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Abstract

Hospital-acquired infections caused by antibiotic-resistant bacteria pose a significant threat
to public health. Antimicrobial cycling, in which antibiotic classes are alternated over time, has
previously been suggested as a strategy for curbing the development of resistance in hospitals.
A mathematical model of antimicrobial cycling in a hospital setting is developed in order to
analyze the efficacy of such a program, with an emphasis on the emergence and significance
of dual resistance. Simulation results compare the effects over time of antimicrobial cycling
programs with mixing programs and their ability to reduce antimicrobial resistance. Our model
also considers the effects of isolating patients harboring dual-resistant bacteria in the hospital.

1 Introduction

Hospital-acquired (nosocomial) infections are costly and dangerous, often resulting in an increase
in health care expenses due to lengthened hospital stay and morbidity. The spread of infection is
of particular concern in hospitals, where many diseased people with weakened immune systems are
situated in close proximity [1].

The problem of infections acquired in the hospital is exacerbated by a rise in resistance to
antibiotics, a justifiable concern considering the growing risks and costs associated with nosocomial
infections. Antibiotic-resistant bacteria are transmitted between patients in hospitals primarily
through contamination of hospital equipment and surfaces as well as human vectors [2]. Previously
antibiotic-susceptible bacteria are being replaced by resistant organisms. Coupled with the lack
of new antimicrobial development, the increasing frequency in resistance threatens a return to a
pre-antibiotic era where current antibiotics are rendered useless [3, 4].

The spread of antibiotic-resistant bacteria has called attention to the need for a method to
successfully control it. Antibiotics themselves are the driving force for the rise and persistence of
resistance within hospital settings. Resistance could theoretically be reduced by cutting down the
overall use of antibiotics, controlling the spread of bacteria, using specific types of antibiotics to
which bacteria are not resistant, reducing how long patients stay in the hospital, and monitoring
health care workers that may be carrying antibiotic-resistant nosocomial pathogens [5]. But these
tactics are more challenging to carry out than they seem. Interventions like these have been
proposed for limiting nosocomial infection, particularly to stem the spread of antibiotic-resistant
bacteria, by focusing on reducing overall bacterial transmission within a hospital. Some have
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proposed to stop the use of all antibiotics in an effort to control the rise of resistance. However, in
this day and age of medicine, this is not considered a practical solution [6].

The implementation of any intervention requires an adequate level of compliance, particularly
that of physicians who have the authority to decide how a patient is treated in the hospital. A
classic intervention technique is to isolate individuals who are symptomatic and confirmed carriers to
effectively contain a contagious disease. A successful isolation program requires the implementation
of strict hygiene precautions to prevent transmission of infection to health-care workers, who in
turn can infect other patients [7]. As a result, physician compliance to any intervention technique
as well as the potential effectiveness of an isolation program should be discussed when dealing with
the problem of nosocomial infection and resistance to antibiotics.

Mathematical models can be beneficial in evaluating solutions to problems involving infectious
disease [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. In epidemiology, mathematical models provide
insight into the underlying mechanisms that influence the spread of disease at the population level.
This makes even a simple model an incredibly powerful tool for suggesting control strategies and
identifying behavior difficult to glean from experimental data [20].

A proposed strategy has been the cycling of formularies of first-line drugs prescribed to hospital
patients. This describes a policy where empiric, or first-line, antibiotic drugs are alternated over a
span of time in months to years in an attempt to slow the evolution and spread of resistant strains
of pathogenic bacteria. Primary treatment of infections by one class of antibiotics is used for some
period of time until resistance to it increases; then, the policy calls for switching to a second class of
antibiotics for which resistance is rare or absent. This is particularly of importance in the intensive
care unit (ICU) where patients are in close contact with one another for a prolonged period of
time and more inclined to be administered broad-spectrum antibiotics. The cycling strategy is
dependent upon the relationship between a particular antibiotic and the level of resistance to the
drug. However, it can be difficult to determine whether or not an intervention was successful or
to compare interventions without any quantitative expression. Such quantitative predictions and
criteria for their evaluation can be offered through the investigation of mathematical models [6, 21].

Bergstrom, et al. [21] developed a model determining whether antimicrobial cycling can be
effective at controlling resistance in a hospital setting. The purpose of their study was to isolate
and illustrate fundamental ecological processes responsible for the success or failure of antimicrobial
cycling programs. Two antimicrobial drugs were considered in this case, and it was assumed that
dual resistance had not yet emerged. Their model tracked populations of patients within the
hospital according to their colonization status. By running several simulations of their model to
compare mixing and cycling drug programs, they were able to show that cycling is unlikely to
reduce the carriage of resistant organisms compared to other alternative drug policies [21].

Levin and Bonten published a commentary on Bergstrom, et al.’s results discussing how resis-
tance to single antibiotics would be higher with cycling than with mixing. The efficacy of cycling two
antibiotics relative to mixing was evaluated using a simple mathematical model of the epidemiology
of antibiotic treatment. It is evident that mathematical models can be used to predict the effective-
ness of control efforts and how they relate to reduction in frequency of antibiotic resistance. Efforts
for controlling resistance should be targeted at the usage and availability of antibiotics, though
policies that wish to reduce the level of antibiotic use in hospitals are difficult to implement due to
unrelenting medical, social, and economic forces [5, 21].

Mathematical models are useful in that they simplify some aspects of transmission dynamics
in order to enhance understanding of other aspects. Although the strategy of antibiotic cycling
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appears promising, there is little evidence that repeated cycling is an effective long-term strategy to
reduce the emergence and spread of antibiotic resistance. Models have been previously developed
for antimicrobial cycling in a hospital setting, and some have shown that cycling is unlikely to
reduce rates of resistance [21]. However, no work has been done on incorporating dual-resistant
bacterial strains in a mathematical model of antimicrobial cycling. The rise of strains of pathogenic
bacteria resistant to multiple antibiotics are of great concern in hospitals, as they result in higher
costs of drugs that may or may not be effective against the infection. Investigating the effects of
resistance to multiple antibiotics in hospitals and comparing them to single resistance may offer
further insight into the dynamics of nosocomial infection transmission. Bergstrom, et al.’s model
assumes that dual resistance has not yet emerged. With multiple resistance rapidly on the rise
across the globe, a model that accounts only for single resistance is insufficient.

In this paper, we incorporate dual resistance to antibiotics in such a way that the spreading
effects of these dual-resistant bacterial strains can be studied within the hospital setting. Analysis
and numerical simulations of the model are used to evaluate the efficacy of a cycling protocol versus
a mixing protocol as well as the effects of varying physician compliance and isolation interventions.
This paper is organized as follows: Chapter 2 presents the formulation of the mathematical model
comprising a system of ordinary differential equations as well as stability analysis on a susceptible-
only equilibrium; simulations of the model including the parameters used are shown, discussed,
and compared to previous results in Chapter 3; a model incorporating isolation of patients with
dual resistance is in Chapter 4; a summary of our findings and their implications are discussed in
Chapter 5; and major conclusions are briefly summarized in Chapter 6.

2 Mathematical Model

2.1 Formulation of the Model

Taking into account the fact that infection with strains resistant to multiple antibiotics is common
in hospital settings, especially in ICUs, a mathematical model is developed. The transmission
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dynamics are governed by the following system of ordinary differential equations:

dS

dt
= (m − S)μ − (τ1 + τ2 + γ)S + σβ(c1R1 + c2R2 + c12R12)S + βSX,

dR1

dt
= (m1 − R1)μ − (τ2 + γ)R1 + β(1 − c1)R1X + σβc12R12R1

−σβ(c1S + (c1 − c2)R2)R1,

dR2

dt
= (m2 − R2)μ − (τ1 + γ)R2 + β(1 − c2)R2X + σβc12R12R2

−σβ(c2S + (c2 − c1)R1)R2,

dR12

dt
= (m12 − R12)μ − γR12 + β(1 − c12)R12X − σβc12(S + (1 − c1)R1 + (1 − c2)R2)R12,

dX

dt
= (1 − m − m1 − m2 − m12 − X)μ + (τ1 + τ2 + γ)S + (τ2 + γ)R1 + (τ1 + γ)R2

+γR12 − βX(S + (1 − c1)R1 + (1 − c2)R2 + (1 − c12)R12).
(1)

This mathematical model tracks several patient populations throughout a hospital according to
their colonization status, depicted in Figure 1. Is it important to note that the model excludes
the actual development of resistance through mutation since we are interested primarily in the
transmission dynamics between patients rather than the dynamics due to conjugation and mutation
at the bacterial level. The state variables and parameters in the model are listed in Table 1. The X
group represents the proportion of patients who are uncolonized by the bacterial species of interest.
The term “uncolonized” is considered in an epidemiological context, including patients who harbor
only a bacterial population too small to transmit to other patients, rendering patients more likely
to be infected by new strains. The S group represents the proportion of patients colonized by the
bacterial species of interest susceptible to both drugs.

There are three R groups, R1, R2, and R12, representing patients colonized by strains resistant
to drug 1, drug 2, and both drugs 1 and 2, respectively. To simplify the model, we assume that
the total patient population size in the hospital remains constant such that the sum of the state
variables X, S, R1, R2, and R12 is one. Patients enter the hospital in any of the states X, S, R1,
R2, and R12 at rates μ(1 - m - m1 - m2 - m12), μm, μm1, μm2, and μm12 per day. The parameter
μ represents the patient turnover rate in the hospital. On average, patients leave the hospital
after staying 1/μ days. Patients colonized with susceptible bacteria and left untreated will remain
colonized an average of 1/γ days. Drug 1 and drug 2 are used at rates τ1 and τ2. It is assumed
that any bacterial strains without resistance to any of the drugs are cleared with drug use.

The colonization rate or primary transmission rate, proportional to the frequencies of each
strain, is described using the rate constant β. The fitness costs to bacteria are described by c1,
c2, and c12, where a lower fitness cost corresponds to a strain that is easier to spread. Fitness
cost is a biological parameter that describes the selective pressure exerted by antibiotics on a
bacterial population. In the presence of antibiotics, the resistant bacteria are at an advantage,
but the development of their resistance comes at a cost to fitness. In the absence of antibiotics,
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the resistant bacteria are less fit, rendering them less able to reproduce, and thus the susceptible
bacteria are at an advantage [22]. The fitness costs c1 and c2 are assumed to be equal for single
resistant strains, and c12 is assumed to be greater as that the strain resistant to both drugs is
more difficult to spread with a smaller initial population of patients infected with the dual-resistant
strain.

The relative rate of secondary colonization to that of primary colonization is described by σ.
In order to simplify the model, we assume that individuals can only be effectively colonized by one
type of bacterium at a time. We also assume that the bacterial strains are in constant competition
with one another and that secondary colonization can only occur by colonization with more fit
strains. The parameter σ is multiplied by the fitness cost according to [21] since the fitness cost of
the bacteria also affects secondary colonization. The parameter α represents physician compliance
to an antibiotic therapy program and is equal to the fraction of patients receiving the currently
indicated drug; this parameter will be used only in numerical simulations.

Figure 1: Schematic of the model incorporating dual resistance.

2.2 Equilibrium and Stability Analysis

The basic reproductive rate of susceptible bacteria in a hypothetical institution where all hosts
entered uncolonized (X), or when m = m1 = m2 = m12 = 0, can be computed as

�S =
β

τ1 + τ2 + μ + γ
. (2)

Similarly, let �R1 , �R2 , and �R12 denote the basic reproductive rates of bacteria resistant to drug
1, drug 2, and both drugs 1 and 2 in a hypothetical institution, respectively. We have

�R1 =
β(1 − c1)
τ2 + μ + γ

, (3)
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Table 1: State variables and defined parameters of the mathematical model.

State Variable Description

S(t) Proportion of patients colonized by susceptible bacteria at time t
R1(t) Proportion of patients colonized by bacterial strain resistant to drug 1 at time t
R2(t) Proportion of patients colonized by bacterial strain resistant to drug 2 at time t
R12(t) Proportion of patients colonized by bacterial strain resistant to both

drugs 1 and 2 at time t
Q(t) Proportion of patients colonized with bacterial strain resistant to both

drugs 1 and 2 in isolation at time t
X(t) Proportion of patients uncolonized by the bacterial species of interest at time t

Parameter Description Value Source

β Per capita primary transmission rate (colonization rate) 1 day−1 [21]
σ Relative rate of secondary colonization to that

of the primary colonization ∈ (0, 1) 0.25 [21]
τi Per capita treatment rate of drug i, i = 1, 2 0.38 day−1

γ Per capita clearance rate of bacteria due to
immune response 0.03 day−1 [6, 21]

μ Per capita patient turnover rate in the hospital 0.10 day−1 [6, 21]
m Proportion of admitted patients already colonized with

sensitive bacteria 0.70 [6, 21]
μmi Rate at which patients colonized by bacterial strains

resistant to drug i enter the hospital 0-0.07 day−1 [21]
ci Fitness cost of a bacterial strain resistant

to drug i, i = 1, 2 0.05
c12 Fitness cost of a bacterial strain resistant

to both drugs 1 and 2 0.15
α Physician compliance, fraction of patients receiving

the currently indicated drug in a cycling program 0.80 [21]
η Per capita isolation rate of patients colonized by

bacterial strains resistant to both drugs 1 and 2 0.01-0.025 day−1

ε Effectiveness of isolation, fraction of patients
perfectly isolated 0.5-1 [23]
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�R2 =
β(1 − c2)
τ1 + μ + γ

, (4)

�R12 =
β(1 − c12)

μ + γ
. (5)

If mi �= 0 for i = 1, 2, then patients colonized with bacteria resistant to drug i are always present
because they are constantly entering the hospital. Similarly, patients colonized with bacteria resis-
tant to both drugs 1 and 2 are always present if m12 �= 0. However, since drug-resistant bacteria
are less common in developed countries such as the U.S., m1, m2 and m12 are very small, and
we can assume that m1 = m2 = m12 = 0. The total population size in the hospital is constant,
where S + R1 + R2 + R12 + X = 1. Since the population is constant, System 1 can be reduced
to four-dimensions. Hence, we only need to study the following system of ordinary differential
equations:

dS

dt
= (m − S)μ − (τ1 + τ2 + γ)S + σβ(c1R1 + c2R2 + c12R12)S

+βS(1 − S − R1 − R2 − R12),

dR1

dt
= −R1μ − (τ2 + γ)R1 + β(1 − c1)R1(1 − S − R1 − R2 − R12) + σβc12R12R1

−σβ(c1S + (c1 − c2)R2)R1,

dR2

dt
= −R2μ − (τ1 + γ)R2 + β(1 − c2)R2(1 − S − R1 − R2 − R12) + σβc12R12R2

−σβ(c2S + (c2 − c1)R1)R2,

dR12

dt
= −R12μ − γR12 + β(1 − c12)R12(1 − S − R1 − R2 − R12)

−σβc12(S + (1 − c1)R1 + (1 − c2)R2)R12

(6)

There is no disease-free equilibrium because m > 0. One of the boundary equilibria is E0 =
(S∗, 0, 0, 0), with

S∗ =
β − (μ + τ1 + τ2 + γ) +

√
(μ + τ1 + τ2 + γ − β)2 + 4mβμ

2β
. (7)

The Jacobian at E0 can be computed as follows

J0 =

⎛
⎜⎜⎝

β − (μ + τ1 + τ2 + γ) − 2βS∗ σβc1S
∗ − βS∗ σβc2S

∗ − βS∗ σβc12S
∗ − βS∗

0 J0(2, 2) 0 0
0 0 J0(3, 3) 0
0 0 0 J0(4, 4)

⎞
⎟⎟⎠ , (8)
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where

J0(2, 2) = β(1 − c1)(1 − S∗) − σc1βS∗ − μ − γ − τ2,

J0(3, 3) = β(1 − c2)(1 − S∗) − σc2βS∗ − μ − γ − τ1,

J0(4, 4) = β(1 − c12)(1 − S∗) − σc12βS∗ − μ − γ.

We know that E0 is locally asymptotically stable if and only if all eigenvalues of the matrix J0 have
a negative real part [20]. Since J0 is an upper triangular matrix, it is easy to obtain the eigenvalues
of J0, namely

λ01 = β − (μ + τ1 + τ2 + γ) − 2βS∗,
λ02 = J0(2, 2) = β(1 − c1)(1 − S∗) − σc1βS∗ − μ − γ − τ2,

λ03 = J0(3, 3) = β(1 − c2)(1 − S∗) − σc2βS∗ − μ − γ − τ1,

λ04 = J0(4, 4) = β(1 − c12)(1 − S∗) − σc12βS∗ − μ − γ.

Since

λ01 = β − (μ + τ1 + τ2 + γ) − [β − (μ + τ1 + τ2 + γ) +
√

(μ + τ1 + τ2 + γ − β)2 + 4mβμ]

= −
√

(μ + τ1 + τ2 + γ − β)2 + 4mβμ < 0,

we only need to make λ02 < 0, λ03 < 0, λ04 < 0 in order to guarantee the local stability of E0.
Notice that

λ02 < 0 ⇔ β(1 − c1)(1 − S∗) < σc1βS∗ + μ + γ + τ2

⇔ β(1 − c1)(1 − S∗)
μ + γ + τ2

<
σc1βS∗

μ + γ + τ2
+ 1 (9)

⇔ �R1 <
σc1βS∗

(1 − S∗)(μ + γ + τ2)
+

1
1 − S∗ .

This can also be expressed as

λ02 < 0 ⇔ [(1 − S∗) − σS∗ c1

1 − c1
]�R1 < 1 (10)

where (1 − S∗) is the proportion available for primary colonization at E0 and σS∗ c1
1−c1

is the pro-
portion of R1 infections recolonized by S∗ bacteria at E0. The difference of these two terms is the
reduction factor in the transmission of R1 at E0 due to established S-type colonizations.

Similarly, we can derive the following inequalities from λ03 < 0 and λ04 < 0, respectively, such that

λ03 < 0 ⇔ �R2 <
σc2βS∗

(1 − S∗)(μ + γ + τ1)
+

1
1 − S∗ (11)

⇔ [(1 − S∗) − σS∗ c2

1 − c2
]�R2 < 1, (12)
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λ04 < 0 ⇔ �R12 <
σc12βS∗

(1 − S∗)(μ + γ)
+

1
1 − S∗ (13)

⇔ [(1 − S∗) − σS∗ c12

1 − c12
]�R12 < 1. (14)

Therefore, we have the following:

Theorem E0 = (S∗, 0, 0, 0) is locally asymptotically stable if and only if the following holds

RS = max([(1−S∗)−σS∗ c1

1 − c1
]�R1 , [(1−S∗)−σS∗ c2

1 − c2
]�R2 , [(1−S∗)−σS∗ c12

1 − c12
]�R12) (15)

where

S∗ =
β − (μ + τ1 + τ2 + γ) +

√
(μ + τ1 + τ2 + γ − β)2 + 4mβμ

2β
.

When RS < 1, then �R1 ,�R2 ,�R12 < 1. Since we are studying the persistence of resistant strains,
this is the equilibrium of interest.

3 Comparison of Antimicrobial Cycling and Mixing Programs
Through Simulation of the Model

Further analysis of the model through numerical simulation provides useful predictions on the effects
of policies for antibiotic usage in hospitals. In this paper, we focus on the effects of antimicrobial
cycling programs relative to mixing regimes, with further assessment of the impact of physician
compliance and isolation interventions. In order to assess the impact due to different usage policies,
the equations in System 1 were simulated using MATLAB R© with appropriate parameter values for
each condition.

3.1 Determination of the Parameters

The mathematical model presented in this paper tracks several patient populations throughout
a hospital according to their colonization status. The parameter values used in the simulations
are shown in Table 1 and are either determined from previous work [6, 21, 23] or selected to
demonstrate the effects of dual-resistance by considering their effects on the reproductive numbers
for each patient group. If the basic reproductive number �S < 1, the disease will die out; if �S > 1,
the disease will be endemic [20]. For the purposes of modeling a situation where susceptible bacteria
remain in an institution, it is assumed that �S > 1 in order to ensure their endemicity.

3.2 Antimicrobial Cycling Programs

An antimicrobial cycling program alternates empiric classes of antibiotics over a given span of time
in an attempt to control the spread of resistant bacteria in a hospital. The mathematical model is
simulated in an antimicrobial cycling program to show the consequences of the spreading of dual-
resistant bacteria in a hospital setting. By incorporating the presence and spread of dual-resistant
pathogens, as our model does, we show that dual resistance has a significant effect and should be
considered when developing a strategy to curtail resistance in hospitals.
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We compare our simulation results with a mathematical model previously developed by Berg-
strom et al. [21] to explore the efficacy of cycling programs. Although the previous model accounts
for many features of hospital-acquired infections by considering two antimicrobial drugs, the authors
focused solely on single resistance, assuming in the model that dual resistance had not yet emerged
or appeared. The model addresses the emergence of dual resistance, but it does not incorporate
spreading or dynamics of dual-resistant bacteria in the hospital [21].

The model presented in this paper builds upon the previous model but is still focused on
examining the efficacy of cycling programs. However, our model assumes that dual resistance
is already present in the hospital, thus considering the effect of spreading dual-resistant bacteria
among patients. In fact, Bergstrom et al. [21] stated that multiple resistance is common in hospital
wards, especially in ICUs. They argued, however, that the dual-resistant strain is impervious to the
use of antibiotics regardless of the cycling and mixing policies. We show that dual resistance does
indeed produce bacteria with greater defenses against antimicrobials, but instituting a particular
usage policy or taking into account different levels of physician compliance can result in controlled
levels of dual resistance.

Figure 2: LEFT: Antibiotic cycling program with single resistance, as developed by Bergstrom et
al. Strain frequencies over time for a cycling program with a drug switch every 90 days and 80%
physician compliance (α = 0.8). Parameter values: m = 0.7; m1 = 0.05; m2 = 0.05; m12 = 0; c1

= 0; c2 = 0; β = 1; μ = 0.1; σ = 0.25; γ = 0.03; and α = 0.8 [21]. RIGHT: Antibiotic cycling
program incorporating dual resistance. Strain frequencies over time for a cycling program with a
drug switch every 90 days and 80% physician compliance (α = 0.8). Parameter values: m = 0.7;
m1 = 0.05; m2 = 0.05; m12 = 0; c1 = 0.05; c2 = 0.05; c12 = 0.15; β = 1; μ = 0.1; σ = 0.25; γ =
0.03; and α = 0.8.

The plot on the left of Figure 2 shows the strain frequencies over time for a cycling program
with a drug switch every 90 days and 80% physician compliance as developed by Bergstrom et al.
Instituting a new drug results in the climbing frequency of the strain resistant to that drug and
declining frequency of the strain resistance to the unused drug. After switching, strains resistant to
the newly instituted drug are rare, resulting in the new antibiotic being temporarily more effective
than usual. This is apparent in the brief upward surge in the fraction of uncolonized patients
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immediately after each switch [21].
Incorporation of dual resistance in the model in System 1 also demonstrates that the cyclic use

of antibiotics results in a cyclic incidence of strain frequencies upon numerical simulation, as shown
in the plot on the right of Figure 2. A low R12 population is maintained for nearly one year before
rapidly increasing and then stabilizing at a fraction of approximately 0.45. As the population of
R12 rapidly increases, R1 and R2 decrease and level out at an average fraction significantly lower
than that of the strain resistant to both drugs. Additionally, after each drug switch, the curve
representing the fraction of uncolonized patients X exhibits a brief upward surge.

Figure 3 shows various combinations of resistant cases when cycling occurs with periods of 365,
90, and 14 days. As the cycling period decreases, the levels of total patients carrying resistant
bacteria remains relatively consistent. Regardless of cycling period length, the fraction of patients
colonized by R12 remains higher than the sum total of R1 and R2, with total resistance levels
reaching upwards of 0.7. At each drug switch, R12 surges upward while R1+R2 drops downward,
indicating that the drug switch causes the R1+R2 to dip temporarily in population size since either
R1 or R2 is treated with the drug. The clearance of one of the drug-resistant strains gives a brief
competitive advantage to R12, allowing it to thrive in the presence of a drug switch.

Figure 3: Fraction of patients carrying resistant bacteria for cycle lengths of 1 year (left), 3 months
(center), and 2 weeks (right). The solid line indicates R1 + R2 + R12, the total fraction of patients
colonized with resistant bacteria under cycling; the dotted line indicates R12, the fraction of patients
colonized with dual-resistant bacteria under cycling; and the dashed line indicates R1 + R2, the
total fraction of patients colonized with single-resistant bacteria under cycling. Parameter values:
m = 0.7; m1 = 0.05; m2 = 0.05; m12 = 0; c1 = 0.05; c2 = 0.05; c12 = 0.15; β = 1; μ = 0.1; σ =
0.25; γ = 0.03; and α = 0.8.

Figure 4 shows the averaged total fraction of patients uncolonized or colonized by the bacterial
strain of interest over a span of one year with cycling. Initially, both the susceptible and uncolonized
fractions of patients drop, while the bacteria resistant to drug 2 and both drugs thrive. As time
progresses, the bacteria resistant only to drug 2 fall into stable oscillation with those resistant only
to drug 1, while the bacteria resistant to both drugs 1 and 2 rise steadily to oscillate around a
fraction of 0.57 with a cycling regime.

Priorities must be taken into account when deciding an appropriate antimicrobial usage pro-
gram. If curbing dual resistance is a greater concern, then a cycling program should be seriously
considered. However, if it would benefit more patients to control both single-resistant strains, then
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Figure 4: Averaged fractions of patients colonized or uncolonized by bacteria. Parameter values:
m = 0.7; m1 = 0.05; m2 = 0.05; m12 = 0.02; c1 = 0.05; c2 = 0.05; c12 = 0.1; β = 1; μ = 0.1; σ =
0.25; γ = 0.03; and α = 0.8.

a mixing protocol may be most appropriate.

3.3 Antimicrobial Mixing Programs

In order to determine whether cycling is an effective strategy for reducing the spread of antibiotic-
resistant bacteria, a cycling protocol is compared to an alternative program: a random mixing
regime. Mixing is the random prescription of drug 1 to half the treated patients and drug 2 to
the other patients receiving treatment. This assumes that mixing is a reasonable approximation
of current antibiotic usage habits in most hospitals; thus, it can serve as a reference against which
cycling can be compared.

Figure 5 shows the long-term mixing program in the total resistant populations. A mixing
program would result in high fraction levels of R1 + R2 + R12 and R12 and very low R1 + R2

levels. Mixing refers to the random prescribing of antimicrobials; if our assumption is that dual
resistance is already present in the hospital, dual-resistant bacteria would thrive in an environment
where mixing was the primary antimicrobial usage protocol since they would always be resistant
to any drug currently being used. The total resistance curve, or patients colonized with resistant
bacteria, stabilizes at a fraction of approximately 0.7. Patients colonized with R12 are significantly
higher fraction than patients colonized with either R1 or R2, again reinforcing the impact of dual
resistance.
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Figure 5: Fraction of patients in a hospital under an antimicrobial mixing regime for the population
of patients carrying resistant bacteria. The solid line indicates R1 + R2 + R12, the dotted line
indicates R12, and the dashed line indicates R1 + R2. Parameter values: m = 0.7; m1 = 0.05; m2

= 0.05; m12 = 0.02; c1 = 0.05; c2 = 0.05; c12 = 0.1; β = 1; μ = 0.1; σ = 0.25; γ = 0.03; α = 0.8;
τ1 = 0; and τ2 = 0.
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3.4 Comparison of Cycling and Mixing Programs

Numerical simulations of our model suggest that cycling programs are more effective at reducing
dual resistance than mixing programs. Figure 6 compares the cycling and mixing protocols for the
fraction of patients colonized with bacteria resistant to both drug 1 and drug 2 for cycling periods
of 1 year, 3 months, and 2 weeks. As the cycling period length decreases, the difference between
cycling and mixing becomes smaller since a cycling period of zero would basically be a mixing
program; thus, the smaller the period, the closer cycling becomes to mixing. Either way, cycling
seems to outperform mixing in every case, regardless of cycling period length.

Figure 6: Fraction of patients carrying only dual-resistant bacteria R12 for cycle lengths of 1 year
(left), 3 months (center), and 2 weeks (right). The solid lines indicate the total fraction of patients
colonized with dual-resistant bacteria under cycling, and the dashed lines indicate the total fraction
of patients colonized with dual-resistant bacteria under a 50-50 mixing regime. Parameter values:
m = 0.7; m1 = 0.05; m2 = 0.05; m12 = 0; c1 = 0.05; c2 = 0.05; c12 = 0.15; β = 1; μ = 0.1; σ =
0.25; γ = 0.03; and α = 0.8.

Figure 7 compares cycling and mixing for single resistance versus total resistance (i.e. including
R12) for cycling period lengths of 1 year, 3 months, and 2 weeks. The total resistance as a result of
both cycling and mixing remain at relatively a similar fraction level of approximately 0.7. This is
significantly higher than that of just R1+R2 and is the case for each cycling period length. These
results further suggest that dual-resistance has a great impact on the fraction of patients colonized
by any resistant bacteria.

Figure 8 shows the fraction of patients colonized by resistant bacteria over the span of one year
as a function of cycle period averaged over 1000 days. As cycle period length increases, the fraction
of infected patients R1 +R2 under the cycling program increases, resulting in approximately a 15%
increase. For the fraction of patients colonized by dual-resistant bacteria, the simulation results
are opposite from R1+R2, clearly demonstrating an advantage to using a cycling program rather
than a mixing program when attempting to reduce dual resistance in hospitals. Finally, as the
cycle period length increases, the curve representing the fraction of patients colonized with total
resistance under a cycling program is slightly lower than that under a mixing program. Generally, if
curbing dual resistance is of greater concern in the hospital, then a cycling program should be used;
however, if the priority is to first help patients suffering from single-resistant bacterial infections,
then a mixing protocol would be best.
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Figure 7: Fraction of patients carrying resistant bacteria for cycle lengths of 1 year (left), 3 months
(center), 2 weeks (right). The solid lines indicate the total fraction of patients colonized with
resistant bacteria under cycling, and the dashed lines indicate the total fraction of patients colonized
with resistant bacteria under a 50-50 mixing regime. Parameter values: m = 0.7; m1 = 0.05; m2 =
0.05; m12 = 0; c1 = 0.05; c2 = 0.05; c12 = 0.15; β = 1; μ = 0.1; σ = 0.25; γ = 0.03; and α = 0.8.

Figure 8: Average fractions of patients colonized by resistant bacteria as a function of cycle pe-
riod. The dashed line indicates a mixing program, and the solid line indicates a cycling program.
Parameter values are as in Table 1.
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3.5 Physician Compliance

Physician compliance is an important factor in evaluating antimicrobial cycling programs. Com-
pliance is described as the fraction of patients that receive the currently indicated drug. When α
= 1, all patients are receiving the currently indicated drug, and when α = 0, half of the patients
receive drug 1 while the other half receives drug 2.

The plot on the left of Figure 9 shows the effect of varying physician compliance α on patients
colonized by bacteria resistant to either drug 1 or drug 2 over two years. The level of physician
compliance results in a dramatic shift in resistance. Interestingly, resistance levels increase when
physicians are more compliant with the cycling program. As previously stated, when α is zero, half
of the patients receive drug 1 while the other half receives drug 2. It then makes sense that a lower
compliance level closer to zero in a cycling program essentially becomes a mixing program, which
is 50-50 by nature. Thus, by administering each drug to half the population, rather than one drug
at any given time, more of the R1+R2 population benefits.

The plot in the center of Figure 9 shows the effect of varying physician compliance α on patients
colonized by bacteria resistant to both drugs 1 and 2. As expected, lower compliance resulted in
relatively stable and low fitness cost. This means that these dual-resistant strains are able to more
easily spread at lower physician compliances. Again, this reinforces the idea that a cycling program
is more effective in reducing dual resistance. Thus, greater compliance to a cycling program limits
the spread of dual resistance.

The plot on the right of Figure 9 shows the effect of varying physician compliance α on total
resistance in the hospital. Increasing compliance results in slightly increased resistance levels. The
curves seem to converge, where 90% compliance results in the highest fraction approaching 0.7.
With regards to total resistance, physician compliance with a cycling program does not result in a
dramatic shift in the number of patients colonized with resistance in the hospital.

Figure 9: The effect of varying physician compliance α on R1 + R2 (left), R12 (center), and R1 +
R2 + R12 (right). Physician compliance was varied from 40-90% to compare the long-term effects
of low compliance versus high compliance over two years. Parameter values: m = 0.7; m1 = 0.05;
m2 = 0.05; m12 = 0; c1 = 0.05; c2 = 0.05; c12 = 0.15; β = 1; μ = 0.1; σ = 0.25; and γ = 0.03.
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4 Isolation of Patients with Dual-Resistant Strains

Since nosocomial transmission of antibiotic-resistant bacterial strains is driven by contact with
patients in the hospital, an intervention of interest is the isolation of infected patients. Essentially,
identified carriers of resistant bacteria can be treated in single rooms with barrier precautions [24]
to restrict contact with the rest of the patient population in the hospital. With the addition of a
new class of isolated individuals Q and the assumption that infected patients are not entering the
hospital from the outside community, the mathematical model is updated to include the following
system of differential equations:

dS

dt
= (m − S)μ − (τ1 + τ2 + γ)S + σβ(c1

R1
1−εQ + c2

R2
1−εQ + c12

R12+(1−ε)Q
1−εQ )S + βS X

1−εQ ,

dR1

dt
= (m1 − R1)μ − (τ2 + γ)R1 + β(1 − c1)R1

X
1−εQ + σβc12

R12+(1−ε)Q
1−εQ R1

−σβ(c1
S

1−εQ + (c1 − c2) R2
1−εQ)R1,

dR2

dt
= (m2 − R2)μ − (τ1 + γ)R2 + β(1 − c2)R2

X
1−εQ + σβc12

R12+(1−ε)Q
1−εQ R2

−σβ(c2
S

1−εQ + (c2 − c1) R1
1−εQ)R2,

dR12

dt
= (m12 − R12)μ − ηR12 − γR12 + β(1 − c12)(R12 + (1 − ε)Q) X

1−εQ

−σβc12(
S+(1−c1)R1+(1−c2)R2

1−εQ )R12,

dQ

dt
= −μQ + ηR12 − σβc12(

S+(1−c1)R1+(1−c2)R2

1−εQ )((1 − ε)Q),

dX

dt
= (1 − m − m1 − m2 − m12 − X)μ + (τ1 + τ2 + γ)S + (τ2 + γ)R1 + (τ1 + γ)R2

+γR12 − βX( S
1−εQ + (1 − c1) R1

1−εQ + (1 − c2) R2
1−εQ + (1 − c12)

R12+(1−ε)Q
1−εQ ).

(16)
This model incorporates an isolation class Q, where the isolation rate is η and the efficacy of isolation
is ε. Patients who are identified to have dual-resistant strains are isolated within the hospital, thus
reducing the overall population subject to the transmission rate β. Following standard incidence
for dynamic models [25], the proportion of patients changes with ε since isolated individuals are
no longer included in the adjusted population subject to patient contact. Additionally, leakage
from Q into other compartments may occur if patients are not entirely effectively isolated. This is
accounted for through the factor (1− ε), such that an isolation program that is 100% effective will
entirely eliminate the Q class from contact with the rest of the patient population. From isolation,
patients can be treated and discharged directly out of the hospital. The schematic diagram in
Figure 10 reflects the incorporation of an isolation class. The impact of an isolation program on
patients undergoing an antimicrobial cycling program is determined through simulation.
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Figure 10: Schematic of the model incorporating isolation of patients with the dual-resistant strain.

4.1 Efficacy of Isolation Through Numerical Simulation of the Model

Isolation of patients colonized with the dual-resistant strain in the hospital is a possible interven-
tion for controlling transmission by limiting patient contact. Numerical simulation of the model
incorporating isolation in System 16 resulted in Figure 11, where efficacy of isolation ε was held
constant at 90% and isolation rate η was varied from 0.01 to 0.025. This was done to examine
the effects of varying the rate of isolation on the overall population of patients harboring resistant
bacteria in the hospital.

As the isolation rate η increased, the isolation Q class increased, and the R12 proportion of the
population decreased. Although the dual-resistant class is reduced as a result of increased isolation
rate, the single-resistant classes R1 and R2 significantly increase. Since the total population of
patients in the hospital remains constant, where the sum of the patient proportions equal one,
the bacterial strains are constantly in competition with each other; therefore, a decrease in dual-
resistant strains results in an increase in single-resistant strains. As the isolation rate increases,
the proportion R12 is reduced, and thus the hospital population consists of more single resistance,
where R1 and R2 are more inclined to flourish in a cycling regime.

To examine the effects of varying isolation efficacy, η was held constant at 0.025 while ε was
varied between 50%, 90%, and 100%. The results of the simulation are shown in Figure 12. The
efficacy of isolation significantly affects the outcome of the persistence of the R12 population; as
ε increased, both Q and R12 decreased. The more effectively isolated the patients are, the lower
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Figure 11: The effect of varying isolation rate η on fraction of patients colonized with dual-resistant
bacteria. Parameter values: m = 0.7; m1 = 0.05; m2 = 0.05; m12 = 0; c1 = 0.05; c2 = 0.05; c12 =
0.15; β = 1; μ = 0.1; σ = 0.25; γ = 0.03; η = 0.01, 0.025; and ε = 0.9.

the levels of R12 are, and the higher the single-resistant populations R1 and R2 become. At 25%
efficacy of isolation, R12 is controlled but still maintains a fairly high fraction level of around 0.3,
outcompeting the single-resistant populations. At 100% efficacy of isolation, the R12 population is
controlled and maintained at a modest fraction level of less than 0.1.

Figure 12: The effect of varying isolation efficacy ε on fraction of patients colonized with dual-
resistant bacteria. Parameter values: m = 0.7; m1 = 0.05; m2 = 0.05; m12 = 0; c1 = 0.05; c2 =
0.05; c12 = 0.15; β = 1; μ = 0.1; σ = 0.25; γ = 0.03; η = 0.025; and ε = 0.5, 0.9, 1.

According to our revised model, which incorporates isolation of R12, both isolation rate and
isolation efficacy are significant factors to consider when implementing an isolation program. Iso-
lation appears to be a potentially effective intervention technique for controlling and maintaining
lower levels of dual resistance in a hospital.
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5 Discussion

The basis of cycling is in the fluctuating selection pressures induced by regularly switching an-
timicrobials, thereby reducing the rate of bacterial adaptation through variations in its habitat
and landscape changes generated by an evolving population. By varying the currently indicated
antimicrobial drug in a hospital ward such as the ICU, the emergence of antibiotic resistance can
be minimized because pathogenic organisms would become continually exposed to varying environ-
ments, consequently limiting their ability to quickly adapt and develop resistance.

However, as Bergstrom et al. previously discussed, the scale of heterogeneity of bacterial clones
in a hospital must be considered in order to assess the impact of mixing and cycling on levels of
resistance. At a scale appropriate for bacterial populations, mixing likely induces greater fluctuation
than cycling in selective conditions, since mixing results in continual fluctuations over shorter
periods of time, while cycling offers consistent selective conditions for an extended period of time
[21].

Our model investigates cycling versus mixing antimicrobial usage policies in a hospital setting
by incorporating transmission of dual resistance, resulting in a model that can describe a more
realistic situation: the threat of multiple-resistant pathogens in an era where only so many classes
of antibiotics are available for treating patients. Previous work assumed that dual resistance had
not yet emerged and therefore did not consider the dynamics of transmission of resistance to both
drugs. Our model assumes that dual resistance is already present in the hospital, making it possible
to consider the effects of spreading.

Numerical simulations of our model clearly demonstrate the significant impact that dual-
resistant strains have on an antimicrobial cycling program in a contained hospital setting. It
was evident, as expected, that cycling of antimicrobial therapies results in a cyclic incidence of
strain frequencies. Just after switching drugs, the fraction of uncolonized patients surges upward,
demonstrating a temporary effectiveness of the antibiotic therapy; this, however, diminishes over
time, as do fractions of patients resistant to only a single drug. After a year of a 90-day cycling
program at 80% physician compliance, the number of patients colonized with the strain resistant to
both drugs dramatically and rapidly increases, persisting as the highest fraction level of patients.

Our model demonstrates that the fraction of patients colonized by strains resistant to both
drugs remains highest regardless of cycling period length. Also, each switch of the drug causes a
brief increase in the R12 and a comparable decrease in R1 + R2; the discrepancy between the two
populations increases with smaller cycle period length. The total resistance levels remain relatively
constant regardless of the length of cycle period, as indicated in Figure 3.

Current practices in prescribing antibiotic therapies are approximated to be essentially random
mixing. Our model simulated a mixing regime under the assumption that dual resistance is already
present in the hospital. Since mixing implies the usage of both drugs 1 and 2 at the same time, part
of the strains that are resistant to only one drug are still targeted, whereas the strain resistant to
both is able to thrive. Simulated results show R12 clearly dominating at a high fraction throughout
any cycling or mixing program, where mixing seems to result in a higher fraction of patients infected
with the dual-resistant strain than longer cycling time period lengths.

Another simulation was run to show the different outcomes when varying physician compliance.
There is great variation in the rate of increase in patients acquiring dual-resistant bacteria, with a
threshold value somewhere in between 85-90% compliance. At 90% physician compliance, as shown
in Figure 9, there is only a slight oscillation of R12 close to a fraction of zero. It is expected that
higher physician compliance would result in a lower fraction of patients colonized with resistant
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bacteria, but it is interesting to note the wide range of fractions as a result of varying physician
compliance. It is also interesting to note that the results are the opposite for R1+R2, meaning that
higher compliance with a cycling program is not effective in curbing single resistance, since mixing
would be the more useful protocol in that case.

Physician compliance is particularly important when studying antibiotic resistance in develop-
ing countries. In many developing countries, several factors contribute to the development and
pervasiveness of antibiotic resistance, including a lack of regulation on drugs, quality control, pa-
tient access to quality health care, patient non-compliance and self medication, lack of reliable
information sources for physicians, and physician misuse of antibiotics. When a patient needs
antibiotics, physicians have a choice of which antibiotic(s) to prescribe. However, especially in
developing countries, physicians tend to be overworked, underinformed, and pressured to prescribe
certain treatments based on availability or cost [26]. Even in developed countries, physicians still
face pressure from pharmaceutical companies or even the patients themselves to prescribe certain
drugs. Thus, when evaluating the effects of an antimicrobial usage policy, it is important to consider
the effects of varying physician compliance.

The potential impact of an isolation protocol was also considered in this paper, and the model
was revised to incorporate an isolation compartment where the R12 class is subject to removal from
the contact population. By increasing the rate of isolation η in an antimicrobial cycling program,
the proportion of patients colonized with dual-resistant bacterial strains was significantly reduced.
Consequently, the proportion of patients colonized with single-resistant bacteria increased. Addi-
tionally, an increase in isolation efficacy ε was shown to have a significant impact on maintaining
lower levels of R12 in the hospital, again at the cost of higher levels of R1 and R2.

These results further demonstrate the importance of establishing priorities when it comes to
treating antibiotic resistance in hospitals. Since dual-resistant bacteria are untreatable by the two
drugs available in this particular model, it would likely be most advantageous to isolate patients
with dual-resistant bacteria, even at the cost of a rise in single resistance. It is also important
to keep in mind that the effectiveness of an isolation program depends on the timely detection of
patients eligible for isolation. Rapid diagnostic testing of those suspected to be infected with the
dual-resistant strain is necessary. Also, a major problem with nosocomial infections is asymptomatic
carriers. Patients entering the hospital may be colonized but unaware of their infectiousness, making
it difficult for the patient to be admitted into isolation. An effective patient isolation program must
consider these issues.

The bottom line, evident throughout this investigation, is that dual resistance simply cannot be
ignored. In our model, R1+R2 and R12 are competing over the susceptible population. Controlling
dual resistance is more significant in this day and age since we face a limited supply of antibiotics;
outbreaks of pathogens resisted to multiple antibiotics could cause a significant amount of damage,
especially to the health and lives of fragile patients as in the ICU. The current mixing policy is not
a bad idea, however, as it seems to have a positive effect in reducing resistant strains, especially in
the case of resistance to only one drug. According to simulations of the model we have developed,
an antimicrobial cycling program is still more useful in reducing overall drug resistance, especially
dual resistance, and should be considered for implementation in hospital settings.
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6 Conclusions

Antimicrobial usage programs can be effective in the fight against rising antibiotic resistance in
hospitals, but our results show that the battle against multiple resistance levels is important to
consider when evaluating drug usage policies. It is shown throughout this paper that an antimi-
crobial cycling program is more useful in reducing dual resistance when compared to a random
mixing regime. Additionally, an intervention involving the isolation of patients colonized with
dual-resistant bacteria is effective in maintaining lower levels of dual resistance in the hospital
setting.

The model presented in this paper may be useful for understanding short-term dynamics of
resistant bacterial transmission in a hospital, but it must be stated that the model’s predictions
cannot necessarily be used to understand trends in antibiotic resistance on a longer-term or global
scale. Resistance does not end at two drugs; if the dynamics of dual-resistant strains are so different
from those of single-resistant strains, it may be prudent to investigate higher orders of resistance.
Nevertheless, the further insight into the problem of nosocomial transmission of antibiotic-resistant
bacteria offered by this model allows for discussion of potential interventions and policies, either
locally or globally, for reducing the prevalence of hospital patients infected with organisms resistant
to multiple therapies.
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