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Abstract

California’s Three Strikes Law has been in effect since 1994. Advocates of this policy claim
it acts as a deterrent for violent crime; yet critics allege it acts solely as an incapacitant–a
device used to segregate a population of “undesirables” from the total population in an at-
tempt to lower criminal susceptibility. To determine the true relationship between these two
intimately connected phenomena, we construct a dynamical model of the Three-Strikes Law
within the framework of inner-city communities located in Los Angeles County. We then
compare this model to one of Los Angeles County before California implemented the Three-
Strike policy–the classical incarceration model. Through qualitative analysis we determine
the basic reproductive number, R0, for each of the models. Using numerical simulations,
we then determine the net change in the total population of reformed inmates and the to-
tal number of incarcerated individuals due to the Three-Strikes Law. We also analyze the
impact of population density on crime rates in states that utilize the Three-Strikes Law.
Finally, we construct and examine a hypothetical One-Strike model to determine the im-
pact of different strike policies on the reformed, criminal and incarcerated populations. We
find that the Three-Strikes policy deters crime better than the classical incarceration policy
in densely populated areas like Los Angeles County. In the context of population density,
the Three-Strikes Law is a better deterrent in a sparsely populated region than a densely
populated region. The optimal policy is found to be one that consists of more than three
strikes.
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1 Introduction

California’s Three-Strikes Law was instituted in 1994 in response to the rising crime
rates and media sensationalism of crimes committed by repeat offenders [13, p. 31]. Though
other states employ similar laws, California has by far the strictest Three-Strikes standards
[10]. Under this policy, those individuals who are convicted of a second “strikable” offence
automatically receive double the sentence. When convicted of the third “strikable” offence,
an individual receives a sentence of life in prison [13, p. 56]. Specifically,

“three-strikers” are eligible for parole but must serve a minimum term that is the
greater of (a) three times the usual sentence, (b) a minimum term of 25 years,
or (c) another term stipulated by other sentencing statutes (e.g., life without
parole or death). [13, p. 56]

According to the Legislative Analyst’s Office, California’s nonpartisan fiscal and
policy advisor, the rationale for the Three-Strikes Law is twofold: sentence enhancements
restrict the ability of repeat offenders to commit additional crimes by removing them from
the population, and the threat of long time incarceration discourages some offenders from
committing new crimes. Clearly, this line of thinking reflects the policy’s ability to both
deter and incapacitate a population susceptible to criminal activity.

Legislative rhetoric about the Three-Strikes Law is extremely controversial [10]. In
2003, Ewing vs. California questioned the constitutionality of the Three-Strikes Law, stating
that it violates the eighth amendment–prohibition against cruel and unusual punishment
[6]. Furthermore, according to the Urban Institute’s study “Did Getting Tough on Crime
Pay?”, nationwide reforms have caused a significant increase in prison populations. This
study asserts that, “there has been a geographical clustering of incarceration...[and] the vast
majority of persons admitted into prisons...have come from comparatively few large urban
areas” [9].

In recent years, the violent crime rate has decreased; the Urban Institute claims that
imprisonment is just one of the many reasons. However, this decrease has not come without
its own costs. As of December 31, 2004, there were almost 43, 000 inmates in California
serving time under the Three-Strikes Law; of this population more than 35, 000 are second
strikers and 7, 500 are third strikers [6]. The statistics indicate a bias toward members of
urban communities. Due to the demographic make-up of urban populations, this law has
significant implications for minorities. Although they make up only 7 percent of the total
population, over 43 percent of the criminals serving their sentence under the Three-Strikes
law are black [13, p. 113]. Ten years after the inception of the Three-Strikes policy, blacks
and hispanics are still over-represented in prison populations [13, p. 114].

According to the California Department of Corrections and Rehabilitation (CDCR),
44 percent of all inmate strikers are convicted of a serious or violent offense, while 56 per-
cent are convicted of nonviolent or nonserious offences [9]. Our model focuses on“strikable”
crimes that are termed violent. Examples of such violent offences, as defined under Califor-
nia State law (Penal Code 667.5), include murder, robbery, rape and other sex crimes [6].
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Hence, violent offenders will be the main focus of our investigation. Moreover, due to the
fact that we are dealing with a deterministic model, concentrating on violent offenders will
eliminate any variation in parameters caused by judiciary discretion.

In our research, we model criminal activity as an infection targeting urban popula-
tions. Our main assumption is that new criminals are produced through contact with ex-
isting criminals. Using three models, we determine the relationship between deterrence and
“incapacitation”: the first model represents the classical incarceration system, the second
model represents incarceration under the Three-Strikes Law and the third is a hypothetical
model in which a population is subject to a One-Strike policy. Through numerical simula-
tion and comparative analysis, we determine whether the Three-Strike Policy is effective at
deterring crime. Specifically, using numerical methods and data from Los Angeles County,
we determine the total number of incarcerated and reformed individuals for each model. In
addition, we analyze the consequences of population density on the efficacy of the Three-
Strikes policy. Using published data from Montana and New Mexico, we determine the
optimal population density for which the Three-Strikes policy is an effective deterrent. We
define optimal population density as the density at which the proportion of reformed indi-
viduals to criminals, and the proportion of reformed individuals to incarcerated individuals,
is maximized.

Unfortunately, there has been little investigation into the dynamics of the Three-
Strikes Law [10]. Many sociological models exist, but they rely heavily on statistical and
probabilistic methods. These investigations will no doubt be helpful in parameter estima-
tion, but offer little in the way of guidance when it comes to dynamical analysis. This paper
builds on the findings of two quantitative studies into the dynamics of urban communities:
one study analyzes the relationship between poverty and crime, and the other specifically
focuses on the Three-Strikes policy. The former,“The Dynamics of Poverty and Crime,”
offers significant insight into the plight of the urban community, while the latter, “Fear of
the First Strike,” serves as a relevant precursor to this paper.

The model used in “The Dynamics of of Poverty and Crime” is similar to our
classical incarceration model (or in this investigation, the Infinite-Strikes model); it is a
deterministic five dimensional system of ODEs with a constant population. In addition, the
model described in Zhao et al. has an “at risk” class that can be influenced by individuals
that are criminals. This paper is an excellent reference in terms of methods for determining
the stability of our crime-free equilibrium. However, the focus of this investigation is the
most cost-efficient way to lower criminality [14]. Clearly, the economics of incarceration is
not our focus, but the results still offer insight into our research problem. It is interesting to
note that in their model, the authors assume “the problem of crime is alleviated by either
decreasing poverty or by increasing the severity of the ensuing punishment” [14]. The study
concluded that it is necessary to control both of these parameters in order to obtain the
most cost-effective strategy to combat crime [14].

“Fear of the First Strike” offers an intriguing mathematical representation of the
Three-Strikes Law. This investigation uses a theoretical model to show that laws imple-
menting a strike system should deter individuals contemplating their first crime [10]. We

3



use this result directly in our Three-Strikes model. However, the mathematics used in Shep-
herd’s economic interpretation of the Three-Strikes Law has little significance with regards
to our model. Nevertheless, her most significant conclusion, that “changing from a system
with no repeat-offender laws to a full two- and three-strikes system would be expected to in-
crease deterrence” [10], gives us a concrete finding with which we can compare and contrast
our results.

In Section 2, we provide an outline of our models. First, we give a brief explanation
of the general framework of both the Infinite-Strikes model and the Three-Strikes model.
Then we define each of the classes, state our assumptions, and describe the parameters
governing our models. Next, we present our flow charts and enumerate each system of
ODEs. In Section 3, we present our analytic computations; this section also contains the
hypothetical One-Strike Model. In Section 4, we provide parameter estimations, and in
Section 5 we perform numerical simulations. In the final sections, we present our results
and state our conclusions. An Appendix is included at the end of this paper that offers
additional analysis and computations.

2 Model Description

In our analysis, we will be considering two models: one with the Three-Strikes Law
and one without. In each model we divide our total population into five base classes: a
class of susceptibles (S), a class of at-risk individuals who have already participated in
criminal activity (C), a class of prisoners (I), a class of released criminals (R) and a class
of reformed criminals (V )–see Figures 1 and 2. In order to accommodate the usage and
effect of the Three-Strikes Law, we design a three-tiered model in which each tier represents
the consequences of a strike. By incorporating this tiered system into one of our models,
we provide an analytical distinction between each deliverance of a strike. Included in each
model is an absorbing state–the reformed class. The reformed class is used to assess the
deterrent effect of the Three-Strikes Law. The incapacitant effect is then determined by the
influx or outflux of imprisoned criminals as measured by the growth or decline in each of
the incarcerated classes.

The general characteristics of each class remain the same in both models. Suscep-
tibles are defined as individuals between the ages of 18 and 49 who live in Los Angeles
County inner-city communities. In the Three-Strikes model, the C, I and R classes are
divided into sub-classes. Criminals are differentiated by the total number of strikes, i, they
have on their records, where i = 0, 1 or 2. The total number of criminals is then represented
by C, where C = C0 + C1 + C2. Once detained and tried, these criminals are then sent to
jail. The Ij classes then represent the imprisoned population, which consists of criminals
who have received j strikes, where j = 1, 2 or 3. After being jailed for a certain amount of
time, these criminals are then released. The Rk classes are the classes of criminals released
with k strikes, where k = 1 or 2. Should they choose to reform, these individuals are then
grouped into the V class, which is the class of reformed criminals.
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Having defined each of our classes, the next step is to clarify the meaning behind
each of our transitions and to explain the various rates involved in those transitions. First,
let us consider the transitions in the Three-Strikes model since all of the transitions in the
Infinite-Strikes model appear in the Three-Strikes model. From S → C0, we assume that the
susceptible population becomes involved in criminal activity only by making contact with
criminals (i.e. people involved in criminal activity). The same is true for the transitions
R1 → C1 and R2 → C2. In both models, we are using mass action incidence; we assume that
population density is a factor in each system. Individuals in each system act simultaneously
and affect each other through various contact processes. For the transitions of the form
Ci → Ii+1, we assume that for those individuals involved in criminal activity (regardless of
the number of strikes on their record), it is only a matter of time before they are caught
and incarcerated. In our model, we ignore the discretionary aspects of the trial process. We
assume that individuals who participate in criminal activity are eventually caught, tried
and sent to prison with an additional strike. After serving the time they were sentenced,
offenders with one or two strikes are released from prison. The transitions I1 → R1 and I2 →
R2 represent this phenomenon. After being released, the criminals are faced with a choice
either to reform or to continue committing crimes. This choice to reform is represented
in the transitions S → V , R1 → V and R2 → V . In essence, susceptible individuals can
decide to remove themselves from criminal activity for life, thus moving immediately from
the S class to the V class. A decision to reform can also be made after being released from
prison with one or two strikes. The deterrent effect of the Three-Strikes Law is incorporated
into these transitions in the form of the parameter ε. Moreover, the rates at which these
transitions are made depend on the number of people who have already received three
strikes and have been sent to prison for life, i.e. the number of people in the I3 class. An
individual’s decision to reform depends on how intimidated he or she is by the prospect of
receiving three strikes: the more people in I3, the more this “intimidation factor” increases.
In both models, we are assuming that individuals are born into the susceptible class at a
constant entry rate and that they leave each class at a constant departure rate.

The meanings associated with the transitions for the Infinite-Strikes model and the
One-Strike model follow directly from the explanations above. The parameters for our
models are described in Table 1.
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Parameters Description
β0 β0C is the rate at which individuals become criminals
β1 β1R1 is the rate at which first strikers commit their second crime
β2 β2R2 is the rate at which second strikers commit their third crime
ω0 rate at which susceptible individuals decide to remove themselves from criminal

activity for life
ω1 rate of reform for first strikers
ω2 rate of reform for second strikers
ψ1 rate of release from prison for first strikers
ψ2 rate of release from prison for second strikers
ε0 deterrent rate for the susceptible population
ε1 deterrent rate for the population of released criminals with one strike
ε2 deterrent rate for the population of released criminals with two strikes
φ rate of a criminal being caught, convicted and sent to jail
δ rate of being sent to jail for life after only receiving one or two strikes
μ the average time that individuals spend in our system

Table 1: Parameter List

Having explained the purpose of each class and the various transitions from one
class to another, we are now ready to introduce the flow charts for each model and their
corresponding systems of equations. The first flow chart is of the Infinite-Strikes model (see
Figure 1); the only absorbing state is the reformed class V .

Figure 1: Flow Chart of an Incarceration System without a Three-Strikes Law
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The Infinite-Strikes model is governed by the following system of ordinary differential
equations:

dS

dt
= μ N − β0 CS − μ S

dC

dt
= β0 CS + β1 CR − φ C − μ C

dI

dt
= φ C − ψ I − μ I

dR

dt
= ψ I − β1 CR − ω R − μ R

dV

dt
= ω R − μ V

N = S + C + I + R + V

The total population N is constant since dN
dt = 0. All parameter values are assumed to be

positive.
Next, we have the flow chart for the Three-Strikes model, which expands the Infinite-

Strikes model to incorporate the hierarchy of strikes present in the Three-Strikes Law.
Notice, there are now two absorbing states, I3 and V .

Figure 2: Flow Chart of an Incarceration System with a Three-Strikes Law
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The Three-Strikes model is governed by the following system of ordinary differential
equations:

dS

dt
= μ N − β0 CS − S

(
ω0 + ε0

I3

N

)
− μ S

dC0

dt
= β0 CS − φ C0 − δ C0 − μ C0

dC1

dt
= β1 CR1 − φ C1 − δ C1 − μ C1

dC2

dt
= β2 CR2 − φ C2 − μ C2

dI1

dt
= φ C0 − ψ1 I1 − μ I1

dI2

dt
= φ C1 − ψ2 I2 − μ I2

dI3

dt
= φ C2 + δ C0 + δ C1 − μ I3

dR1

dt
= ψ1 I1 − β1 CR1 − R1

(
ω1 + ε1

I3

N

)
− μ R1

dR2

dt
= ψ2 I2 − β2 CR2 − R2

(
ω2 + ε2

I3

N

)
− μ R2

dV

dt
= S

(
ω0 + ε0

I3

N

)
+ R1

(
ω1 + ε1

I3

N

)
+ R2

(
ω2 + ε2

I3

N

)
− μ V

C = C0 + C1 + C2

N = S + C0 + C1 + C2 + I1 + I2 + I3 + R1 + R2 + V

Again, our total population is constant and all parameter values are assumed to be positive.

3 Analytic Computations

In this section, we analyze the various dynamical structures inherent in our two
models. First, we calculate the basic reproductive number, R0, for each model. We then
determine the necessary conditions to produce stable behavior in the crime-free equilibria
of each model. The same analysis is done for the endemic equilibria, albeit in a different
manner. After first determining whether a backward bifurcation is possible for the Infinite-
Strikes model, we utilize the mechanics of bifurcation theory to categorize the emergence
of endemic equilibria and classify their stability. We then transfer our findings into the
framework of the Three-Strikes model and determine the appropriate endemic conditions
for the Three-Strikes model.
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3.1 Calculation of the Basic Reproductive Number, R0, for the Infinite-
Strikes Model

To find the basic reproductive number for the Infinite-Strikes model, we use the
Next-Generation Matrix method [12]. Since the total population N = S +C + I +R +V is
constant and V only appears in the equation for dV

dt , we can examine only the S, C, I and
R classes.

Let F =

⎡
⎢⎢⎢⎢⎢⎣

0

β0CS + β1CR

0

0

⎤
⎥⎥⎥⎥⎥⎦ and V =

⎡
⎢⎢⎢⎢⎢⎣

−μ N + β0CS + μ S

φ C + μ C

φ C + ψ I + μ I

ω1R − μ V

⎤
⎥⎥⎥⎥⎥⎦.

Considering only the infectious class, the C class, we formulate the Jacobian of F and V
evaluated at the crime-free equilibrium (N, 0, 0, 0):

F = β0 N, V = φ + μ

Taking the inverse of V , we have

V −1 =
1

φ + μ

and so

FV −1 =
β0 N

φ + μ
.

Hence, R0 = β0N
φ+μ for our Infinite-Strikes model.

Intuitively, this value of R0 makes sense. We have the rate of transmission, β0 N ,
multiplied by the average time per capita spent in the criminal class (the C class), 1

φ+μ .
The factor of N in R0 incorporates our assumption of mass action incidence.

3.2 Calculation of the Basic Reproductive Number, R0, for the Three-
Strikes Model

Similarly, we find the basic reproductive number for the Three-Strikes model using
the Next-Generation Matrix method [12]. Due to the length of the 10× 1 vectors F and V,
we will not include them here. They are given in the Appendix.
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Again, we consider only the infectious classes C0, C1 and C2 in the Jacobian of F and
V. Evaluating these Jacobians at the crime-free equilibrium ( μN

ω0+μ , 0, 0, 0, 0, 0, 0, 0, 0, ω0N
ω0+μ)

we have:

F =

⎡
⎢⎢⎢⎣

β0μN
ω0+μ

β0μN
ω0+μ

β0μN
ω0+μ

0 0 0

0 0 0

⎤
⎥⎥⎥⎦ , V =

⎡
⎢⎢⎢⎣

φ + δ + μ 0 0

0 φ + δ + μ 0

0 0 φ + μ

⎤
⎥⎥⎥⎦

V −1 =

⎡
⎢⎢⎢⎣

(φ + δ + μ)−1 0 0

0 (φ + δ + μ)−1 0

0 0 (φ + μ)−1

⎤
⎥⎥⎥⎦

and so

FV −1 =

⎡
⎢⎢⎢⎣

β0μN
(ω0+μ)(φ+δ+μ)

β0μN
(ω0+μ)(φ+δ+μ)

β0μN
(ω0+μ)(φ+μ)

0 0 0

0 0 0

⎤
⎥⎥⎥⎦

which has a dominant eigenvalue β0μN
(ω0+μ)(φ+δ+μ) . Hence,

R0 =
β0μ N

(ω0 + μ) (φ + δ + μ)
=
(

β0N

φ + δ + μ

)(
μ

ω0 + μ

)

for our Three-Strikes model.

Once again, the R0 that is calculated makes intuitive sense, especially once it is
factored appropriately. In the first term, we have the rate of transmission, β0 N , multiplied
by the average time per capita spent in the C0 class, 1

φ+δ+μ . The second term, μ
ω0+μ , is

the proportion of the population that is susceptible to criminal influence at the crime-free
equilibrium. Again, the factor of N represents the fact that we are using mass action
incidence in our model.

Notice that the R0 for the Three-Strikes model reduces to the R0 for the Infinite-
Strikes model if we set δ = 0 and ω0 = 0. Hence, if we remove the transitions in the Three-
Strikes model involving δ and ω0, we essentially get a simplified version of the Infinite-Strikes
model. Thus, the R0’s calculated for both models are consistent with the flow charts.
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3.3 Stability of the Crime-Free Equilibrium for the Infinite-Strikes Model

For our Infinite-Strikes model, we determined the crime-free equilibrium to be (N,
0, 0, 0). In order to study the stability of this equilibrium, we first compute the Jacobian,
J , of this system.

J =

⎛
⎜⎜⎝
−β0 C − μ −β0 S 0 0

β0 C β1 S + β1 R − φ − μ 0 0
0 φ −ψ − μ 0
0 −β1 R ψ −β1 C − ω1 − μ

⎞
⎟⎟⎠

Substituting our crime-free equilibrium into our Jacobian matrix, we end up with a matrix
whose eigenvalues are simply its diagonal entries.⎛

⎜⎜⎝
−μ −β0 N 0 0
0 β0 N − φ − μ 0 0
0 φ −ψ − μ 0
0 0 ψ −ω1 − μ

⎞
⎟⎟⎠

Therefore, λ1=−μ, λ2=β0 N − φ− μ, λ3=−ψ − μ and λ4=−ω1 − μ. Our crime-free
equilibrium is stable if all of these eigenvalues are negative. Since our parameters are all
positive, we can automatically conclude that λ1 < 0, λ3 < 0 and λ4 < 0. For λ2, we see that
the condition φ+μ > β0N must be met in order for it to be negative. Hence, the crime-free
equilibrium (N, 0, 0, 0) is stable if φ + μ > β0N and unstable otherwise. This condition
corresponds precisely to the R0 for this model. Therefore, the crime-free equilibrium is
stable if R0 < 1 and unstable otherwise and we can state this result as the following lemma:

Lemma 1. For the Infinite-Strikes model, if R0 < 1, then the crime-free equilibrium is
locally asymptotically stable.

3.4 Stability of the Crime-Free Equilibrium for the Three-Strikes Model

For our Three-Strikes model, we found the crime-free equilibrium to be(
μ N

ω0 + μ
, 0, 0, 0, 0, 0, 0, 0, 0,

ω0 N

ω0 + μ

)
.

11



Performing the usual stability analysis on this system of ODEs, we obtained the following
eigenvalues of the Jacobian matrix evaluated at the crime-free equilibrium:

λ0 = −φ − δ − μ

λ1 = −φ − μ

λ2 = −ω0 − μ

λ3 =
β0 μ N

ω0 + μ
− φ − δ − μ

λ4 = −ψ1 − μ

λ5 = −ψ2 − μ

λ6 = −μ

λ7 = −μ

λ8 = −ω1 − μ

λ9 = −ω2 − μ

All of the eigenvalues are clearly negative, except for λ3. In order for λ3 to be negative, and
consequently the crime-free equilibrium to be stable, the condition (φ + δ + μ)(ω0 + μ) >
β0 μ N must be met. Again, this condition corresponds directly to the R0 found for this
model. Thus, in terms of R0, the crime-free equilibrium is stable if R0 < 1 and unstable
otherwise. This result is stated in Lemma 2.

Lemma 2. For the Three-Strikes model, if R0 < 1, then the crime-free equilibrium is locally
asymptotically stable.

3.5 Endemic Equilibrium Analysis for the Infinite-Strikes Model

In determining the endemic equilibrium (S∗, C∗, I∗, R∗, V ∗) for the Infinite-Strikes
Model, we first need to find S∗, I∗, R∗ and V ∗ in terms of C∗. Doing so, we generate the
following system of equations:

S∗ =
μ N

β0 C∗ + μ

I∗ =
φ C∗

ψ + μ

R∗ =
ψ φ C∗

(ψ + μ) (β1 C∗ + ω1 + μ)

V ∗ =
ω1 ψ φ C∗

μ (ψ + μ) (β1 C∗ + ω1 + μ)

12



where C∗ is given by the expression

β0 C∗S∗ + β1 C∗R∗ − φ C∗ − μ C∗ = 0.

Substituting S∗ and R∗ into the equation for C∗, we obtain the expression

β0 μ NC∗

β0 C∗ + μ
+

β1 ψ φ (C∗)2

(ψ + μ) (β1 C∗ + ω1 + μ)
− φ C∗ − μ C∗ = 0.

Simplifying further, we have

φ + μ =
β0 μ N

β0 C∗ + μ
+

β1 ψ φ C∗

(ψ + μ) (β1 C∗ + ω1 + μ)
.

Multiplying by the common denominator and dividing through by ψ + μ, we arrive at the
following expression in terms of C∗:

β0 μ (β1 C∗+ω1 +μ) N +β1 ψ (β0 C∗+μ)
ψ

ψ + μ
C∗−(φ+μ) (β0 C∗+μ) (β1 C∗+ω1 +μ) = 0.

Collecting like terms, we then have a quadratic equation in terms of C∗:

[β0 β1 (
φ ψ

μ + ψ
− (μ + φ))] (C∗)2 + [μ β0 β1N + β1 φ μ

ψ

μ + ψ
− (μ + φ) (β1 μ + β0 (μ + ω1))] C∗

+μ β0N(μ + ω1) − μ (μ + φ) (μ + ω1) = 0 (1)

Now let x ≡ C∗
N and f(x) = ax2 + bx + c = 0 where

a = (β0N)(β1N)
(

φ ψ

μ + ψ
− (μ + φ)

)
,

b = (β0N)(β1N) μ + (β1N) μ

(
φ ψ

μ + ψ

)
− (β1N) μ (μ + φ) − (β0N) (μ + φ) (μ + ω1),

c = (β0N) μ (μ + ω1) − μ (μ + φ) (μ + ω1).

We can rewrite a as

−(β0N)(β1N) μ

(
1 +

φ

μ + ψ

)
since(

φ ψ

μ + ψ
− (μ + φ)

)
= −μ − φ

(
1 − ψ

μ + ψ

)
= −μ − φ

(
μ

μ + ψ

)
= −μ

(
1 +

φ

μ + ψ

)
.

We can then pull out a factor of μ from each term of f(x), i.e. from a, b and c. Letting
b0 ≡ β0N and b1 ≡ β1N , we have the following simplified expressions for a, b and c:
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a = −b0b1

(
1 +

φ

μ + ψ

)
(2)

b = b0b1 − b0

(
μ + φ

μ

)
(μ + ω1) − b1μ

(
1 +

φ

μ + ψ

)
(3)

c = (b0 − (μ + φ))(μ + ω1)

Now we can obtain solutions in the interval [0,1] to f(x) = 0. In other words, we
can find the endemic equilibria of our system given the various relationships between the
parameters. First, let us further simplify the equation for c by incorporating the basic
reproductive number R0 into the expression. Since R0 = β0N

μ+φ = b0
μ+φ for this model, we can

rewrite c as
c = (μ + φ) (μ + ω1) (R0 − 1). (4)

We see that R0 > 1 ⇔ c > 0 and R0 < 1 ⇔ c < 0. Hence, the existence of our endemic
equilibria depends on the various conditions for our parameters. Specifically, we have the
following set of conditions, which is identical to the one found in [8]:

(i) If R0 > 1 ⇔ c > 0, then there is only one endemic equilibrium.

(ii) If R0 < 1 ⇔ c < 0, b > 0 and b2 − 4ac > 0, then there are two endemic equilibria.

(iii) If b2 − 4ac < 0, then there is no endemic equilibrium. (This implies R0 < 1.)

The first item requires no further elaboration in terms of parameter conditions.
The fact that c = f(0) > 0 and a < 0 is sufficient in guaranteeing precisely one endemic
equilibrium. (Note that f(1) < 0. If f(1) ≥ 1, then the solutions we obtain are meaningless.)

The second item needs simplification in terms of the conditions b > 0 and b2−4ac >
0. Let us consider the first condition b > 0. This condition is necessary because a < 0 and we
want the x-coordinate of the vertex of f(x) to be positive, i.e. we want −b

2a > 0. Essentially,
this condition can be reduced to two different sets of parameter conditions, both of which
are equally valid in the study of the endemic equilibria. We will consider only one of the
sets in this section. The other will be explained in the Appendix.

First, let us factor out b1 from the expression for b. Notice that one could have
very well factored out a term of b0. This distinction in factorization is the reason why
the condition b > 0 can be reduced to two sets of parameter conditions. Thus, we have
b = b0b1 − b0(μ+φ

μ )(μ+ω1)− b1μ(1+ φ
μ+ψ ) = b1(b0 −μ(1+ φ

μ+ψ ))− b0(μ+φ) (μ+ω1

μ ). We see

that in order for b > 0, we first must have b0 > μ(1 + φ
μ+ψ ). Combining the R0 condition

gathered from the analysis on c and the b0 condition just gotten, we then have the following
criterion:

μ

(
1 +

φ

μ + ψ

)
< b0 < μ + φ

or
μ + φ( μ

μ+ψ )

μ + φ
< R0 < 1.
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Simplifying further we have

1 −
(

φ

μ + φ

)(
ψ

μ + ψ

)
< R0 < 1.

Let us denote

K ≡ 1 −
(

φ

μ + φ

)(
ψ

μ + ψ

)
=

μ + φ( μ
μ+ψ )

μ + φ
(5)

so then
K < R0 < 1.

In addition, we need b1(b0−μ(1+ φ
μ+ψ )) > b0(μ+φ) (μ+ω1

μ ) ⇒ b1
μ+φ >

(
b0

b0−(μ+φ ( μ
μ+ψ

))

)(
μ+ω1

μ

)
.

Letting R1 ≡
(

b1
μ+φ

)(
μ

μ+ω1

)
, we then have the condition R1 >

(
b0

b0−(μ+φ ( μ
μ+ψ

))

)
. Rewriting

this inequality in terms of R0 and K, we have as our second condition that R1 > R0
R0−K > 1.

R1 is essentially the reinfection number, i.e. the average number of released prisoners who
are influenced into committing another crime by a typical criminal.

The condition b2−4ac > 0 requires more work to determine its parameter conditions.

Let us first multiply b2 − 4ac by the expression

(
μ

μ+ω1

)2

(μ+φ)4
where a, b and c are as specified in

(2), (3) and (4). We can then analyze when

(
μ

μ+ω1

)2

(μ+φ)4
(b2 − 4ac) > 0 which is equivalent to

analyzing when b2 − 4ac > 0. Distributing

(
μ

μ+ω1

)2

(μ+φ)4
, we first have

⎛
⎜⎝
(

μ
μ+ω1

)2

(μ + φ)4

⎞
⎟⎠ b2 =

⎛
⎝
(

μ
μ+ω1

)
(μ + φ)2

b

⎞
⎠

2

.

Substituting the expression for b and reducing, we have

(
b0b1μ

(μ + ω1)(μ + φ)2
− b0

μ + φ
− b1μ

2

(μ + ω1)(μ + φ)2
− b1μ

2 φ

(μ + ω1)(μ + ψ)(μ + φ)2

)2

. (6)

Recall that R0 = b0
μ+φ and R1 =

(
b1
μ+φ

)(
μ

μ+ω1

)
. Hence, we can reduce (6) to the following:

(
R0R1 − R0 − R1

(
μ

μ + φ
+

μ φ

(μ + φ)(μ + ψ)

))2

.

Letting k = μ
μ+ψ and rewriting (5) as K = μ+kφ

μ+φ , we then have

(R0R1 − R0 − R1K)2.
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Now consider

−4
(

μ

(μ + ω1)(μ + φ)2

)2

ac.

Substituting the expressions for a and c, we have(
4b0b1

(
μ

(μ + ω1)(μ + φ)2

)2

+
4b0b1φ

μ + ψ

(
μ

(μ + ω1)(μ + φ)2

)2
)

((b0 − (μ + φ))(μ + ω1))

which reduces to

4R0R1

(
(R0 − 1)

(
μ

μ + φ
+

φ μ

(μ + φ)(μ + ψ)

))
= 4R0R1(R0 − 1)K.

Hence, (
μ

μ+ω1

)2

(μ + φ)4
(b2 − 4ac) = (R0R1 − R0 − R1K)2 + 4R0R1(R0 − 1)K.

Simplifying and grouping like terms of R1, we obtain the following quadratic form in terms
of R1: (

(R0 − K)2
)
R2

1 − (2R0(R0(2K − 1)) − K) R1 + R2
0 ≡ g(R1)

which we require to be positive. Consider the case when g(R1) = 0. Then

R1 =
−R0(R0(2K − 1) − K)

(R0 − K)2
±
√

(−2R0(R0(2K − 1) − K))2 − 4(R0 − K)2R2
0

2(R0 − K)2
.

This simplifies to

R1 =
−R0

(R0 − K)2
(
2KR0 − (R0 + K) ± 2

√
R0K(K − 1)(R0 − 1)

)
.

Let
R+

1 =
−R0

(R0 − K)2
(
2KR0 − (R0 + K) − 2

√
R0K(K − 1)(R0 − 1)

)

R−
1 =

−R0

(R0 − K)2
(
2KR0 − (R0 + K) + 2

√
R0K(K − 1)(R0 − 1)

)
.

Therefore, in order for g(R1) > 0, we have either

(i) 0 < R1 < R−
1

(ii) R1 > R+
1

However, we can reduce the number of conditions for R1 down to simply one. In
order to do this, we need to show the following claim.

Claim 1. If b > 0, then R+
1 > R0

R0−K > R−
1 .
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Proof. Let us start with the first inequality. Rewrite R+
1 as follows:

R+
1 =

R0

(R0 − K)2
(
2
√

R0K(K − 1)(R0 − 1) + (R0 + K) − 2KR0

)
.

We only need to show that(
2
√

R0K(K − 1)(R0 − 1) + (R0 + K) − 2KR0

)
(R0 − K)

> 1,

which reduces to √
R0K(K − 1)(R0 − 1) > KR0 − 1.

Since K < R0 < 1, KR0−1 < 0 and
√

R0K(K − 1)(R0 − 1) > 0 ⇒√
R0K(K − 1)(R0 − 1) >

0 > KR0 − 1. Hence,

R+
1 =

R0

(R0 − K)

(
2
√

R0K(K − 1)(R0 − 1) + (R0 + K) − 2KR0

(R0 − K)

)
>

R0

R0 − K
.

For the second inequality, let us first rewrite R−
1 as

R−
1 =

R0

R0 − K

(
1 − 2KR0

R0 − K
− 2

√
R0K(K − 1)(R0 − 1)

R0 − K

)
.

Now consider the term(
1 − 2KR0

R0 − K
− 2

√
R0K(K − 1)(R0 − 1)

R0 − K

)
= 1 − 2

R0 − K
(KR0 +

√
KR0(K − 1)(R0 − 1))

< 1 − 2KR0

R0 − K

= 1 −
(

2
1
K − 1

R0

)

< 1

since 2
1
K
− 1
R0

> 0. Hence, R−
1 < R0

R0−K .

Therefore, we can simply say that if b > 0, then b2 − 4ac > 0 ⇔ R1 > R+
1 . Our set

of conditions can then be summarized as the following theorem.

Theorem 1a. For our Infinite-Strikes model,

(i) If R0 > 1, then there is only one endemic equilibrium.

17



(ii) If K < R0 < 1 and R1 > R+
1 , then there are two endemic equilibria, where K =

1−
(

φ
μ+φ

)(
ψ

μ+ψ

)
and R+

1 = −R0
(R0−K)2

(
2KR0 − (R0 + K) − 2

√
R0K(K − 1)(R0 − 1)

)
Otherwise, there is none.

Having determined the conditions for the emergence of our endemic equilibria, we
are now interested in analyzing the stability of the endemic equilibria via the mechanics of
bifurcation theory. From the conditions in Lemma 1 and the stability analysis of the crime-
free equilibrium, we see that our system exhibits a backward bifurcation at the bifurcation
point R0 = 1 or when β0 = μ+φ

N . Utilizing the parameter values estimated in section 4, we
can then construct a bifurcation diagram reflecting the behavior of the endemic equilibria
as R0 varies (see Figure 3).

Figure 3: Backwards Bifurcation Diagram

The saddle-node bifurcation occurs at a certain point 0 < Rc
0 < 1. This point is

determined by setting the discriminant b2−4ac of (1) equal to 0. We can write b2−4ac = 0
as a quadratic equation in terms of R0 with the coefficients in terms of R1:

((R1 − 1)2 + 4KR1)R2
0 − (2KR1(R1 + 1))R0 + R2

1K
2 = 0.
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Solving for R0, we get

R0 =
R1 + 1 ± 2

√
R1(1 − K)

(R1−1)2

R1K
+ 4

.

Again, let

R+
0 =

R1 + 1 + 2
√

R1(1 − K)
(R1−1)2

R1K
+ 4

R−
0 =

R1 + 1 − 2
√

R1(1 − K)
(R1−1)2

R1K
+ 4

.

Then Rc
0 = R+

0 , since we are interested in the larger of the roots. With the parameters
estimated in section 4, Rc

0 comes out to be approximately 0.84. Knowing Rc
0, we can refine

the condition on R0 even further in Lemma 1. We just need to verify that R+
0 > K. We

have R+
0 > K ⇔

R1 + 1 + 2
√

R1(1 − K) >
(R1 − 1)2

R1
+ 4K

R2
1 + R1 + 2R1

√
R1(1 − K) > (R1 − 1)2 + 4KR1

2R1

√
R1(1 − K) > −3R1 + 1 + 4KR1

2
√

R1(1 − K) > −3 +
1

R1
+ 4K

4R1(1 − K) > (4K +
1

R1
− 3)2

4(1 − K)R3
1 − (4K − 3)2R2

1 − 2(4K − 3)R1 − 1 > 0

Let h(R1) ≡ 4(1−K)R3
1 − (4K − 3)2R2

1 − 2(4K − 3)R1 − 1 and set h(R1) = 0. The
roots of h are Ra

1 = 1
4(1−K) , Rb

1 = 1−2K+2
√−K(1 − K) and Rc

1 = 1−2K−2
√−K(1 − K).

Since K < 1 by definition, Rb
1 and Rc

1 are imaginary, so we only consider Ra
1. We then have

two cases to analyze:

(a) R+
0 > K ⇔ h(R1) > 0 ⇔ 4K + 1

R1
− 3 < 0 < 2

√
R1(1 − K)

(b) R+
0 > K ⇔ h(R1) > 0 ⇔ 0 < 4K + 1

R1
− 3 < 2

√
R1(1 − K)

In the first case, we see that h(R1) > 0 ⇔ R1 > Ra
1 = 1

4(1−K) . This inequality is
satisfied if K < 3

4 since K < 3
4 ⇔ 1

4(1−K) < 1 so hence R1 > 1 > 1
4(1−K) . In the second case,

we see that 4K + 1
R1

− 3 > 0 ⇔ 1
R1

> 3 − 4K which is true if and only if K ≥ 3
4 . Hence,

the condition R+
0 > K is satisfied for all possible values of K where 0 < K < 1. Theorem

1 can then be rewritten as follows:

Theorem 1b. For our Infinite-Strikes model,
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(i) If R0 > 1, then there is only one endemic equilibrium.

(ii) If Rc
0 < R0 < 1 and R1 > 1, then there are two endemic equilibria, where Rc

0 = R+
0 =

R1+1+2
√
R1(1−K)

(R1−1)2

R1K
+4

and R+
1 = −R0

(R0−K)2

(
2KR0 − (R0 + K) − 2

√
R0K(K − 1)(R0 − 1)

)
Otherwise, there is none.

The fact that we have a backwards bifurcation has a significant meaning within
our sociological framework. We see that even when R0 < 1, endemic equilibria can still
arise, specifically two endemic equilibria. In other words, even when the average number
of susceptibles influenced into committing their first crime by a typical criminal is less
than one, criminality can still persist. This is due to the fact that our reinfection number
R1 is greater than one, i.e., the average number of released prisoners who commit their
next crime due to criminal influences is greater than one. Essentially, when R0 < 1, our
crime-free equilibrium is locally stable. There are no criminals in our population and no
new criminals are produced in our system. At the bifurcation point R0 = 1, the crime-
free equilibrium becomes unstable and two endemic equilibria are born, one stable and
one unstable. Normally in a forward bifurcation, the infection will have taken hold at
this point, and increasing R0 past one will have propagated the infection. However in a
backwards bifurcation, there is an added effect induced by the presence of R1 in our system.
Increasing R1 past one actually changes the direction of the bifurcation and consequently
produces a saddle-node bifurcation point at Rc

0. Increasing R0 past one simply makes the
solution jump straight up to the unique stable endemic equilibrium. Thus, in the interval
Rc

0 < R0 < 1, we see the impact of the released prisoners on the endemic equilibria, for they
perpetuate the infection through their new crimes, even though the effect of the susceptible
population’s first crimes is subdued due to R0 being less than one. Once R0 is increased
past one, there is only one endemic equilibrium and it is stable. Criminality then spreads
indefinitely throughout the susceptible population.

As with most backwards bifurcations, the one in our model exhibits hysteresis [11].
As R0 decreases past the bifurcation point via the stable endemic curve, we have to decrease
R0 even further in order to make the graph jump back to the bifurcation point [11]. In
particular, we have to decrease R0 down to Rc

0 in order for the stable endemic equilibrium
to become a stable crime-free equilibrium once again. Hence, there is a lack of reversibility
as R0 is varied in this system [11]. In a sociological context, this hysteresis phenomenon
implies a sort of persistence in criminality. Even when the average number of susceptibles
influenced into committing their first crime by criminals is less than one, criminality still
exists. As mentioned before, this is due to the effect of R1 on our system. It is not until this
average number reaches a critical value, namely Rc

0, that criminality vanishes. Therefore,
we see that criminality can easily pervade an urban population; we simply need to increase
R0 past one. However, it is much harder to rid that population of criminality once it takes
hold, for it is not a simple matter of decreasing R0 below one; R0 has to be decreased even
further in order for criminality to be eliminated.
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3.6 Endemic Equilibrium Analysis for the Three-Strikes Model

Having established criteria for the number and stability of endemic equilibria for the
Infinite-Strikes model, we hope to extend the analysis to the dynamics of the Three-Strikes
model. Due to the complexity of the Three-Strikes model, we will resort to numerical
analysis to determine most of our results. In particular, a modified version of Theorem
1 can be useful in our investigation of the Three-Strikes model. We see that the Three-
Strikes model is immersed within the structure of the Infinite-Strikes model, so we can
infer from our analysis on the Infinite-Strikes model that the Three-Strikes model will also
exhibit a backwards bifurcation at the bifurcation point R0 = 1. However, in this case,
our endemic equilibria will be based on three infectious states, C0, C1 and C2, or C where
C = C0 + C1 + C2. Our goal is to construct a similar bifurcation diagram for the Three-
Strikes model.

First, we would like to determine the equations governing the infectious states as
before with the Infinite-Strikes model. Solving for the endemic equilibrium, we arrive at
the following set of quadratic equations for the infectious classes C0, C1 and C2:

x(C0) ≡ [(φ+δ+μ)(β0+
ε0 δ

μ N
]C2

0+[β0 μ N−(φ+δ+μ)(β0 C1+β0 C2+ω0+
ε0 μ C2

μ N
+

ε0 δ C1

μ N
+μ)]C0

+(β0 μ N)(C1 + C2) = 0 (7)

y(C1) ≡ −[(φ+δ+μ)(ψ1+μ)(β1+
ε1 δ

μ N
)]C2

1+[β1 ψ1 φ C0−(φ+δ+μ)(ψ1+μ)(β1 C0+β1 C2+ω1

+
ε1 (φ C2 + δ C0)

μ N
+ μ)]C1 + β1 ψ1 φ C0(C0 + C2) = 0 (8)

z(C2) ≡ −[(φ + μ)(ψ2 + μ)β2 +
ε2 φ

μ N
)]C2

2 + [β2 ψ2 φ C1 − (φ + μ)(ψ2 + μ)(β2 C0 + β2 C1 + ω2

+
ε2 (δ C0 + δ C1)

μ N
+ μ)]C2 + β2 ψ2 φ C1(C1 + C0) = 0 (9)

The mathematical complexity of these equations clearly poses a problem in our
analysis of the endemic equilibria. Even when employing the use of various symbolic and
numerical manipulators, we were not able to find solutions to this system. Hence, a graphical
representation of this backwards bifurcation is not feasible at this point. However, we can
utilize various graphical methods to verify that indeed we do have a backwards bifurcation
for the Three-Strikes model. Through the process of trial and error, we find the saddle-
node bifurcation point of the Three-Strikes backwards bifurcation to occur at approximately
R0 = 0.508. The derivation of this number is explained in section 5. From Lemma 2, we
know that we have a stable crime-free equilibrium for R0 < 1, which then becomes unstable
as R0 is increased past one. At the bifurcation point R0 = 1, two endemic equilibria are
created. As before with the backwards bifurcation of the Infinite-Strikes model, increasing
R1 past one will cause the bifurcation to change direction, thereby creating a saddle-node
bifurcation point at R0 = 0.508. As R0 is increased past one, the solution jumps straight
to the unique stable endemic equilibrium.
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3.7 One-Strike Model

In this last part of our analytic section, we introduce a hypothetical incarceration
model involving only one strike. In this model, an individual is imprisoned for life if he
commits one violent offence. The purpose of this One-Strike model is to allow for analysis
concerning the optimal number of strikes given to criminals. We define optimal to mean the
most number of people to reform as a result of the various strike policies. We will inquire
further into this issue in section 5. The transitional assumptions made for this model are
equivalent to those for the Three-Strikes Model. Notice that once an individual is sent to
I, the only way for him to leave I is by aging, i.e. in this model I is equivalent to I3 in the
Three-Strikes model. The flow chart for the One-Strike model is given in Figure 4.

Figure 4: Hypothetical Model of an Incarceration System with a One-Strike Law

The One-Strike model is governed by the following system of ordinary differential
equations:
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dS

dt
= μ N − μ S − β CS −

(
ω + ε

I

N

)
S

dC

dt
= β CS − (μ + φ)C

dI

dt
= φ C − μ I

dV

dt
=

(
ω + ε

I

N

)
S − μ I

N = S + C + I + V

Again, the total population is constant and all parameter values are positive. We are also
assuming mass action incidence in this model.

3.7.1 Calculation of the Basic Reproductive Number, R0, for the One-Strike
Model

Once again, we will utilize the Next-Generation Matrix method to determine the
R0 for this model [12]. Let

F =

⎡
⎢⎢⎢⎢⎢⎣

0

β SC

0

0

⎤
⎥⎥⎥⎥⎥⎦ and V =

⎡
⎢⎢⎢⎢⎢⎣

−μ N + β SC + μ S +
(
ω + ε I

N

)
S

(μ + φ) C

−φ C + μ I

− (ω + ε I
N

)
S + μ V

⎤
⎥⎥⎥⎥⎥⎦ .

Like in the previous two models, we consider only the infectious class C when calculating
the Jacobian. Therefore, at the crime-free equilibrium ( μNμ+ω , 0, 0, ωNμ+ω ),

F =
β μ N

μ + ω
, V = μ + φ.

Taking the inverse of V , we have

V −1 =
1

μ + φ

and finally

FV −1 =
β μ N

(μ + φ)(μ + ω)
.
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Thus, R0 = β μN
(μ+φ) (μ+ω) = ( β Nμ+φ)( μ

μ+ω ). Again, we have the rate of transmission,
β N , multiplied by the average time per capita spent in the C class, 1

μ+φ . As with the R0

in the Three-Strikes model, the term μ
μ+ω is the probability of an individual not reforming

and remaining in the susceptible class, and the factor of N accounts for our mass action
incidence assumption.

3.7.2 Stability of the Crime-Free Equilibrium for the One-Strike Model

For our hypothetical One-Strike model, we have a crime-free equilibrium at(
μ N

μ + ω
, 0, 0,

ω N

μ + ω

)
.

In order to study the stability of this equilibrium, we first compute the Jacobian, J , of this
system.

J =

⎛
⎜⎜⎝
−μ − β C − ω − ε I

N −β S − ε S
N 0

β C β S − μ − φ 0 0
0 φ −μ 0

ω + ε I
N 0 ε S

N −μ

⎞
⎟⎟⎠

Substituting the crime-free equilibrium into our Jacobian matrix, we solve the characteristic
equation det(Jcfe − λ I) for λ where

Jcfe =

⎛
⎜⎜⎜⎝
−μ − ω βμN

μ+ω − εμ
μ+ω 0

0 βμN
μ+ω − μ − φ 0 0

0 φ −μ 0
ω 0 βμ

μ+ω −μ

⎞
⎟⎟⎟⎠

Therefore, λ1=−μ−ω, λ2=βμN
μ+ω −μ−φ and λ3,4 = −μ. Our crime-free equilibrium

is stable if all of these eigenvalues are negative. Since our parameters are all positive, we can
automatically conclude that λ1 < 0, λ3 < 0 and λ4 < 0. For λ2, we see that the condition
(μ + φ)(μ + ω) > β μ N must be met in order for it to be negative. In other words, λ2 < 0
if R0 < 1. Thus, if R0 < 1, the crime-free equilibrium is stable; otherwise, it is unstable.

Lemma 3. For the One-Strike model, if R0 < 1, then the crime-free equilibrium is locally
asymptotically stable. Since the One-Strike model is a special case of the Three-Strikes
model, a backwards bifurcation cannot exist for the One-Strike model.

4 Parameter Estimation

In sociological models, it is difficult to find parameter values from published data.
This inherent difficulty was especially evident when estimating values for βi, where i= 0,1
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and 2, in the Three-Strikes model. Due to the length of the derivation for these values
of βi, we only included a short explanation for each βi. Explicit calculations for the βi’s
can be found in the Appendix. From various technical reports we were able to calculate
values for φ and ψj , where j= 1 and 2. For parameters that could not be determined from
published data, such as εi and ωi, we state the assumptions made and the corresponding
estimated values. These parameter estimates are then tabulated according to the model
they represent. Presented first are parameter values for the Three-Strikes model since the
parameters used in both the Infinite-Strikes Model and the One-Strike model are comparable
to those in the Three-Strikes model.

4.1 Three-Strikes Model Parameter Estimates

μ ≈ 0.03226 year−1. Given that our population consists of individuals between the ages of
18 and 49, we assume that on average a person spends 1

49−18 = 1
31 ≈ 0.03226 years−1 in

our system. Due to the fact that individuals move quickly through our system, the natural
death rate is negligible.

φ ≈ 0.776 year−1. φ, the arrest rate, was given as a projected value in [7].

δ ≈ 0. We assume that the rate at which individuals are sent to I3, i.e. given life sentences,
on the first or second strike is negligible.

ψ1 ≈ 1
3.5 year−1. The average amount of time an individual is incarcerated for the first

strike is 3.5 years [5]. Therefore, an individual leaves I1 at a rate of 1
3.5 year−1.

ψ2 ≈ 1
8 year−1. The average amount of time an individual is incarcerated for the second

strike is 8 years [5]. Therefore, an individual leaves I2 at a rate of 1
8 year−1.

ω0 ≈ 0.03226 year−1. We assume that a person not yet involved in criminal activity has
no particular motivation to permanently remove himself from criminals, i.e. one is just as
likely to leave the system by “reform” as by death. As such, we let ω0 be equal to μ.

ω1 ≈ 0.6 year−1. We base our calculations for ω1 (and ω2) on data from [7] and [2], and our
estimated breakdown of the percentages of the population choosing to reform rather than
to re-enter criminal activity.

ω2 ≈ 0.619 year−1. See above.

β0 ≈ 2.9034 × 10−7 1
people×year ;

β1 ≈ 7.24 × 10−6 1
people×year ;

β2 ≈ 4.02 × 10−6 1
people×year ;
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Each value of βi, where i= 0,1, and 2, was calculated using data from [7] and [2]. We
estimated these parameters using Los Angeles County offence rates and crime rates. These
were rather complicated calculations, so the full derivation can be found in the Appendix.

εi ≈ 0.0001 year−1, where i = 0,1 and 2. Due to the fact that our initial population is large,
the deterrent effect caused by the number of individuals in I3 must be small. These values
of εi are arbitrary.

A concise table of parameter values for the Three-Strikes Model is found in Table 2.

Parameter Three-Strike Value Reference
β0 2.9034 × 10−7 1

people×year [7] [2]
β1 7.24 × 10−6 1

people×year [7] [2]
β2 4.02 × 10−6 1

people×year [7] [2]
ω0 0.03226 year−1 see text
ω1 0.6 year−1 [4] [3]
ω2 0.619 year−1 [4] [3]
ψ1

1
3.5 year−1 [5]

ψ2
1
8 year−1 [5]

ε0 0.0001 year−1 see text
ε1 0.0001 year−1 see text
ε2 0.0001 year−1 see text
φ 0.776 year−1 [7]
δ 0 year−1 see text
μ 0.03226 year−1 see text

Table 2: Estimated Parameter Values For Three-Strikes Model

4.2 Infinite-Strikes Model Parameter Estimates

μ ≈ 0.03226 year−1. See above.

φ ≈ 0.776 year−1. See above.

ψ ≈ 1
3.5 year−1. ψ in the Infinite-Strikes model is equal to ψ1 in the Three-Strikes Model.

In California’s Three-Strikes policy, the first “strikable” offence is not punished by sentence
enhancements. Therefore, the average time an individual serves for each offence in the
Infinite-Strikes model is approximately equal to the amount of time a “first striker” serves.

ω ≈ 0.7 year−1. We base our calculation for ω on data from [7] and [2], and our estimated
percentage of the population that chooses to reform rather than to re-enter criminal activity.
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β0 ≈ 2.9034× 10−7 1
people×year . β0 in the Infinite-Strikes model is equal to β0 in the Three-

Strikes model. Due to the nature of our derivation of β0, β0 has no explicit meaning by
itself. It is within the context of β0 C that β0 makes sense. See Appendix.

β1 ≈ 6.203 × 10−6 1
people×year . We base our calculations for β1 on data from [7] and [2].

A concise table of these values is found in Table 3.

Parameter Infinite-Strike Value Reference
β0 2.903 × 10−7 1

people×year [7] [2]
β1 6.203 × 10−6 1

people×year [7] [2]
ω 0.7 year−1 see text
ψ 1/3.5 year−1 [5]
φ 0.776 year−1 [7]
μ 0.03226 year−1 see text

Table 3: Estimated Parameter Values For Infinite-Strikes Model

4.3 One-Strike Model Parameter Estimates

μ ≈ 0.03226 year−1. See above.

φ ≈ 0.776 year−1. See above.

ω ≈ 0.254 year−1. We base our calculations for β1 on data from [7] and [2]. ω in the One-
Strike model is theoretical; we determine this particular value based on the assumption that
approximately 75 percent of the susceptible population will leave by reforming as opposed
to leaving through death or joining the criminal class.

β ≈ 4.07 × 10−6 1
people×year . We base our calculations for β on data from [7] and [2].

ε ≈ 0.0001 year−1. See Three-Strike parameter estimates.

A concise table of these values is found in Table 4.
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Parameter One-Strike Value Reference
β 4.07 × 10−6 1

people×year [7] [2]
ω 0.254 year−1 see text
ε 0.0001 year−1 see text
φ 0.776 year−1 [7]
μ 0.03226 year−1 see text

Table 4: Estimated Parameter Values For One-Strike Model

5 Numerical Simulations

5.1 Population Size and the Three-Strikes Model

It is important to examine the effect of the total population size N on the dynamics
of our model(s). For the purpose of this analysis we will use the Los Angeles County
parameters as our “base” parameters, i.e., the set of parameters will not change during
our examination of different population sizes. We know that in the Three-Strikes model,
R0 = ( β0N

φ+δ+μ)( μ
ω0+μ) and that the crime-free equilibrium becomes unstable for R0 > 1. Thus

when N > (ω0+μ)(φ+δ+μ)
β0μ

≡ N∗ the crime-free equilibrium is unstable, while if N < N∗ the
C.F.E. is stable. By substituting the Los Angeles County values for μ, β0, φ, δ and ω0

in the Three-Strikes model, we can determine N∗ ≈ 5567679. For N > N∗, the model
will exhibit behavior with an increasing total population leading to an increase in the
number of people who end up in prison as t approaches infinity. Figure 5 shows the total
incarcerated and reformed populations for N=6 million, 8 million, and 10 million. We
introduce one criminal into a fully susceptible population. The thickest curves represent
the prison population(I1 + I2 + I3), which increases with the total population.

We estimate a range for values of N that satisfy the conditions for the existence
of two endemic equilibria–when R0 < 1, i.e. (N < N∗). By plotting our solutions and
introducing one criminal into a fully susceptible population each time and decreasing N
downwards from N∗, we were able to determine a population value where only the crime-
free equilibrium exists. We found this value, which we denote as N c, to be approximately
2820000. For N c < N < N∗, we were able to visually verify the existence of two endemic
equilibria. Since 2820000 ≈ 0.508*5567679, we can conclude that the bifurcation from
the Infinite-Strikes model also exists in the Three-Strikes model, with the saddle node
bifurcation point approximately equal to 0.508. This visual analysis is shown in Figure 6–
for N less than 2820000 the stable crime-free equilibrium is approached, while two endemic
equilibria exist for greater values of N .
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Figure 5: Solutions vs. Time for N = 6 million, 8 million and 10 million

Figure 6: Total criminal population for N near N c

The Three-Strikes model exhibits a general pattern of behavior for N < N c, which is
shown below for an example population of 2 million (with one criminal introduced initially):
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Figure 7: Solutions versus time for N=2000000 (1 criminal introduced)

The system approaches the stable crime-free equilibrium (with prison populations
dying out as a result), with the susceptible and reformed populations approaching the same
value as t goes to infinity.

5.2 Analysis of the Three-Strikes Model and Infinite-Strikes Model in
Los Angeles County

In this section, we will numerically examine the effects of both the Three-Strikes
model and Infinite-Strikes model on Los Angeles County, which has a population of ≈ 10
million.

In the previous section we showed the results of introducing one criminal into a
fully susceptible population of 10 million people under the Three Strikes Law. Figure 8
below shows the total incarcerated, reformed and criminal populations from this particular
simulation under the Three-Strikes policy, and the total incarcerated, reformed and criminal
populations as a result of one criminal introduced into a fully susceptible population under
the Infinite-Strikes policy.

From these graphs, we see that the Three-Strikes model is more effective at control-
ling the level of crime in a fully susceptible population than the Infinite-Strikes model (ap-
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Figure 8: Total population in the S, C, I, R and V classes: Three-Strikes (left), Infinite-
Strikes (right)

proximately 30 percent of the criminals present under the Infinite-Strikes model are present
under the Three-Strikes model), and also leads to a higher reformed population (approxi-
mately 22 percent higher). The Three-Strikes model has the effect of sending slightly more
of the population (approximately 3 percent more of the total population) to prison in the
long term. The I3 class, in particular, is shown in Figure 9:
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Figure 9: I3 population under the Three-Strikes Law

We give a projection for the future of the system in LA under the Three-Strikes
Law. Using the same parameters and the current class data for LA County [1], we can run
our model from the present time (we use a high initial ”reformed” population to reflect the
high percentage of the current LA population currently removed from criminal activity) to
obtain the following solutions:
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Figure 10: Our model’s prediction for LA under the Three-Strikes Law (with high initial
reformed population): Totals (left) and I3 (right)

Our figures indicate that while the current situation in Los Angeles is reasonable, as
time goes on, the deterrent effect of the Three-Strikes system will not be enough to prevent
an unreasonably high proportion of the population from being sent to prison. In addition,
the reformed class will not be able to sustain itself over time.

In comparison, we can run a simulation in which the Infinite-strikes policy is rein-
stated in LA county with the current class populations:
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Figure 11: Our model’s prediction of LA under a reinstated Infinite-Strikes policy (with
high initial reformed population)

The figure indicates that the Infinite-strikes policy will be less effective at controlling
the amount of crime in the population than the Three-Strikes Law, and lacking the deterrent
effect of the latter, does a worse job of maintaining the number of individuals in the reformed
class. We see that as time goes on, the total prison population is less than that under the
Three-Strikes Law (approximately 4997300 at equilibrium, versus 5197900 at equilibrium
in the Three-Strikes model). However, considering the high criminal population in the
long run under the Infinite-Strikes policy, this 200000-person difference (2 percent of the
population) can be seen as justifiable.

5.3 The Three-Strikes Model in Other Regions

In this section, we will briefly examine the consequences of the Three-Strikes Law
in two other states which implement the policy– New Mexico and Montana. Los Angeles
County alone has a population of around 10 million; this is in sharp contrast to the pop-
ulations of New Mexico and Montana– around 1.9 million and 900,000, respectively. Our
earlier study on population size and the Three-Strike Law gives some indication as to how
our model should behave in these sparsely-populated states. To examine the effects of the
law, we will keep all of the parameters the same as those used for LA County, but will vary
φ (the arrest rate) according to the data found in [1]. We estimate φ ≈ .996 year−1 in New
Mexico and φ ≈ .59 year1 in Montana [1]. Setting the initial reformed population equal to
zero, we plot our hypothetical solutions using estimated current initial class data from both
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states to obtain:

Figure 12: Our model’s prediction for New Mexico (left) and Montana (right) under the
Three-Strikes Law

These two examples show that the Three-Strikes Law, while not ideal in a heavily
populated area such as LA County, is very effective at both controlling crime and keeping
prison populations low in sparsely-populated areas. We must see how these figures compare
to solutions for the Infinite-Strikes model for New Mexico and Montana. These results are
shown below:
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Figure 13: Our model’s prediction for New Mexico (left) and Montana (right) under the
Infinite-Strikes model

From these graphs, we see that criminal activity actually dies out more quickly under
the Infinite-Strikes model than under the Three-Strikes model (criminal activity disappears
at around 10 years under the former, vs. around 20 years under the latter). This is due to
the shorter sentencing and minimal amount of reappearances in the C classes (due to the
decreased number of contacts) found in the Infinite-Strikes model. We conclude from these
figures that the Infinite-Strikes model is better at controlling crime than the Three-Strikes
model in sparsely populated areas; however, it is interesting to note that while the behavior
of the two models is very different for large population sizes, they both tend toward the
same behavior is population size decreases. The Three-Strikes model creates a much higher
reformed population in Montana and New Mexico, but once crime has been eradicated, the
number of people in the reformed class can be seen as irrelevant (since no one from the
reformed or susceptible classes is being drawn into criminal activity.)

5.4 Comparison to the Hypothetical One-Strike Model

Finally, in order to address the question of whether an optimum number of strikes
exists for a population as large as that of LA county, we will compare the results given
by the Three-Strikes and Infinite-Strikes models to the results found by introducing one
criminal into a fully susceptible population of 10 million under our hypothetical One-Strike
model.
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Figure 14: A population of 10 million under the One-Strike model

As one would expect, the One-Strike model controls crime very well, but at the
cost of sending the majority of the population into prison. In the long term, it is much less
effective compared to the Three-Strikes policy due to the fact that there are no opportunities
for those involved in criminal activity to reform.

We can now delve into the question of what is the optimum number of strikes.
Ideally, we want to maximize the population in the reformed class and minimize the pop-
ulations in the criminal and incarcerated classes. In terms of controlling crime in a large
urban population, the One-Strike model is the most effective, followed by the Three-Strikes
model and the Infinite-Strikes model. In terms of having the highest number of reformed
individuals, the Three-Strikes model is first, followed by the Infinite-Strikes model and
the One-Strike model. In terms of having the lowest number of incarcerated individuals,
the Infinite-Strikes model is first, followed by the Three-Strikes model and the One-Strike
model. Based on these results for the Three-Strikes model, the Infinite-Strikes model and
the One-Strike model, we hypothesize that the optimum number of strikes in a large urban
population is likely greater than three, but finite.

6 Results and Conclusions

Having performed the various numerical simulations, we now give an overall sum-
mary of our results. We show that a backwards bifurcation exists for the Infinite-Strikes
model, thereby implying that criminality can arise even when the basic reproductive num-
ber is less than one. We then conjecture that a backwards bifurcation is also possible for the
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Three-Strikes model based on the assumption that the Infinite-Strikes model encompasses
the Three-Strikes model in its framework. However, we are unable to rigorously verify this
claim due to the complex nature of the equations that arise from the analysis. Thus, we have
to settle for a simple graphical check that there is indeed a saddle-node bifurcation point.
The existence of this saddle-node bifurcation point implies that a backwards bifurcation
exists for the Three-Strikes model.

From our numerical simulations, we can conclude that the Three-Strikes model is
more effective at controlling crime than the Infinite-Strikes model in densely populated areas
like Los Angeles County. In other words, the endemic equilibrium value of the number of
criminals in the Three-Strikes model is significantly lower than the endemic equilibrium
value of the number of criminals in the Infinite-Strikes model. In addition, the Three-
Strikes model exhibits a higher endemic equilibrium value for the reformed population than
the value in the Infinite-Strikes model.

However, we see in Figures 10 and 11 that these population levels in the reformed
classes for both models cannot be sustained over time. All the while, the prison population
rises and actually intersects the total reformed population at a particular year. For the
Three-Strikes model, the intersection occurs at approximately 32.3 years, whereas for the
Infinite-Strikes model, the intersection occurs at approximately 28.0 years. From this, we
can conclude that even though the reformed population is declining in both models, the
Three-Strikes model still manages to keep a higher level of reformed individuals than im-
prisoned individuals for a longer period of time than the Infinite-Strikes model. In fact, the
Three-Strikes model achieves a greater number of reformed individuals at this intersection
than the Infinite-Strikes model. Hence, we see that the Three-Strikes model is more effective
at deterring crime than the Infinite-Strikes model.

However, the Three-Strikes model has a tendency to simply incapacitate criminals,
as shown in Figure 8. This effect is made more clear in Figure 10, as the population in
I3 approaches an endemic equilibrium value that is significantly higher than the endemic
equilibrium value for the reformed population. We see that the Infinite-Strikes model also
manifests this “incapacitation” effect but to a lesser degree. Thus, the Infinite-Strikes model
is better than the Three-Strikes model in the sense that the Infinite-Strikes model sends less
of the population to prison over time. However, this benefit is only marginal when compared
to the effective deterrent effect of the Three-Strikes system on densely populated regions.
Overall, in a densely populated area like Los Angeles County, the Three-Strikes system is
better able to deter crime than the Infinite-Strikes model, but at the cost of imprisoning
more people. Ideally, we want a policy that deters crime but minimizes the number of
incarcerated individuals. Hence, the Three-Strikes system does not work perfectly in a
dense, urban population, but is still more effective than the Infinite-Strikes model.

We then examine the effect of the Three-Strikes Law on sparsely population regions,
specifically in New Mexico and Montana. We find that the endemic equilibrium level for
the reformed population is drastically higher than the equilibrium level for the imprisoned
population and the criminal population for both states. In fact, the imprisoned population
goes to zero for both states (see Figure 12), which is consistent with actual statistics for
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each state; New Mexico and Montana have never sentenced a “third striker” [13]. Hence,
the Three-Strikes system is more effective in areas that are thinly populated than in areas
that are densely populated. The reason for this lies in the contact processes involved in
the Three-Strikes model. Since people in New Mexico and Montana are more spread out
than people in Los Angeles County, fewer contacts occur between people in general, but
especially between criminals and the susceptible population. Hence, the number of criminals
eventually reaches zero, as does the imprisoned population.

The same effect can be seen when we look at New Mexico and Montana under the
Infinite-Strikes system (Figure 13). Both the incarcerated and criminal populations die off
eventually, so like the Three-Strikes system, the Infinite-Strikes system is more effective at
deterring crime in a sparsely populated area than in a densely populated area. When we
compare both models however, we see that the criminal population approaches zero faster
under the Infinite-Strikes system than the Three-Strikes system. In fact, criminal activity
disappears at around 10 years for the Infinite-Strikes system, but at around 20 years for
the Three-Strikes system. Therefore, the Infinite-Strikes system is a more efficient means
to deter crime than the Three-Strikes system in a sparsely populated area.

Our final analysis consists of a comparison between the Three-Strikes model and
the Infinite-Strikes model to the One-Strike model. We find that the One-Strike model
controls crime very effectively, but at the cost of sending almost everyone in the population
to prison as shown in Figure 14. The reformed population is also very small relative to
the size of the imprisoned population. Hence, the One-Strike model is a more stringent
form of the Three-Strikes model, which is expected. Due to this severity of the One-Strike
system, no opportunities are given to criminals to reform, thus making a One-Strike policy
an extremist approach to law enforcement. Similarly, a Two-Strikes system will be more
strict than the Three-Strikes system, but less effective overall. Therefore, the optimal policy
will most likely consist of more than three strikes. Further research must be conducted in
order to determine the maximum number of strikes needed to effectively deter crime in
densely populated urban areas. Other areas for further development may include the effect
of the ε’s on the Three-Strikes system. Variation in the ε’s may cause differing equilibrium
populations in the incarcerated, reformed and criminal classes. Considering these models
from a standard incidence point of view may also produce different results. In doing so
however, one will not be able to analyze the impact of population density on crime rates.
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8 Appendix

8.1 F and V for the Calculation of R0 for the Three-Strikes Model

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

β0CS

β1CR1

β2CR2

0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ N + β0CS + S
(
ω0 + ε0I3

N

)
+ μ S

φ C0 + δ C0 + μ C0

φ C1 + δ C1 + μ C1

φ C2 + μ C2

−φ C0 + ψ1I1 + μ I1

−φ C1 + ψ2I2 + μ I2

−φ C2 − δ C0 − δ C1 + μ I3

−ψ1I1 + β1CR1 + R1

(
ω1 + ε1I3

N

)
+ μ R1

−ψ2I2 + β2CR2 + R2

(
ω2 + ε2I3

N

)
+ μ R2

−S
(
ω0 + ε0I3

N

)− R1

(
ω1 + ε1I3

N

)− R2

(
ω2 + ε2I3

N

)
+ μ V

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8.2 Alternative Set of Endemic Parameter Conditions for the Infinite-
Strikes Model

Here we present another set of parameter conditions that is equally valid in assessing
the dynamics of the endemic equilibria in the Infinite-Strikes model.

Theorem 2.

(i) If R0 > 1, then there is only one endemic equilibrium.

(ii) Suppose R+
0 < R0 < 1 and R1 > 1

1−K , where K = 1 −
(

φ
μ+φ

)(
ψ

μ+ψ

)
and R+

0 =
R1+1+2

√
R1(1−K)

(R1−1)2

R1K
+4

. Then there exist two endemic equilibria. Otherwise, there is none.

Proof. The first implication is trivial. The fact that R0 > 1 ⇔ 0 < c = f(0) and a < 0,
where f is the quadratic equation in (1), automatically guarantees the existence of precisely
one endemic equilibrium, since f(1) < 0.

For the second implication, recall that if R0 < 1 ⇔ c < 0, b > 0 and b2 − 4ac > 0,
then there are two endemic equilibria. Let us first consider the condition b > 0. Instead of
factoring out b1 as before, let us factor out b0. Hence, b > 0 ⇒

b0

(
b1 − (μ + φ)(μ + ω1)

μ

)
− b1μ

(
1 +

μ

μ + ψ

)
> 0

⇒ b1 >
(μ + φ)(μ + ω1)

μ
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⇒ b1μ

(μ + φ)(μ + ω1)
> 1

⇒ R1 > 1.

In addition, we also need

b0

(
b1 − (μ + φ)(μ + ω1)

μ

)
> b1μ

(
1 +

φ

μ + ψ

)
= b1K(μ + φ)

⇒ b0

(
b1μ − (μ + φ)(μ + ω1)

μ

)
> b1K(μ + φ)

⇒ b0

(
(R1 − 1)(μ + φ)(μ + ω1)

μ

)
> b1K(μ + φ)

⇒ R0 >

(
R1

R1 − 1

)
K.

Hence, it seems we have an extra parameter condition for R0. However, once we
reduce the condition b2 − 4ac > 0 to its parameter conditions, we see that this condition
R0 >

(
R1
R1−1

)
K goes away. From the last part of section 3.5, we already know that

R+
0 =

R1 + 1 + 2
√

R1(1 − K)
(R1−1)2

R1K
+ 4

R−
0 =

R1 + 1 − 2
√

R1(1 − K)
(R1−1)2

R1K
+ 4

.

Once again, b2 − 4ac > 0 is satisfied ⇔
(i) 0 < R0 < R−

0 or

(ii) R0 > R+
0

We want to show that R+
0 >

(
R1
R1−1

)
K > R−

0 in order to reduce the total number of
conditions down to just one. Let us consider the second equality first. Notice we only need
to show K > R−

0 in order for the inequality to be satisfied since R1 > 1 ⇒
(

R1
R1−1

)
K > K.

Proceeding like before in the case of R+
0 > K, we have R−

0 < K ⇔

R1 + 1 − 2
√

R1(1 − K) <
(R1 − 1)2

R1
+ 4K

R2
1 + R1 − 2R1

√
R1(1 − K) < (R1 − 1)2 + 4KR1

2R1

√
R1(1 − K) > 3R1 − 1 − 4KR1

4R1(1 − K) > (3 − 1
R1

− 4K)2

4(1 − K)R3
1 − (3 − 4K)2R2

1 + 2(3 − 4K)R1 − 1 > 0.
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Let p(R1) ≡ 4(1−K)R3
1−(3−4K)2R2

1+2(3−4K)R1−1 and set p(R1) = 0. The roots
of p are then Ra

1 = 1
4(1−K) , Rb

1 = 1−2K+2
√−K(1 − K) and Rc

1 = 1−2K−2
√−K(1 − K).

Since K < 1 by definition, Rb
1 and Rc

1 are imaginary, so we only consider Ra
1 in our analysis.

Specifically, we have the following two cases to analyze:

(a) R−
0 < K ⇔ p(R1) > 0 ⇔ 3 − 4K − 1

R1
< 0 < 2

√
R1(1 − K)

(b) R−
0 < K ⇔ p(R1) > 0 ⇔ 0 < 3 − 4K − 1

R1
< 2
√

R1(1 − K)

Consider the first case. We see that 3− 4K − 1
R1

< 0 ⇔ 3− 4K < 1
R1

which is true
if and only if K ≥ 3

4 . From the second case, we have that p(R1) > 0 ⇔ R1 > Ra
1 = 1

4(1−k) .
This last inequality is automatically satisfied if K < 3

4 , since K < 3
4 ⇔ 1

4(1−K) < 1 so then
R1 > 1 > 1

4(1−K) . Therefore, the condition R−
0 < K is satisfied for all possible values of K,

where 0 < K < 1.
We now need to show R+

0 >
(

R1
R1−1

)
K. First, we have R+

0 > R1K
R1−1 ⇔

1 + R1 + 2
√

R1(1 − K) > 4K

(
R1

R1 − 1

)
+ R1 − 1

√
R1(1 − K) >

(
2KR1

R1 − 1
− 1
)

(10)

(10) is true if and only if either

(a) 2R1K
R1−1 − 1 < 0 since

√
R1(1 − K) > 0 for every K.

(b) 0 < 2R1K
R1−1 − 1 and R1(1 − K) >

(
2R1K
R1−1 − 1

)2

Reducing the condition in (a), we have an equivalent condition in the form of R1 >
1

1−2K and 0 < K < 1
2 . In (b), we have 0 < 2R1K

R1−1 − 1 ⇔ K ≥ 1
2 and R1(1 − K) >(

2R1K
R1−1 − 1

)2 ⇔ g(R1) > 0 where

g(R1) = (1 − K)R3
1 − (3 − 6K + 4K2)R2

1 + (3 − 5K)R1 − 1

and is gotten from expanding (10). Setting g(R1) = 0, we arrive at the following roots:

Ra
1 =

1
1 − K

Rb
1 = 1 − 2K + 2

√
−K(1 − K)

Rc
1 = 1 − 2K − 2

√
−K(1 − K).

We see that Rb
1 and Rc

1 are imaginary since K < 1. Hence, g(R1) > 0 ⇔ R1 > 1
1−K . We

then have R+
0 >

(
R1K
R1−1

)
⇔
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(i) 0 < K < 1
2 and R1 > 1

1−2K or

(ii) K ≥ 1
2 and R1 > 1

1−K or

(iii) 0 < K < 1
2 and R1 < 1

1−2K and R1 > 1
1−K

(i) and (iii) implies that 0 < K < 1
2 and R1 > 1

1−K since 1
1−2K > 1

1−K for 0 <

K < 1
2 . Combining this new condition with (ii), we have R1 > 1

1−K for every K. Hence,

R+
0 >

(
R1K
R1−1

)
⇔ R1 > 1

1−K . The condition for the existence of two endemic equilibria is

then R1 > 1 and max(R+
0 , R1K

R1−1) < R0 < 1. This condition can be separated into two cases:

(I) 1 < R1 < 1
1−K and R1K

R1−1 < R0 < 1

(II) R1 > 1
1−K and R+

0 < R0 < 1.

But (I) is impossible because if R1 < 1
1−K , then R1K

R1−1 >

(
1

1−K
K

1−K
K

)
= 1. Thus, only

(II) is possible.

8.3 Derivation of the βi’s in the Three-Strikes Model

We estimate β0, β1 and β2 in the Three-Strikes model using data from 2004-2005.
The projected offense rate for 2000-2007 (given in offenses

offender∗year ) according to [7], is 0.4216
for violent crimes in Los Angeles County. We can divide the number of crimes (per year)
in 2004 by this offense rate to obtain the estimated number of criminals (per year) in 2004:

76203 offenses
year

0.4216 offenses
offender∗year

= 180747 offenders

This is equal to the number of offenders per year in 2004. We must now compute the
number of criminals from 2004 remaining in 2005. This can be found by subtracting the
number of criminals from 2004 being arrested from the total number. Denote this quantity
by x (x has units offenders

year ).

x = 180747 − φ180747 ≈ 40487.

Next we compute the number of new appearances in C (per year). This can be found by
subtracting x from the number of offenders/year in 2005:

New Appearances in C/year = 66350
0.4216 − 40487 ≈ 116890.

We must now break down the number of new appearances in C/year into the number of
new appearances in C0/year, the number of new appearances in C1/year and the number
of new appearances in C2/year. We estimate this breakdown based on the distribution
of the current prison populations in I1, I2 and I3 [6]. Using this data, we estimate that
C1 ≈ 0.326C0, C2 ≈ 0.075C0 and determine that New Appearances in C0/year ≈ 83433,
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New Appearances in C1/year ≈ 27199 and New Appearances in C2/year ≈ 6258. Estimating
the susceptible population in 2004 to be approximately 1589863 (based on the definition of
the susceptible class as those in LA county living in poverty) and using 20781 and 8609 as
the populations for R1 and R2 respectively, we can obtain β0, β1 and β2 as follows:

β0 = 83433
1589863∗180747 ≈ 0.00000029034 1

people×year

β1 = 27199
20871∗180747 ≈ 0.00000724 1

people×year

β2 = 6258
8609∗180747 ≈ 0.00000402 1

people×year .

8.4 Derivation of ω1 and ω2 in the Three-Strikes Model

Using data from [2], we estimated that approximately 32.6 percent of the population
released with one strike was choosing to remove themselves from criminal activity. Using this
we derived the relation μ+ω1

μ+ω1+β1C
= 0.326, which, by estimating β1C ≈ 1.309 years−1( [2]

and [7]), we solve to find ω1 ≈ 0.6 years−1.
Similarly, using the relation μ+ω2

μ+ω2+β2C
= 0.23 and estimating β2C ≈ 0.7266 years−1(

[2] and [7]), we solve to find ω2 ≈ 0.619 years−1.

8.5 Derivation of β1 in the Infinite-Strikes Model

β1 in the Infinite-Strikes Model is equal to (New Appearances in C/year - New
Appearances in C from S/year)/(R*C). Since the New Appearances in C/year from S is
equal to β0CS and we know the estimated number of people in R and C over the period of
2004-2005 from [2] and our earlier calculations, we can find β1 as follows:

β1 ≈ 116890−(2.9034×10−7)(180747)(1589863)
(29480)(180747) ≈ 6.203 × 10−6 1

people×year .

8.6 Derivation of ω in the Infinite-Strikes Model

Similarly to our calculations for ω1 and ω2 in the Three-Strikes Model, using the
relation μ+ω

μ+ω+β1C
= 0.556 (using data from [7] and [2], we estimated that under the Infinite-

Strikes policy, 55.6 percent of people do not return to criminal activity after being released
from prison), we found ω ≈ 0.7 years−1.
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