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Abstract 
We model the epidemiological interactions between two animal populations: one with a virulent 

strain of Trypanosoma cruzi, which causes Chagas' disease, and the other with a non-virulent strain 
that provides cross immunity against the disease. The virulent strains of T. cruzi are predominantly 
found in Latin America. The increased spread of Chagas' disease from its endemic habitat in Latin 
America to the north, which has recently been observed, has been linked to climate change and 
deforestation. As a result, a large part of the southern United States is at a higher risk for the 
disease. The two-patch model presented herein describes the effects of the migrating virulent strains 
on the prevalence and/or possibility of endemicity of Chagas' disease in the United States. We use an 
epidemiological modelling paradigm and an analytical framework of nonlinear dynamics to describe 
the behavior of the two populations and their interactions. Depending on certain conditions imposed 
on reproductive numbers, we found that there are six different scenarios for the two-patch system as 
a whole. We found that the principle of competitive exclusion prevails in either strain when there is 
no migration, with the exception of infinitely many stable non-isolated steady states of coexistence 
on the bifurcation line in the R21 - R22 plane. When the migration term is nonzero, we observed 
that there are two possible situations for patch 2: endemic equilibrium for the virulent strain or 
coexistence of both strains. 

A Introduction 
Chagas' disease is a vector-borne parasitic disease that predominantly affects Latin American countries. Try­
panosoma cruzi, the parasite responsible for Chagas', can be found over a wide area of the American continent, 
from the southern half of the United States to Chile and central Argentina, in a total of 18 countries [7]. Ap­
proximately 90 million people are at risk of infection in countries like Mexico and Brazil, and it is estimated to 
affect between 16 and 18 million people. Cases of endemic breakout have been confined mainly to Latin America 
(specifically, the rural areas and tropical regions). 

Chagas' disease results from infection with the protozoan parasite Trypanosoma cruzi, a member of the order 
Kinetoplastida and family Trypanosomatidae. There exist many strains of T. cruzi classified primarily under 
two classes: T. cruzi I and T. cruzi II. The former, native to Mexico, causes Chagas' disease; the latter, found 
mostly in southern United States, does not cause any pathology but provides cross-immunity against the first 
one [2]. For expository purposes only, we refer to the strain that causes Chagas' disease as T. cruzi strain 1 (or 
chagasic/virulent), and name the strain that provides cross-immunity T. cruzi strain 2 (or non-chagasic/non­
virulent). 

The most common method of infection is through blood-feeding insects under the genus Triatoma, Rhodnius, 
and Panstrongylus, which act as vectors. Triatoma are generally large, measuring about 35 mm in length. The 
life cycle of Triatoma initially starts at immature nymphal stage, and is divided into five nymphal stages with 
no pupal stage. It has been observed that Triatoma's hatch-rate is temperature sensitive. They usually hatch 
after ten to forty days, and after hatching they generally feed on a host within two to three days. If no host is 
available, a nymph can survive several weeks before actually feeding. Females lay 100-600 eggs during their three 
to twelve month lifespan. The reproductive capacity of the adult male has been observed to be temperature 
sensitive due to the fact that at low temperature the male cannot fertilize eggs, which are usually laid in small 
clumps in arboreal environments. For instance, two generations of egg development may be completed per year 
in warmer climates, whereas one generation is completed in colder climates. During developmental stage, a large 
blood-meal is required, which consists of 1-2 grams blood on average and lasts for 14 days. 

These bugs are often found in cracks, roofs and crevices of houses that are poorly constructed, mostly in rural 
areas, and they are known to feed on the blood of the infected and/or potential hosts or reservoirs. However, 
the infection is transmitted when the insect defecates near the wound of the potential host. In most cases, 
the parasites contained in the feces of the insect penetrate the skin through wounds resulting from scratching 
[6]. Researchers have found that infected vectors sometime change their behavior [3]. The most important 
differential behavior is the modification of their eating habits. For instance, the parasites hamper the vectors' 
ability to draw blood efficiently, compelling them to feed more often than un infected vectors. These changes in 
the vectors' habits provide biological justification for the increase in their mobility, hence increasing the infection 
rate [3,16]. 

There are more than 100 species of mammals that can serve as hosts for Trypanosoma cruzi. In the United 
States, the most frequent are opossums, rats, armadillos, raccoons, woodrats, mice, dogs, and cats, among others 
[8]. All the stages of Chagas' disease are known to occur in dogs, but it has rarely been described in cats, for 
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example. There is little information about the actual Chagas' disease in other species; however, it is known that 
mammals like raccoons and opossums act as reservoirs for T. cruzi [8], which means that they are carriers of 
the parasite but are not themselves affected with the disease. 

From a medical perspective, the disease has an incubation period ranging from 5 to 14 days after exposure 
to the vector's feces. The human disease occurs mainly in two stages: the acute stage shortly after the infection, 
and the chronic stage that may develop over about 5 to 40 years later [8). The acute infection phase lasts 2 to 3 
months and is often mild; usually a small sore develops at the bite where the parasite enters the body. Within 
a few days, fever and swollen lymph nodes may develop. This initial acute phase may cause illness and death, 
especially in young children. An estimated 30% of infected people will develop medical problems from Chagas' 
disease over the course of their lives, and will not become symptomatic until the chronic stage. During this 
period of time, parasites are invading most organs of the body, often causing heart, intestinal and oesophageal 
damage and progressive weakness. Complications of chronic Chagas' disease may include organ failure, usually 
of the heart or digestive system, due to secondary fibrosis [8). 

The finding about strain 2 of T. cruzi providing cross-immunity against strain 1 has been supported by an 
experiment on mice described in [1). It was shown that mice infected with the virulent strain responded to the 
disease drastically and died in the following day, while mice infected with the non-virulent one showed no sign 
of the disease. L. Lauria-Pires et al. [1) discovered that co-infection between the strains is not permitted when 
mice previously infected with nonvirulent strain were later reinfected with the virulent strain. However, they 
found that both strains were present in their blood work [1). As a result, scientists and researchers investigating 
this effect have come to believe that T. cruzi 2 could provide immunization against Chagas' disease [8). 

Propagation of vector-borne diseases such as Chagas' has been known to be strongly influenced by a number 
of environmental factors such as temperature, vegetation, and host species. The increased spread of Chagas' 
disease from its endemic habitat in Latin America to the north, which has recently been observed, has been linked 
to climate change (such as higher temperatures) and deforestation. These factors could extend the geographical 
distribution of the vectors, putting a large part of the southern United States at increased risk for the disease. 
Also, this higher risk range is expected to extend into the central United States in the next twenty years because 
of the rising temperatures which have been predicted [34). These facts serve as motivation for the present study, 
where we focus on modelling the interaction of two strains of T. cruzi in two different populations, and the 
effects that migration can produce in the dynamics of such populations. 

Recently, researchers from various disciplines have developed multiple models describing and capturing the 
dynamics of transmission. Many of the papers that have appeared focus on the spread of Chagas' disease, vector 
consumption and contact dynamics, differential behavior in the vectors experiencing different environmental 
conditions [2, 3). In [2], the contributions made by the vector consumption and contact process saturation in 
sylvatic transmission of T. cruzi strain were investigated using the basic reproductive number as a comparison 
metric. Recent investigations [4) have shown the coexistence of both strains of T. cruzi in some habitats in the 
United States, where the native strain provides cross-immunity against the virulent one. 

The model presented herein studies the interaction of two populations infected with T.cruzi, considering as 
well two different strains of the parasite, and in the presence of one-directional vector migration (asymmetric 
migration). An epidemiological framework and tools from nonlinear dynamics are used to gain insight into the 
dynamics of the system under consideration (e.g. the dominance of one strain of T. cruzi over another). This 
study is of great importance to the United States and many Latin American countries, and provides initial 
steps toward the development of diagnostic and preventive policies for Chagas' disease. The rest of the paper is 
divided as follows: section 2 presents a model which describes the interaction between the two strains; section 3 
discusses relevant analysis of the model; section 4 provides parameter estimations and numerical simulations of 
the model. The paper ends with a conclusion, which summarizes the main results and provides future direction. 

B Proposed model 
We develop a model to analyze T. cruzi infection, in which we consider two distinct patches that differ in the 
kind of strain of T. cruzi that is present. We divide the total population into hosts and vectors, and consider for 
both of these groups the individuals who are susceptible to infection by T. cruzi (denoted by S) and those who 
have been in contact with the parasite and have it present in their bloodstream (denoted by I). We consider that 
the host population consists of raccoons and opossums, which act as reservoirs for the parasite. In addition, 
the vector population are bugs of the genus Triatoma, including Triatoma sanguisuga and Triatoma dimidiata, 
which are amongst the most important vectors for T. cruzi in Mexico and the U.S. 

We consider that the infected individuals in patch 1 (both hosts and vectors) only have the virulent strain, 
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Figure 27: Two pat.ch model for Chagas' disease 

while in patch 2 they have either the non-virulent stra.in or, as a result of migration from patch 1, the virulent 
strain. However, in patch 2 the prevalence of the virulent strain is much smaller than that of the non-virulent 
strain. Vv'e then incorporate an asymmetric migration term, in which a proportion of the infected vectors from 
patch 1 move to patch 2. \Ve make the assumption that only infected vectors migrate due to the fact that the 
chagasic vectors have differential eating behaviors, as was mentioned before. With this assumption, both strains 
of T. cTuzi will be present in patch 2, while in patch 1 there will only be a presence of the virulent strain; 
this is, the analysis of patch 2 will provide us with the means for studying the existence of the cross-immunity 
phenomenon. 

The parameters of the model are given in Table 14. The subscripts h and v are used to denote hosts and 
vectors, respectively, and the numbers 1 or 2 denote the T. cTuzi strain type present in the individual. In 
particular, we use 1 for the virulent strain and 2 for the non-virulent strain. 'vVe are also using a tilde C) for all 
the elements in patch 1. The letter N refers to the total population. 

The equations describing the systern in patch 1 are given as follows: 

el,5h 
elt 

ellh 
elt 

dS" 
dt 

dl" 
dt 
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In the equations above, Ah represents the recruitment rate of hosts, and i3h and i3v are the per capita host 
and vector infection rates, respectively. The only transmission method that is taken into account is horizontal 
transmission (resulting from bites). {/,h and {/,v are the per capita natural death rates. We assume {/,h to be 
the same for both patches, and similarly for {/,v, because we are not taking into account the differences in 
environmental conditions between the two patches which may produce changes in the life span of either hosts 
or vectors. The constant a: is the disease-induced mortality rate, which changes considerably depending on the 
type of host. For instance, in the case of mice this term is significant because they die of the disease in a short 
period of time; however, raccoons just act as host-reservoirs, which means they don't contract the disease so 
this term is negligible. As a result, in the particular case that we are analyzing the disease-induced mortality 
rate will be zero because the raccoons and opossums (reservoirs) do not die from Chagas' disease. However, we 
choose to do all the analysis including the a: so that the model can be useful for further research, for example 
when considering mice and dogs (that do die from the disease) or even humans (in a very long period of time) 
as hosts. 

The nonlinear terms in the equations above account for the contacts between hosts and vectors which result 

in an infection. The term F (Iv) corresponds to the migration of infected vectors from patch 1 (chagasic) to 

patch 2. For simplicity, linear migratory function is considered, i.e. of the form 

for some per capita migration constant m. In this patch, we have the total populations 

Nh sh+h 
Nv Sv + Iv 

In the case of patch 2 there will be six equations, because we take into consideration susceptible hosts and 

Notation Definition 
Ah Recruitment rate for hosts in patch 1 

f3h Infection rate for hosts in patch 1 

/1h Death rate for hosts 
a Disease-induced mortality rate 
r Growth rate for vector population 
K Carrying capacity of the vector population 

f3v Infection rate for vectors in patch 1 (virulent strain) 
Ah Recruitment rate for hosts in patch 2 

/1v Death rate for vectors 

f3hl Rate of infection with non-virulent strain for hosts in patch 2 

f3h2 Rate of infection with virulent strain for hosts in patch 2 
f3vl Rate of infection with non-virulent strain for vectors in patch 2 

f3v2 Rate of infection with virulent strain for vectors in patch 2 

Table 14: Parameters of the model 
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vectors, as well as infected hosts and vectors with each of the two strains. The system is as follows: 

dSh 
dt 

dhl 
dt 

dh2 
dt 
dSv 

dt 
dlv1 

dt 
dlv 2 

dt 

with the total populations satisfying 

Nh Sh +hl +h2 
N v Sv + Ivl + Iv2 

The basic notation in this patch is the same as before. 
The total vector population is not constant in either patch, because patch 1 is losing individuals to migration 

whereas patch 2 is gaining them. We include a logistic growth for the vector population to account for the change 
in population due to migration. In this expression, r is the growth rate and K the carrying capacity of the 
vectors. 

We choose to include constant recruitment rate for hosts because we include the possibility of having hosts 
coming in from nearby locations as well as the intrinsic growth pertaining to the local population. For the 
vectors, we assume logistic growth so that we only have the intrinsic growth for this population, and this way 
we do not consider vectors coming from different locations. 

Due to the functional form of the migratory term and its asymmetric nature, the system of equations in 
patch 1 is decoupled from those in patch 2. This enables us to analyze the system in patch 1 easily and use the 
endemic equilibrium obtained to analyze the behavior of patch 2. 

C Analysis 
In this section, we perform the analysis of the model proposed previously. Since the the first patch is decoupled 
from the second patch, we will first analyze it without considering the effect of migration. The scheme of the 
analysis of the model is as follows: the first subsection focuses on the analysis of patch 1 in isolation (where 
m = 0); the second provides analysis on patch 2, again assuming m = 0; finally we study both patches taking 
into account the dynamics of migration. 

C.l Patch 1 (no migration) 
First of all we consider, for demographic purposes, the behavior of the total population of vectors with respect 
to the parameters used to define their growth rate (r) and their natural death rate (fJ,v). With this, we can 
derive a demographic condition under which the vectors would go extinct, which would imply that there are 
no infections and migration could not possibly exist. This condition gives that whenever r is less than fJ,v, the 
population of vectors goes extinct. Therefore, in the following analysis we will assume that r is greater than 
fJ,v· 

The population of susceptible vectors persists if and only if the intrinsic growth rate of the vector population 
(r) is greater than the natural death rate fJ,v. 

Proof. We use the equation for the total population of vectors 
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and look at its stability, not considering migration. The fixed points are N: = 0, N: = K (1 - H;;!-). We take 
the derivative with respect to Nv : 

f ' (N ) - 2rNv 
v -r-~-/-Lv 

For the fixed point N: = 0, we have that f' > 0 {:} r > /-Lv, which implies that there is no extinction since 
N: = 0 is unstable. For N: = K (1 - H;;!-), we have f' < 0 {:} r > /-Lv, which implies that the fixed point is 
stable. 0 

The first step of the analysis consisted in calculating the basic reproductive number R~o using the next 
generation operator approach [10]. We obtained as a result the following expression: 

R~o = 13h 13v 
(/-Lh + a) /-Lv' 

R~o can be interpreted as the geometric mean of the average number of secondary vector infections produced 
by one infected host, and the average number of secondary host infections produced by one infected vector. 

Next, we calculate the fixed points. For this particular case, we obtained two: the infection-free equilibrium 
(denoted by ElO), which occurs when I;; = 0 and I: = 0, and the endemic equilibrium (E~l)' Due to structural 
complexity, we proportionalize the steady state conditions using the following: 

8;; 
I;; 
8* v 
I* v 

(1- Xh) N;; 

xhN;; 
(l- xv)N; 

xvN; 

(85) 

(86) 

(87) 

(88) 

In the case of the infection-free equilibrium (ElO), we have 8;; = N;; and 8~ = N:. Thus, ElO is given by 

The existence of this equilibrium is easily shown because of the fact that A.h, /-Lh, K, r > 0 and r - /-Lv > 0 as well. 
To obtain the endemic equilibrium, we use equations (1-4) and replace the steady state conditions for 8;; 

and 8~ with the steady state conditions for N;; and N:, respectively, and solve for N;;,N:,Xh, and Xv. This 
way, we obtain the endemic equilibrium (E~l)' which is given by: 

where 

A 

N* v 

where R~o is the basic reproductive number for this patch. Using the basic reproductive number R~o, we were 
able to prove the existence of the endemic equilibrium (E~l) by showing that each of the coordinates is positive 
when R~o > 1. 

R~o can also be used to provide insight into the dynamics of the system and to study the stability of the 
infection-free equilibrium. When R~o < I, the infection-free equilibrium ElO is locally stable, and R~o > 1 implies 
that the infection-free equilibrium is unstable and allows the possibility of having an endemic equilibrium that 
is stable. In other words, the condition for the existence of endemicity is given by R~o > 1. It can be seen that 
an exchange of stability between ElO and E~l occurs at the threshold value R~o = 1 through a transcritical 
bifurcation (see Figure 28). 

64 



Bifurcation-"Patch 1 (Chagasic) with m::;:.O 
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w
r 

0.2 
./. . .............. . 

0.1 

./ ..... 
. /~ ..... 

1 ....... ·(.·· 

°0~--~0.~5----~----~1.~5----~--~2~.5~--~----~3~.5----~----~4.5~--~ 
R,O 

Bifurcation--Patch 2 

Bifurcation-"Patch 2 
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Figure 28: Transcritical Bifurcations 

It can in fact be shown that the infection-free equilibrium is globally asymptotically stable if we impose the 
condition that R~o ::; 1. To prove this, the condition is restated in the following proposition: 

The infection-free equilibrium ElO is globally stable in patch 1 with m = 0 if R~o ::; 1 . 

Proof We will use the integro-differential equation method [29], often called "a priori estimates" to prove global 
stability for E~o when R~o < 1. It is sufficient to show that the solutions for Sv and Sh are bounded and that 
hand iv go to zero. From the original equations: 

By integrating, we get 

Dividing by Nh (t) 
- - t -
~h (t) < ~o e-(I'h+<»t + ~h 1 e(l'h+<»(T-t)Sh (7) ~v (7) d7 

Nh (t) - Nh Nh 0 N v (7) 

So by taking lim SUPt in both sides 

limsup ~h (t) 
t Nh (t) 
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because limsuPtloe-Cl-'h+a)t = 0o Let x = t - 7 =} 7 = t - Xo Then 

limsup ~h (t) 
t Nh (t) 

- t -

limsup ~ r e-Cl-'h+a)X Sh (t _ x) :v (t - x) dx 
t Nh (t) 10 Nv (t - x) 

(3- it (1° -CI-'I +a)x 1° Sh (t - x) iv (t - x) ) d h Imsupe' 1m sup _ _ x 
ott Nh(t) Nv(t-x) 

where the second inequality is given by the Fatou-Lebesgue Theorem ° Using the definition 

we get 

We know that 

and 

so 

Finally we obtain 

Similarly we obtain 

lim sup f (t - x) = lim sup f (t) 

limsup ~h (t) 
t Nh (t) 

t t 

~ lim sup ~h (t) ~v (t) 
/-Lh + a t Nh (t) Nv (t) 

[3h 1° Sh (t) 10 iv (t) --- 1m sup -_-- 1m sup -_--
/-Lh + a t Nh (t) t Nv (t) 

Nh Sh + i h, Nv = Sv + iv 

=} Sh::; Nh,ih ::; Nh, Sv ::; Nv,iv ::; Nv 

° Sh (t) Sh (t) hm sup -_-- < sup -_-- = 1 
t Nh (t) - t Nh (t) 

1° ih (t) < [3h 10 iv (t) 1m sup -_-- --- 1m sup -_--
t Nh (t) - /-Lh + a t Nv (t) 

1
0 iv (t) [3v ° i h (t) Imsup-_-- < -hmsup-_--

t Nv (t) - /-Lv t Nh (t) 

since they have the same structureo Substituting the second expression into the first, we get 

1° ih (t) < [3h [3v 1° i h (t) R'2 1° i h (t) Imsup-_-- ---- Imsup-_-- = 10Imsup----
t Nh (t) - /-Lh + a /-Lv t Nh (t) t Nh (t) 

Rewriting the last expression we get 

( 
12) ° i h (t) o 2: 1 - RIO hm sup -_--

t Nh (t) 

and using the condition that R~o ::; 1, we have that limsuPt k~?) ::; 0o However, k~tl) 2: 0 so limsuPt k~?) = 0o 
On the other hand, substituting the other way around, we obtain similar results 

1° iv (t) < [3h [3v 1° iv (t) R'2 1° iv (t) Imsup-_-- ---- Imsup-_-- = 10Imsup----
t Nv (t) - /-Lh + a /-Lv t Nv (t) t Nv (t) 

and so limsuPt J;vCtl) = 0o For the susceptibles, we have 

S- < Ah (3- it s- ( ) iv (7) ILhCr-t)d h _ - - h h 7 -_--e 7 

/-Lh 0 Nv (7) 
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and similarly for Sv. Using the same arguments and methods as for the infected class, we obtain 

and 

limsupSv :S: 
t 

A.h ~h. - Iv (t) - - - hmsupSh (t) -_--
/-lh /-lh t N v (t) 

A.h ~h. - () . Iv (t) - - -hmsupSh t hmsup-_--
/-lh /-lh t t N v (t) 

A.h 

/-lh 

K (r - /-lv) ~v l' S- (t) Ih (t) - - Imsup v ----
r r t Nh (t) 

K (r - /-lv) 
r 

Therefore, the infection-free equilibrium is globally stable when R~o :S: 1. 

C.2 Patch 2 (no migration) 

o 

We calculate the basic reproductive number R20 using the next generation operator method. This includes 
calculating the basic reproductive number for both the chagasic and the non-chagasic strains, which we will 
denote as R21 and R22, respectively. We have 

j3h1 j3v1 
(/-lh + a) /-lv 

j3h2 j3v2 

/-lh /-lv 

With this, we obtain the R20 for the whole patch as 

R20 = max {R21, R22}. 

In the absence of migration, we can obtain four fixed points corresponding to the following situations: the 
infection-free equilibrium, denoted by E 20 , in which there is no presence of either strain of T. cruzi in the patch; 
the endemic equilibrium in which strain 1 dominates (E21); the endemic equilibrium in which strain 2 dominates 
(E22); and finally, the coexistence equilibrium (E23). 

As in the previous section, we proportionalize the steady state conditions using the following: 

Sh (1 - Yh - Zh) Ni, 

1hl YhNi, 

1i,2 zhNi, 
S* v (l-Yv- zv)N; 

1:1 YvN; 

1:2 zvN; 

We computed the infection-free equilibrium, which is the following: 

E (S* 1* * S* 1* 1*) (Ah 0 K (r - /-lv) 0) 20: h, h1,1h2 , v, vI, v2 = -, ,0, ,0, 
/-lh r 

Its existence is easily shown as well, because Ah,/-lh,K,r > 0 and r - /-lv > O. 
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Similarly as for patch I, we obtain the endemic equilibrium in which the chagasic strain dominates (E2I) 

where 

1- Yh - Zh 

Yh 
Zh 

1- Yv - Zv 

Yv 
Zv 

f-Lh + aYh' 

K(l_~v). 

The endemic equilibrium in which strain 2 dominates (E22) is given by 

E22 : 

where 

1- Yh - Zh 
Yh 
Zh 

1-yv- zv 
Yv 
Zv 

We verified the existence of both endemic equilibrium points using the basic reproductive numbers. The 
existence of the equilibrium in which strain 1 dominates is given by the condition R2I > I, which assures that 
E2I > O. Similarly, the existence of the equilibrium in which strain 2 dominates is given by the condition 
R22 > I, which assures that E22 > O. 

We prove that the coexistence equilibrium occurs only in the special case in which R21 = R22 > 1. 
There are an infinite number of coexistence equilibrium points in patch 2 (m = 0) if and only if R21 = R22 > 

1. 

Proof. We go back to the proportionalized equations and the notation used before: 

Sh (1 - Yh - Zh) Nh 

11',1 YhNh 

1hz zhNh 
S* v (1 - Yv - zv) N; 

1;1 yv N ; 

I:z zvN; 

From these definitions we see that it is sufficient to use four steady state equations. 

/3hI (1 - Yh - Zh) NhYv - f-LhYhNh - aYhNh 

13hZ (1 - Yh - Zh) NhZv - f-LhZhNh 

/3vI (1 - Yv - zv) NvYv - f-LvYvNv 

/3vz (1 - Yv - zv) Nvzv - f-LvzvNv 
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Note that (91) is linear in Yv and (92) is linear in Zv, so it is possible to solve for them in terms of Yh and Zh, 

obtaining 

Yv 

Zv 

!3v1 Yh + !3v2 zh + /1v 

!3v2zh 

!3v1Yh + !3v2 zh + /1v 

If we now substitute these values in (89) and (90), we obtain the following expressions: 

!3h1!3v1 ( ) --- 1-Yh -Zh 
/1h + a 

!3h1!3v1 ( ) --- 1-Yh -Zh 
/1h 

The left hand side of both equations should be equal, and in this case we obtain an infinite number of solutions 
for the system of equations. This means that we need 

and by dividing by /1v in both sides we obtain the condition 

which ends our proof D 

This condition can also be restated posing conditions on the invasion reproductive numbers of each of the 
two strains. 

The invasion reproductive numbers quantify the possibility of "invasion" by one strain in an environment in 
which the other strain is at a positive equilibrium [32). In other words, the interpretation of these expressions 
follows the same line as that of the basic reproductive numbers: in our case they quantify the average number of 
secondary infections caused by introducing a vector infected with one of the strains into a population in which 
the other strain is endemic. If the invasion reproductive number of one strain is greater than 1, that means that 
the specific strain is capable of "invading" the other one. Note that in order for this analysis to make sense, we 
would also need the respective basic reproductive number for the invaded strain to be greater than one, because 
we are supposing that it is in its endemic equilibrium. 

We obtained the invasion reproductive numbers for each of the strains. They are calculated using the same 
method which we use to calculate the basic reproductive number in general, the next generation operator method 
[32), but using the endemic equilibrium of the strain which is "under invasion" to evaluate the jacobian, instead 
of the disease free equilibrium. This is, we only consider the infected hosts and vectors of the strain that is 
invading as infective classes. We will denote the invasion reproductive numbers as [41 and [42 (for strain 1 when 
strain 2 is at an endemic equilibrium, and for strain 2 when strain 1 is at an endemic equilibrium, respectively). 
Each single strain equilibrium will exist if the respective invasion reproductive number is greater than 1. This 
is, if [41 > 1, then we have the endemic equilibrium in which strain 1 dominates; similarly if [42 > 1, we have 
the endemic equilibrium in which strain 2 dominates. Moreover, if both [41 and [42 are greater than 1, we may 
have a coexistence equilibrium point. 

The results for the invasion reproductive numbers are given by the following expressions: 

[42 = (/1h + a) !3h2!3v2 

/1h!3h1!3v1 

Scrutinizing the form of the invasion reproductive numbers, it can be seen that the two reproductive numbers 
are reciprocals of each other. The condition that both invasion reproductive numbers have to be greater than 1 
for coexistence equilibrium to exist cannot be satisfied. Therefore, we have that the coexistence of the two strains 
is only found on the straight line of slope 1 (in the [41 - [42 plane). In other words, we have coexistence at the 
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bifurcation line (where both invasion reproductive numbers are equal to 1). In our perspective, this result could 
be showing the importance of other methods of transmission, such as vertical transmission, in the possibility for 
coexistence of the two strains. This is because in [4], a similar model is analyzed for the cross-immunity problem 
with the differenee that it takes into aeeount vertical transmission of the disease in the hosts, and the author 
was able to impose eonditions under which eoexistence could oeeur. In our calculations, we obtained similar 
invasion numbers, but they limit the possibility of coexistenee just to the bifurcation line (as we mentioned 
before). vVe think that in [4], in the presenee of vertical transmission, there is a region of coexistenee due to the 
fad that part of the host population is already infeeted and there is no actual competition for them. 

C.2.1 Bifurcation analysis 

Before we analyze the dynamies of equilibrium points on the stability diagram, we introduce a definition that 
''Ie will use during the analysis of the steady states. 

A steady state is called a type-k equilibrium point for a given set of parameter values if its corresponding 
Jacobian has exactly k eigenvalues with positive real parts. 

For instance, in a two dimensional system, a type-O steady state is an asymptotically stable (sink) equilibrium 
point. All others are unstable equilibrium points (type-l for saddle and type-2 for source). A type-k equilibrium 
point has a (n-k)-dimensional stable manifold and a k-dimensional unstable manifold. vVe now use this definition 
to gain insight into the type of steady states that exist in the different regions OIl the stability diagram shown 
in figure 29. 
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Figure 29: Stability Diagram for Bifurcations 

The stability diagram above is divided into five different regions. The boundary lines shown on the stability 
diagram are the bifurcation threshold values satisfying various eonditions imposed on the reproductive numbers. 
The boundaries 1 - IV exhibit transcritical bifurcations and boundary V exhibits a bifurcation which we eall 
a switch b~furcation (degenemte tmnscritical bijllrcation), which will be discussed in detail later. E20, E21, and 
E22 are type-O equilibria (locally stable) in regions (I.I1), (II.I1 and IIB), and (II1.11 and 1IlB), respectively. 
In I.I1, the endemic equilibria E21 is a type-l steady state, and E22 is a type-2 steady state. In l1A, the endemic 
equilibria £21 is a type-2 while £22 is a type-.l steady state. Both of these equilibria are negative and therefore 
do not exist in our feasible state space (positive state space). Frmn now on, we use sign superscript on the 
equilibrium (e.g.: Et1) to denote whether the steady state is in the feasible region (positive) or it is not (e.g.: 
E 21 , negative). As we go through the boundary II, £20 becomes a type-l eq'uil'ibrillm, E11 is now stable (type- 0) 
and E22 is type-2 eqllilibriu.m point in region 11A. Et; remains stable in II B, but the equilibrium Et2 beeomes 
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type-i and E20 is type-2. The equilibria E20, E2i, and Et are type-i, type-2 and type-O in region lIlA, 
respectively. The Eii,E20 and Et are type-i, type-2 and type-O in IIIB, respectively. All these transitions 
occur via transcritical bifurcations. In this model, only the positive steady states are valid because they are 
biologically interpretable. In summary, the region I A has only E20, region I I A has E2l and E20, region I I B 
and II I B have E20, E21 and E22, and region II I A has E 20 and E22 . 

IA IB IIA JIB IlIA IIIB 
E 20 0 0 1 2 1 2 
E21 1 2 0 0 2 1 
E22 2 1 2 1 0 0 
Ec - - - - - -

Table 15: Equilibrium type 

To gain insight into the dynamics of the bifurcation that occurs on the line between E21 and E22 (which exists 
only when 11-;,1 = Ri2), we use the properties of the type of equilibria that occur, which are summarized in table 
15. But first we assume that there is no saddle-node bifurcation occuring on E2l or E22 when we go through 
boundary I or II, respectively. The setting of the problem can help us rule out the existence of a saddle-node 
bifurcation, because we can argue that the rest of the bifurcations that appear are transcritical [33]. In our 
model, there are two possible explanations that account for the gaining of an additional unstable dimension in 
E2l or E22 when they go through their respective boundary (I or II). The first explanation is that there is 
a transcritical bifurcation in one of the dimensions where E; and E21 or E; and E22 exchange dimensional 
stability. The second explanation is that there is a one-to-one transcritical bifurcation on the regions I and 
I I, meaning that two simultaneous transcritical bifurcations occur on the boundary. However, we can rule 
this out when we look at the dimensional exchanges that occur on boundary III and IV (see Table 15). The 
only valid explanation is that the coexistence bifurcation line (boundary V) extends into region I A. However, 
since the negative steady states are not in our feasible region, this transcritical bifurcation is not observable. 
Using the assumption that only transcritical bifurcations occur on boundaries I, II, III, and IV, we can now 
try to understand the dynamics of the bifurcation on V. The bifurcation (switch or degenerate transcritical 
bifurcation) on the boundary (V) behaves like a co-dimension infinity bifurcation. The boundary endemic 
equilibria exchange their stability in a such a way that there are infinitely many stable non-isolated steady 
states connecting the two endemic equilibria at the moment of bifurcation. We use numerical calculation to 
show the existence of the coexistence equilibrium point on the bifurcation line where both invasion reproductive 
numbers are 1, and R21 and R22 are greater than 1 but equal. Satisfying these conditions, we calculated the 
steady states and showed that there is an infinite number of solutions where h2, Ivl and Iv2 are dependent 
on hI, which is bounded by a constant. Our calculations show that there are three steady states before and 
after the bifurcation. However, at the bifurcation values, there are only two steady states, E 20 and non-isolated 
coexistence equilibria Ec. Closer examination of the latter steady states shows that there are infinitely many 
solutions for the infection-state values. 

C.3 The system with migration 
In this case, we consider the parameter m > 0 for the cross-immunity patch, that is, we take into account the 
effects of migration. In order for migration to occur, we need to have the RIO (with migration) from patch 
one greater than one; if this is not true, the infection-free equilibrium EIO is stable and clearly there can be no 
infected vectors to migrate. However, when in patch 1 the chagasic strain reaches its endemic state, then there 
are enough infected vectors which can start migrating, creating a constant influx of vectors infected with the 
chagasic strain into patch 2 and changing its dynamics. To analyze the cross-immunity patch (patch 2), we can 
take patch 1 to its endemic equilibrium and use it in patch 2. This eliminates the existence of infection-free 
equilibrium. As a result, we have only two equilibrium points: the one where the chagasic strain dominates, 
and the coexistence equilibrium. It is not possible to have an infection-free equilibrium or an equilibrium where 
the non-virulent strain dominates, because there is a constant influx of infected vectors into this patch. 

The basic reproductive number for patch 1 considering m > 0 is given by 

ilh ilv 
(f1.h + a) (f1.v + m) 

RIO = 
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Note that this is almost the same expression which we presented before, but now it incorporates the constant 
migration term (m), so its biological interpretation remains the same. 

To be consistent, we use the same notation as in the subsection for patch 1 with no migration: If: = xhilf:, 
I; = xvii;. The endemic equilibrium for patch 1 with migration (E11) results in the following 

E11 : 

where 

A 
/-kh + aXh 

fr v K (1 - /-kv +r mxv ) 

The condition for the existence of this solution is RlO > 1. Also, it can easily be seen that this solution is 
consistent with the one we have for patch 1 without migration if we set m = O. We can also see that ilf: remains 
unchanged by migration because we are assuming migration only for the vectors; clearly the vector population 
if; will decrease as migration increases. 

We were also able to compute the endemic equilibrium for patch 2 with migration, in which strain 1 dominates 
(E31, where the subscript 3 is used to denote patch 2 with migration). Using the same notation as before, in 
this case we have Zh = 0, Zv = 0, 

Yv 
f3vlYh. + -If; 
f3vlYh + /-kv 

[f3vl (f3hl + /-kh + a)] Y~ 

+ [f3hl :!; + (/-kh + a) /-kv - f3v 1 f3hl ] Yh - f3hl :!; 
o 

where we denote M = mI;, and the total populations for hosts and vectors are the following: 

Ah Nf: 
/-kh + aYh 

N* v K(l_~v) U (1+ 1+4 M )] rK(l-,,;:,l 
From the equations above, we have that G (Yh) = Ay~ + BYh + C = 0, where 

so solving for Yh we have 

A 

B 

C 

f3vl (f3hl + /-kh + a) 
M 

f3hl N* + (/-kh + a) /-kv - f3vlf3hl 
v 

M 
-f3hl­

N* v 

Yh = 
-B± ...jB2 - 4AC 

2A 

But A > O,C < 0 =?- ...jB2 - 4AC > B2 =?- B2 - 4AC > IBI, which means that we will always have 2 
real roots: one positive and one negative. We neglect the negative root because it doesn't have biological 
meaning. We also verify that 0 < Yh < 1 using the following observations: G (0) = -f3hl::' < 0, and 

G (1) = (/-kh + a) (f3vl + /-kv) > O. So by the Intermediate Value Theorem the only positive root o(G has to be 
in the interval between 0 and 1. 
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We also need the expression for Yv to be between 0 and 1. By its definition above, and because 0 < Yh < 1, 
we will have 0 < Yv < 1 if and only if ::. :::; J-lv. We can assume this fact to be true because of two reasons. 

The first one is that we need M :::; J-lvN; ,V or else the total population of vectors will explode, this is, N v ---7 00, 

as can be seen easily deduced by the original differential equation for patch 2: 

This does not make sense in biological terms, because empirically we know that the vector population is not 
growing unboundedly. The second reason is that M = mi;, and we are considering the term m to be small, 
such that it does not affect the behavior of RIO which should be greater than 1 in order for migration to occur 
(as has been stated before). 

In order to determine if the non-virulent strain will be able to survive in patch 2 once migration exists, we 
calculate the invasion reproductive number for strain 2 when strain 1 is endemic (R;3). In this case, we take 
the infected class to be [h2, I v 2j, and use the endemic equilibrium that we obtained previously for strain 1 to 
calculate it. The result is 

which we can actually rewrite using the basic reproductive number R22 and our definitions for Yh and Yv in E21 

as 

These proportions which appear in the invasion reproductive number come from the fact that the complete 
population of hosts (or of vectors) is not available for the two strains for infection. 

When the conditions RlO > 1, R20 > 1, and Ri3 > 1 are satisfied, we showed numerically that the coexistence 
equilibrium is stable. To do this, we fixed all the parameters except (3hl and used this to solve for G(Yh) = 0 
and Yv. Then we plotted them as functions of (3hl. On Figure 30, it can be seen that the endemic equlibrium 
E31 is stable when (3h1 is less than 2.25 and the coexistence E33 is stable for (3h1 > 2.25. This change in stability 
happens via a transcritical bifurcation, as we can see in figure 30. 
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Figure 30: Transcritical Bifurcation with migration 
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CA The two patch system 

In this section we look at the overall behavior of our system, which is dependent on the series of reproductive 
numbers that we computed. 

We start by discussing the scenarios produced by our model when we take migration into account, that 
is, we have m > O. The first consideration is that, in order for there to be migration, we need to have the 
basic reproductive number for patch 1 (before migration) greater than 1, i.e. R~o > 1, because otherwise the 
infection-free equilibrium would be stable for this patch. Having R~o < 1 would mean that the population of 
infected vectors goes to extinction, which would also make it impossible for migration to occur. This is why 
initially we need to have a stable endemic equilibrium for the chagasic strain in patch 1, which gives us the 
possibility of having infected vectors moving to the other patch. 

In this case where we take migration into account, we have six different possibilities (or combinations) for 
equilibrium points in the system as a whole, which depend on the values of certain reproductive numbers. The 
first important thing to notice is that it is not possible to have the virulent strain persisting in patch 1 and 
not in patch 2, because there is then always a constant influx of infected vectors from patch 1 into patch 2. 
This accounts for the occurence of 6 and not 8 different options. Also, we cannot compute a basic reproductive 
number for patch 2 when there is an endemic equilibrium for strain 1 in patch 1, because we have no infection­
free equilibrium in patch 2. In these cases, we use the invasion reproductive number for strain 2 when strain 1 
is endemic (~3) for the analysis. 

There are two main scenarios to consider for the system as a whole: when the basic reproductive number 
for patch 1 (with migration), RIO, is less than one, and when RIO > 1. 

In the first case when RIO turns out to be less than 1, then patch 1 is in a stable infection-free equilibrium 
and no emigration. In this case, we are able to consider each of the patches separately because they are 
decoupled and migration cannot occur, because the population of infected vectors goes to extinction. That is, 
the analysis is reduced to the case in which m = O. In patch 2 (now without immigration) we can have, under 
different conditions, an infection-free equilibrium, an endemic equilibrium for the virulent strain (where strain 1 
is endemic), an endemic equilibria for the non-virulent strain (where this strain is endemic), and a coexistence 
equilibrium under very strict conditions. 

The infection-free equilibrium (E20) is locally stable when the basic reproductive number for this patch is 
less than one, that is, R20 < 1. The stability of the endemic equilibria or a coexistence equilibrium depends 
on the values of the invasion reproductive numbers. To have a stable endemic equilibria for strain 1 we need 
two conditions: the basic reproductive number for the virulent strain R21 > 1, and the invasion reproductive 
number for the non-virulent strain Ri2 < 1. With the second condition, we assure that strain 2 cannot invade an 
environment in which strain 1 is endemic. Similarly, to have a stable endemic equilibrium for the non-virulent 
strain we need the conditions R22 > 1 and ~1 < 1. If both endemic equilibria are feasible, this is, R21 > 1 
and R22 > 1, and both the invasion reproductive numbers are greater than 1, then we can have a coexistence 
equilibrium. However, as we mentioned before, in our model this only happens when ~l = ~2 because the 
invasion reproductive numbers turned out to be reciprocals of each other. 

A different scenario takes place when RlO > 1. Here we take the value of m for the migration term to be 
small, in order not to affect the behavior of RlO (the reproductive number with migration, which is smaller 
because of the presence of m in the denominator) so that it is also greater than 1. If this changes, we would end 
up having an infection-free equilibrium in patch 1, invalidating our assumption for the existence of migration, as 
we stated above. In this case, we have an endemic equilibrium for the chagasic strain in patch 1, and for patch 
2 we have two possibilities: either an endemic equilibrium for the chagasic strain, or a coexistence equilibrium. 
The assumption of m being small makes biological sense, because it represents the proportion of infected vectors 
that migrate from patch 1 into patch 2 in one year. 

In summary, the six possibilities overall considering migration are: 

• Infection-free equilibrium points for both Patch 1 and Patch 2, when RIO < 1 and R20 < 1. 

• Infection-free equilibrium for Patch 1, and endemic equilibrium for the chagasic strain in Patch 2. This 
happens when RlO < 1, R21 > 1, and ~2 < 1. 

• Endemic equilibrium for the chagasic strain in both patches, when RIO > 1, R20 > 1 and Ri3 < 1 (because 
strain 2 cannot invade). 
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• Infection-free equilibrium for Patch 1, and endemic equilibrium for the non-chagasic strain in Patch 2, 
when RIO < 1, R22 > 1 and Ril < 1. 

• Infection-free equilibrium for Patch 1, and coexistence of the two strains in Patch 2, when RIO < 1, and 
R2l = R22 > 1 (or equivalently, Hil = Hi2 = 1). 

• Endemic equilibrium for Patch 1, and coexistence in Patch 2, when RIO > 1, R20 > 1, and Hi3 > 1. 

D Analysis of a particular case 

D.l Parameter estimation 

Notation Value Units Reference 

Ah 1,240,250 host / years [22J, [35J 
(3h 0.5077 per year from prevalence data in [27], [24J 

J-lh (6.8) ·1 per years [28J, [30J 
ex 0 per year assumed 
r 398.4 per year [6J 
K 346627 density per km [24J, [35J 
(3v 0.5074 per year from prevalence data in [27], [24J 
Ah 1,240,250 # hosts / year [22J, [35J 

J-lv (1.88) ·1 per year [14J 
(3hl 0.5077 per year from prevalence data in [27], [24J 
(3h2 0.5324 per year from prevalence data in [25J, [26J 
(3vl 0.5074 per year from prevalence data in [27], [24J 
(3v2 0.3451 per year from prevalence data in [25J, [26J 

Table 16: Parameter values 

For purposes of estimation, we consider Patch 1 to be a region from Mexico in which the chagasic strain of 
T. cruzi is endemic (Yucatan Peninsula). We consider Patch 2 to be a region of the southern United States 
(the eastern part of Texas going east all the way to Georgia) where strain 2 is present. We obtained data for 
the prevalence of hosts and vectors infected with T. cruzi in each of the patches. In the case of Patch 1 we 
consider a prevalence of infection of 54% in opossums [27), and of 34% in the vectors (Triatoma dimidiata) [24). 
In the case of Patch 2, we consider a prevalence of infection of 45% among raccoons [25), [26), and of 22.6% in 
the vectors (Triatoma sanguisuga) [23). 

First of all, we assume that A.h = Ah , and that the growth rate and the carrying capacity are the same in 
both patches. We also assume /-Lh to be the same for both patches, and similarly for /-Lv. This is because we are 
not taking into account the differences in environmental conditions between the two patches which may produce 
changes in the life span of either hosts or vectors. We only estimate these parameters very roughly. In order 
to estimate the death rate for hosts, we take into consideration the average between the life spans of raccoons 
and opossums, which is approximately 6.8 years [28, 30)i similarly for the death rate of the vectors, we use the 
average between that of T. dimidiata and T. sanguisuga, approximately 1.88 years [14). Therefore, the death 
rates are the inverses of these quantities. To calculate the recruitment rate, we consider the two patches in such 
a way that their area is the same. Then we take the area of the patch, multiplied by the average frequency 
of raccoons and opossums in an area, and divided by the estimated average life span. For the growth rate of 
the vector population (r), we use their hatching rates expressed in years. Finally, the carrying capacity (K) is 
defined as the density of vectors per kilometer. 

We then use the prevalence values mentioned above to estimate all the infection rates (iJh, iJv, (3hl, (3h2, (3vl, 
(3v2) as in [31). By substituting the other parameters which we know, and these prevalence levels into the steady 
state equations for patch 1, we were able to obtain the values iJh R:: 0.5077 per year, and iJv R:: 0.5074 per year. 
We will use that iJh = (3hl, iJv = (3vl, because of the fact that they both refer to the virulent strain of T. cruzi. 
Similarly, we use the steady state equations for patch 2, considering strain 2 is endemic, and the prevalences we 
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obtained from the data, to solve for {3h2 ~ 0.5324 per year, and {3v2 ~ 0.3451 per year. The estimated values 
we obtained are listed in Table 16. 

D.2 Discussion of results 

Reproductive number Value 
RIo 1.8128 
RIO 1.6632 
R21 1.8135 
R22 1.5326 
R20 1.8135 
Ril 1.1841 
Ri2 0.8445 
Ri3 0.9908 

Table 17: Numerical values for reproductive numbers when m = 0.1 

We use the parameters in Table 16 to calculate numerical values for the basic and invasion reproductive 
numbers. We are considering the migration term to be m = 0.1. The results are listed in Table 17. 

In this situation, we are in the scenario in which there is an endemic equilibrium in patch 1 for the chagasic 
strain and also an endemic for the chagasic strain in patch 2. It is interesting to note that the invasion number 
that we calculated in the presence of migration, R.3, is very close to 1. This means that we are in a borderline 
where with a small perturbation would produce a situation in which we have a coexistence equilibrium. 
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Figure 31: Time series for Patch 1 

The interesting part of our model is the analysis of the two patches and the interaction between both when 
we add the migration term. We used the lO-dimensional model to analyze what happened in every case. We 
take into account the parameters which we found and estimated, and vary the parameter of migration m (per 
year). We want to know how the term m affects the behavior of the populations. As we have stated before, we 
need values for m such that RlO > 1 in order to avoid patch 1 going into infection-free equilibrium for patch 1. 
In these simulations, we consider the cases for 0:::; m :::; 0.2 per year. 
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Patch 2 (Non-Chagasic) 
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Figure 32: Time series for Patch 2 

We can see their behavior in the time series plots (Figures 31 and 32). The dotted line denotes no migration, 
and the solid lines present a variety of migratory effects: m=O.1,O.2. In patch 1, the susceptible host and vector 
populations grow as the effect of migration increases, while the infected populations decrease, as expected because 
the infected vectors are leaving. In patch 2, we notice that the susceptible populations decrease significantly. 
Also, we see that the populations infected with the virulent strain increase while those infected with the non­
virulent strain decrease. It can be seen that the most noticeable change in the dynamics of the populations 
occurs ten years from the initial time. 

E Conclusions 
Our analysis of the two-patch model has demonstrated that a population suffering from immigration of infected 
vectors with the virulent strain will always have some measure of the condition present within it. However, the 
initial presence of a competitive disease might serve as an ecological barrier against the invading malady. In 
the particular case of Chagas' disease, this barrier-like effect is due to the rigid requirements for coexistence. 
These requirements are based on the specific parameter values that describe the particular population that is 
being modelled. This can be seen clearly in our bifurcation analysis and on the stability diagram where the 
only possible region for coexistence is the line R21 = R 22 . The same is true for our invasion numbers, which 
must also be equal in order for both strains to survive. This implies that coexistence is only possible if we 
assume that the strains are specialized, that is, if they target different hosts. Outside of these lines, the system 
will exhibit competitive exclusion. This implies that coexistence is possible when both strains have the same 
average number of secondary infections. This must hold true both in small presence of both strains as well as 
the endemic presence of one and small amount of the other. The rigid requirements for coexistence that we 
obtained suggest that other means of infection, such as vertical transmission and vector consumption, facilitate 
coexistence of both strains by reducing competition for susceptible hosts and vectors. 

The commonality of this situation requires a further understanding of both strains and their ability to 
propagate. This might be the subject of further biological research. Given that the system does not meet the 
requirements for coexistence, the presence of the non-virulent strain will have one of two effects against a small 
short term migration of infected vectors. One of these occurs when R.l < 1 in which case the population will 
exclude Chagas' in enough time after the cessation of migration. In this case, the non-virulent strain acts as 
a buffer against the invading disease. We will not have this buffer effect for the case when R.l > 1. However, 
the presence of the competitive strain will act as a deterrent for the contagion of Chagas' disease, momentarily 
slowing down its invasion speed. However, this would be a topic for further mathematical research. It is also 
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important to note that there is not enough data in this area, and the one available is somewhat inconsistent, so 
further research efforts should be directed towards this. 

It must be duly noted that these conclusions are feasible only with the particular assumptions that we take 
within our model. More compelling research projects might emerge by changing the pretext of the analysis. 
Incorporating things like vertical transmission and other forms of propagation would enrich the understanding 
about the contagious capabilities of Chagas'. Changing the migration term to a non-linear term, a parametric 
term depending on things like temperature or other environmental factors, periodic term like that exhibited in 
yearly migrations, incorporating a two-way migration to couple both patches or including host as well as vector 
migration, might expose new light on how animal migratory patterns affect the spread of diseases. 
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