1 - 6) % + ﬂnPnEU Sno + % Sn0:| + |:ﬂnsln(]~ - E)Sno + 5nso—€/€nsng
Mn Ny a  No v No NnNo aNg

+ |:ﬂe(1 - ,U)qus() + ﬂsﬂsso :| + [ﬂsn(l - N)lssso n /Bsnﬂﬁsss.'g]

nsNo vsNo nsNo ¥sNo

where No = N,,(0) + N;(0).

For the calculation of Ry for Montreal, we use the following matrices

Qyo = [1]

Bxb=10,q, 1, p]

—
| =

(o)
) o I O
o Rk O )
) (e} )

2|8 =In z‘

Q=

The basic reproduction number (Ry) for Montreal becomes

o5+ #E  2E)

Derivation of Final size Epidemic Relation

Adding and integrating S, and L,, from 0 to oo, with respect to ¢ gives

Sno — Sna, + Lng — L., = knLy.

oo

17
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Similarly, when we add and integrate S, and L from 0 to oo, with respect to ¢, we get

~

Sy — Sso + Lgg — L. = knln (6)

Soo

Integrating Ai, fi, and JZ where ¢ = n, s, we obtain

MAn = (1 = p)hinLy + Apy — An, (7)
Yol = phinly + Ing — In.. (8)
ad, = a'ynfn + Jng — JIne. - (9)
nsAs = (1= p)rsLs + Agy — As (10)
Vol = prisLs + Jsy — Jan- (11)

We now divide S, by S,, and integrate from 0 to oo with respect to . We get

st = [ P [0y, [0

N(t) t)
> As(t) > Js(t) }
+Dsn ls/ dt"‘ks/ dt| .
1 [ 00 o N
Since N = (S, + Lp + Ap+ In+ Jp+ Rp) + (Ss + Ls + As + Is + Js + Rs), we get the
inequality
In Sno —In Snoo < ﬂn(fn + Qn/ln +pnjn) + ﬂsn(lsﬁs + ksjs)-

Then

SO[ID Sng —1In Snoo] < SO[ﬁn(fn + QHAn +pnjn) + ﬁsn(lsAs + ksjs)] (12)

Substituting (7), (8), (9), (10), and (11) into (12) gives

18



gn(1 —€)

So[ln Sno —lIn Snoo] < SoBn [(i + + pnaae) (Sno - Snoo + Lno - Lnoo)

Tn n
In *In nAn *An n In *In an *Jn
Tn Tin o «
Is(1—p) | ksp
+50ﬂsn|:(T + Vs )(Sso - SSoo +Lso _LSoo)
ls AS _As ks JS _JS
s Vs

This is our final size epidemic relation for Winnipeg. We now follow similar steps to
find the final size epidemic relation for Montreal.

By adding and integrating S and L from 0 to oo, with respect to ¢, we obtain

So — Seo + Lo — Lo = kL. (13)

We add and integrate A, f, and j, respectively, from 0 to oo, with respect to t. We

obtain

nA=(1—erL+ Ay — As (14)
I = erl + Iy — I (15)
M = oyl + Jy — Ju. (16)

We now divide S by S and integrate, getting

ot = [ aokatra [ aaiey [T 2

Since N is not constant,

In Sy —InSe < B + qA + pJ).

Thus

19



Solln Sp — In Seo] < So[B(1 + gA + pJ)). (17)

We substitute (4),(14),(15), and (16) into (17) and get

Y Y

So[ﬂ<j+ QA —l—pj)] = S()R()(S() — Soo =+ L() — Loo)

Io— Lo q(Ag— Ao Io— I, Jo — Jau
+Soﬂ(0 IGD ) pollo ) P ))
% n A A

This implies we have

S()(ln So — In Soo) < S()R()(So —Seo + Lo — Loo)
So(lo — I 1-—
(Sl = L) (Bl =)

€ n
R
+Soﬂp7(JO _)\JOO)

for the final size relation of the epidemic in Montreal. Since [ is not constant, the final
size relation is an inequality [5]. Furthermore, we can assume that at start and end of the

epidemic the number of individuals in the infected classes is zero.

Also, this shows that Sy, is greater than zero, so not everyone in the city was affected
by the pandemic [5]. This relation calculates Sy — S, the total number of people infected
by the pandemic. We can now find the total number of disease deaths, asymptomatic and
symptomatic cases, and unreported and undiagnosed cases.

The total number of disease deaths is given by

(1—p—0)pl+ (1 —P)A] = (1—p—0)[e(So— Seo + Lo — Loo) + L)

+(1 = )[o(e(So — Seo + Lo — Loo) + In) + Jo

20



The total number of asymptomatic cases is given by

~

77A: (1_6)(S0_500+L0_Loo)+A0 (18)

The total number of unreported and undiagnosed cases is given by

p’yj = ,O[E(So - Soo + Lo - Loo) + Io] (19)
Mixing

In this section, we discuss various ways that mixing population and contact process can be
modeled. Restricted mixing (or segregation) is mixing of populations within the same group
[20]. For instance, the mixing of people in the north only with other individuals from the
north. Proportional (or random) mixing is when the entire population is randomly mixing,
and there is the same probability of getting in contact with everyone [20]|. Preferred mixing
(also called Bernoulli Noise) is when there is a different probability of getting in contact
with people from different groups [20].

Since proportional and restricted mixing are special cases of preferred mixing, we state
the definition of preferred mixing. Preferred mixing can be thought of as an approximation
to mixing that results from perfect knowledge of the other unmodeled attributes such as
attractiveness and familiarity [19],[14],[15]. Let p;; be the proportion of total contacts of a
person in group 4 with a person in group j per unit of time [15]. Assume p; is the proportion
of contacts in group ¢ by people of group ¢ with the same group of people, per unit of time
[15]. Then (1 — p;) is the proportion of contacts, outside of group 4, of people in group 4
with people in groups other than i, per unit of time. Let IN; be the total population of
group i [15]. ¢; is the average number of total contacts of a person in group ¢ per unit of
time [15]. These contacts can be inside or outside of the group. ¢;(1 — p;) is the average
number of contacts of people in group ¢ with people in group ¢, outside of group 4, per unit

of time [15].
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We first discuss p;;. This is equal to p; plus (1 — p;) times a reduction factor. The
reduction factor is a fraction with ¢;(1 — p;)N; in the numerator. ¢;(1 — p;)N; is the total
number of contacts of people in group ¢ with people of other groups, in a different section,
per unit of time. The denominator is ), cx(1 — pi) Ny, is the total number of contacts of
people in any group with people of other groups, in a different section, per unit of time.

Note this fraction is less than or equal to 1. This reduction factor explains the preference

ci(1—pi) Ny
>opce(l=pr) N

For p;; where ¢ # j, we do not take into account contacts between members in the

mixing of a particular group of individuals. Thus p; = p; + (1 — p;)

same group, so we can ignore the p; factor. So it is (1 — p;) times a reduction factor
with ¢;(1 — p;)N; in the numerator and ), ¢ (1 — p) Ny in the denominator [15]. So it is

_ & (1-p)N,
pii = (1= pi) s o=

For proportional mixing, we obtain p;; in the same way, except with p; = 1 Then for

. . N;
all i and j, p;; = cjm.
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