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Abstract

An SIS/SAS model of gonorrhea transmission in a men-seeking-men (MSM) sys-
tem is presented in this paper to study the impact of education on the dynamics of
gonorrhea prevalence. Education affects behaviors that may fall into two categories–
prevention and disease status awareness. Stability conditions for the disease free equi-
librium and endemic equilibrium are determined along with an analytic expression and
nominal value for the basic reproductive number and the control reproductive number.
We carry out a complete analysis of global dynamics. Moreover, a time-dependent
sensitivity analysis of the system and a sensitivity analysis of the control reproductive
number is performed.
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1 Introduction

The task of disease eradication and prevention is undertaken at the level of society and of
individuals. Economic epidemiology is concerned with the impact behavioral changes have on
the dynamics of the disease within a population. The behavior of individuals in a population
can be influenced by education about behaviors that limit the spread of disease. These
behaviors may fall into two categories–prevention and treatment. Prevention is specific to the
characteristics of each disease. For example, in vector-borne disease like dengue and malaria,
simple knowledge of the types of environment that serve best as breeding grounds and
which environments attract mosquitos can mitigate disease spread by non-pharmacological
prevention measures such as bed-netting and eliminating stagnant water. Moreover, in the
case of influenza, the spread of the virus may be contained through preventative actions
such as social distancing, staying at home when sick, proper coughing etiquette and hand
washing. These actions are often adopted by individuals only when it is clear to them that
the virus is present in the population and that they are at risk for infection. It is important
to note that educational efforts are not perfect largely for two reasons. The individual must
decide whether or not to make use of their education of the disease and the education may
not reach everyone who needs it.

With sexually transmitted diseases (STDs) such as gonorrhea, prevention education ad-
vocates safe sex practices, condom use for a larger proportion of the time and reduction in
the number of sexual partners. Treatment awareness leads to frequent STD screening as a
disease control method since individuals may be infected but have no knowledge of their own
status. In particular, infected individuals may or may not show symptoms but still be equally
infectious [4]. If an infected individual is asymptomatic, but relatively uneducated about
the disease, they will not seek medical attention and thus their average infectious period
is potentially much greater than that of a symptomatically infected individual. Typically,
symptomatically infected individuals recover 14 days after the start of treatment which, due
to the pain associated with the symptoms, usually begins a few days after gonorrhea is
contracted [2].

Seminal mathematical work was done by Hethcote and York on heterosexual gonorrhea
transmission [4]. There, a two-sex model of symptomatically infected, asymptomatically
infected and susceptible populations with different activity levels was used. The focus was
the effect that contract tracing and increased STD testing would have on the dynamics of the
disease. It was found that contact tracing of infectees was the least effective while contact
tracing of infectors was most effective. Here the infectors were identified as a core group, or
highly sexually active subpopulation. Hethcote concluded that focusing on the core group’s
activities was key to controlling the spread of gonorrhea.

Li et al. specifically modeled STDs like gonorrhea using an SIS model with a multiple
strains and varied reaction to infection [6]. It was found that sufficient heterogeneity of the
female in the form of contact structure, immune response or activity level was necessary
in order to have coexistence of the multiple strains. The conditions for the existence and
stability of an endemic equilibrium with two strains were found. Coexistence demanded
that one strain should be better at infecting one subpopulation while the other be better
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at infecting another. It was concluded that each strain creates reservoirs in the population
that it is less able to infect.

Although not specifically looking at gonorrhea, previous mathematical epidemiological
studies by Kemper et al. have developed a general model for curable diseases with symp-
tomatic or asymptomatic infection [5]. There an SIS/SAS model was developed to consid-
ered the impact of asymptomatic attacks. However, this model does not treat the different
recovery time of asymptomatic infected individuals, nor does it account for the different
proportion of contacts with symptomatically infected individuals that lead to symptomatic
versus asymptomatic infection and vice-versa.

As a case study in the effects of behavior change in the spread of a curable disease
that confers no permanent immunity, we present an SIS/SAS model of a men-seeking-
men (MSM) gonorrhea transmission that incorporates the effects of education listed. The
influence of safe sex will be modeled exogenously with a weighted average on the effective
contact rate that accounts for changing behavior with respect to condom use. Also disease
status awareness will be modeled via an increase in infectious period for asymptomatic versus
symptomatic individuals. Analysis is done describing the disease free and endemic dynamics
as well as quantifying the sensitivity of these dynamics to the system’s parameters and
control reproductive number.
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2 Basic Homosexual Gonorrhea Transmission Model

2.1 Mathematical Model

The population modeled is single sex with three homogeneous compartmental states avail-
able: susceptible individuals, S, symptomatically infected, I, and asymptomatically infected
individuals, A. The model equations are:

dS

dt
= µ(N − S)− (λ1 + ελ2)βS

I + A

N
+ αI + pαA,

dI

dt
= (λ1 + ελ2)βS

(
q1
I

N
+ (1− q2)

A

N

)
− (µ+ α)I, (1)

dA

dt
= (λ1 + ελ2)βS

(
(1− q1)

I

N
+ q2

A

N

)
− (µ+ pα)A.

The model assumes a constant population size, N , with constant recruitment and re-
moval, µ. The rate at which the susceptible population is lost to infection is βS I+A

N
, where

β is the effective contact rate. We introduce control into the system via λ1, λ2, and ε. The
proportion of the population participating in non-safe sex is λ1 and the proportion of the
population participating in safe sex is λ2. The effect of safe sex in preventing the transmis-
sion of gonorrhea is (1 − ε). Thus for the proportion of the time an individual participates
in safe sex, λ2 is multiplied by the reduction factor, ε. These parameters combine to become
a total reduction factor on the force of infection, i.e. (λ1 + ελ2)β. Individuals are recruited
into the I class from the S class at a rate (λ1 + ελ2)βS

(
q1

I
N

+ (1− q2)AN
)
, where q1 and

(1 − q2) are the proportion of individuals that become symptomatically infected from con-
tact with symptomatically infected individuals and asymptomatically infected individuals,
respectively. Similarly individuals are recruited into the A class from the S class at a rate
(λ1 + ελ2)βS

(
(1− q1) IN + q2

A
N

)
. Individuals from the I class reenter the susceptible class

due to treatment at a rate α. Since individuals in the A class do not know they have gon-
orrhea the average duration of infection is longer. We represent this increase in infectious
period via p ∈ [0, 1]. Thus reentry into the susceptible population from the asymptomatic
class occurs at the rate pαA.

2.2 Parameter Estimation

To estimate the parameters in this model, several sources are used. Given that we are
choosing to illustrate the impact of our model in college populations, µ is taken to equal
1

4yr
. The effective contact rate is the product of the number of risky contacts per year and

the proportion these that lead to infection. Thus based on the information given by [9],
β = .5× 50 contacts per year. We assume a highly active population with 50 risky contacts
per year. To determine the amount of time spent practicing safe versus risky behavior,
according to a study of an MSM population by Shlay et al [7], 25.6% of participants report
consistent condom usage, thus λ2 = .256 and λ1 = 1 − λ2 = .744. To determine ε we take
into account that although condoms are 97% effective at preventing gonorrhea infection with
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perfect use, many uses are imperfect due to slippage, breaking, etc. According to Shlay et
al.[7] and Stone et al. [8], 16.6 - 17.3% usage failure of condoms in a MSM population.
Taken these data together, ε ≈ .173. According to [9] among men, symptoms typically
appear within 2-5 days, 2

365
− 5

365
years, following infection while treatment duration is 14

days, 14
365

years, thus we take α ≈ 365
18yr

and allow p to range within [0, 1]. The CDC suggests
a highly active MSM population that an individual get tested once every 3 months, thus we
will let p = 1/6 to measure the effect of this policy. Although there is limited contact tracing
data, according to [9] 10% of infections are asymptomatic. A numerical investigation, using
the nominal values for every other parameter, suggests that q1 = .98 and q2 = .01 in order to
have the 90-10 split with the symptomatic and asymptomatic populations. In truth q1 and
q2 are functions of the rest of the parameters. It is acknowledged here that these estimates
are imperfect.

The intuitive behavior of the system shares a lot in common with the simple S − I − S
model. If we consider J = I + A we may arrive at the following where ω := λ1 + ελ2

dJ

dt
=

dI

dt
+
dA

dt

= ωβS
J

N
− µJ − α(I + pA). (2)

From this equation we can see that an important parameter that distinguishes this system
is the presence of the p parameter. For p ≈ 1 we should expect dynamics very similar to the
S − I − S model, redefining γ := ωβ.
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3 Analysis

3.1 Global Stability Analysis

The main focus of this section is to prove Theorem (1). The discussion proving this will
involve a treatment of the stability of the disease free equilibrium, conditions on the number
of endemic equilibrium that may exist, and a preclusion of closed orbits which will make all
stability arguments global.

Theorem 1. System (1) has 2 fixed points: a disease free and an endemic equilibrium. The
disease free equilibrium is globally stable when the control reproductive number is less than
one and unstable when the control reproductive number is greater than one. The endemic
equilibrium does not exist when the control reproductive number is less than one and is globally
stable when the control reproductive number is greater than one.

Since S(t) + I(t) + A(t) = N we may eliminate one state variable for the purpose of
analysis. We may also rescale in both state and time to reduce the overall system. Using
x(τ) = I

N
, y(τ) = A

N
, and τ = tωβ(1− x− y), where ω = λ1 + λ2ε, we arrive at:

dx

dτ
= q1x+ (1− q2)y −

q1x

RII(1− x− y)
,

dy

dτ
= (1− q1)x+ q2y −

q2y

RAA(1− x− y)
,

where RII = βωq1
µ+α

and RAA = βωq2
µ+pα

. Since each state variable S, I and A are positive we have
that x + y ≤ 1. Thus the rescaling is positive invariant. There is a disease free equilibrium
that always exists, DFE := (x∗, y∗) = (0, 0), implying S∗ = N, I∗ = 0 and A∗ = 0. To
determine the local stability of the DFE the system is linearized about (x∗, y∗) resulting in
the following:

J(x∗,y∗) =

(
q1 − q1

RII
(1− q2)

(1− q1) q2 − q2
RAA

)
(3)

The characteristic polynomial of the above Jacobian is:

λ2 −
[
q1 + q2 −

q1
RII

− q2
RAA

]
λ+

[(
q1 −

q1
RII

)(
q2 −

q2
RAA

)
− (1− q1)(1− q2)

]
, (4)

which is in the form λ2 − bλ + c. It may be shown that conditions for the determinant of
the jacobian to be positive, c > 0, are identical to RE, the basic control number, being less
than one. First we use the next generation operator to compute the number of secondary
infections a typical infectious individual creates in a completely susceptible population [3].
Here it is important to note that each element in Equation (5) is a reproductive factor.
These reproductive numbers each have a different biological significance and give rise to the
control reproductive number RE. The reproductive number RII is the number of secondary
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symptomatic infections caused by a symptomatically infected individual in a completely sus-
ceptible population. Likewise, RAA is the number asymptomatic secondary infections caused
by an asymptomatically infected individual. The reproductive number RAI is the number of
symptomatic secondary infections caused by an asymptomatically infected individual, and
RIA is the reverse. The quantity RE incorporates p, λ1, λ2, and ε and measures the ability
of the infection to spread in an environment that practices educated sexual behavior. We
find that RE is given by the spectral radius, or dominant eigenvalue, of


βωq1
α+µ

βω(1−q2)
µ+pα

βω(1−q1)
α+µ

βωq2
µ+pα

 =

[
RII RAI

RIA RAA

]
. (5)

The spectral radius of Equation (5) gives the following

RE =
RII + RAA +

√
(RII −RAA)2 + 4RIARAI

2
. (6)

Corollary 1. The condition for RE < 1 is identical to that for c > 0.

Proof. We begin with the condition for RE < 1:

RII + RAA +
√

(RII −RAA)2 + 4RIARAI

2
< 1,√

(RII −RAA)2 + 4RIARAI < (2− (RII + RAA))2 ,

R2
II − 2RIIRAA + R2

AA + 4RIARAI < 4− 4(RII + RAA) + (RII + RAA)2,

−4RIIRAA + 4RIARAI + 4(RII + RAA) < 4,

RII + RAA + RIIRAA

(
1− q1 − q2

q1q2

)
< 1.

If we the consider the condition for c > 0:(
q1 −

q1
RII

)(
q2 −

q2
RAA

)
− (1− q1)(1− q2) > 0,

q1q2(1−RII −RAA)−RIIRAA(1− q1 − q2) > 0,

1−RII −RAA > RIIRAA
1− q1 − q2

q1q2
,

RII + RAA + RIIRAA

(
1− q1 − q2

q1q2

)
< 1, (7)

then we see Equation (7) identical to the condition for RE < 1.
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Thus we have a somewhat easier condition for stability and may define

R̂E = RII + RAA + RIIRAA

(
1− q1 − q2

q1q2

)
.

If RE > 1 then the DFE is unstable, but we haven’t discussed how many equilibrium may
exist. Consider z = x + y. If dz

dτ
= 0 and dy

dτ
= 0 then we would be at a fixed point for

System (3). Solving dz
dτ

= 0 we get an expression for y in terms of z by noting x = z − y.

Plugging this expression into dy
dτ

and solving the new expression for zero we get zf(z) = 0,
where f(z) = z2 −Bz + C,

B = 2 +
q1q2

(
1

RAA
+ 1

RII

)
1− q1 − q2

,

and

C =
(1− q1)(1− q2)− q1q2

(
1− 1

RII

)(
1− 1

RAA

)
1− q1 − q2

=
c

−(1− q1 − q1)
,

where c is from the characteristic polynomial, (4). If z = 0 then x = y = 0, the DFE. The
interest thus lies in where f(z) = 0. A relationship between C and RE can be made using
the existing relationship found in Corollary (1).

Corollary 2. If q1 + q2 < 1 then RE < 1 ↔ C < 0 and RE > 1 ↔ C > 0. If q1 + q2 > 1
then RE < 1↔ C > 0 and RE > 1↔ C < 0.

Proof. If q1 + q2 < 1 then C and c have differing sign and thus if c > 0 then C < 0 and their
relationships to RE are the opposite of one another. If q1 + q2 > 1 then C and c have the
same sign and their relationships to RE are identical.

The equation f(z) is a quadratic and thus may have 0, 1, or 2 roots in (0, 1). The relative
signs of f(0) and f(1) will allow us to determine under what conditions f(z) has a particulat
number of roots in the unit interval. Consider f(0) = C and f(1) = 1 +C −B. We already
have that the sign of C may be viewed as being dependent on the magnitude of RE. We
also have that

1 + C −B = − q1q2
1− q1 − q2

1

RIIRAA

,

whose sign depends on 1−q1−q2. Thus in order to study the zeros of f(z) = z2−Bz+C we
must consider all 4 combinations of the sum of q1 and q2 with the magnitude of the control
reproductive number.

Case 1. RE < 1 & q1 + q2 < 1

In this situation f(0) = C < 0 and f(1) = 1 + C − B < 0. Thus there are no zeros of
f(z) ∈ (0, 1).

Case 2. RE > 1 & q1 + q2 < 1
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Here we have that f(0) > 0 and f(1) < 0. Thus there is a single root for f(z) ∈ (0, 1).

Case 3. RE < 1 & q1 + q2 > 1

In the most difficult situation we have that f(0) > 0 and f(1) > 0. The quadratic having
exactly two roots occurs when

1. B
2
∈ (0, 1), and

2. B2 − 4C > 0.

In order for B > 0 we require that

RII + RAA

RIIRAA

<
2(q1 + q2 − 1)

q1q2
.

The second condition yields

(RII + RAA)2

RIIRAA

>
4(q1 + q2 − 1)

q1q2
. (8)

These two conditions are contradictory. To illustrate the contradiction we invoke Equation
(6) to get that RE < 1 =⇒ RII + RAA < 2. Rearranging Equation (8) results in

RII + RAA

RIIRAA

>
4

RII + RAA

(q1 + q2 − 1)

q1q2
, (9)

but
4

RII + RAA

> 2 which results in the contradiction. Thus there are no zeros of

f(z) ∈ (0, 1).

Case 4. RE > 1 & q1 + q2 > 1

In this situation f(0) > 0 and f(1) < 0. Thus there is a single root for f(z) ∈ (0, 1).

Combining the arguments gives us that if RE < 1 then the only solution for our system is
the DFE, and when RE > 1 the two solutions are the unstable DFE and a single endemic
equilibrium, EE. The entire above argument is valid only if 1−q1−q2 6= 0. When 1−q1−q2 =
0, the system exhibits a single EE,

(x, y) =

(
RII(RII + RAA − 1)

(RII + RAA)2
,
RAA(RII + RAA − 1)

(RII + RAA)2

)
,

which is only valid if RII + RAA − 1 ≥ 0. We wish to make assertions about the stability
of the EE without having to do a linearization around the fixed point which is very term
intensive. We may disprove the existence of closed orbits in the plane and thus assert that
when the EE exists, RE > 1, it is stable.
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Corollary 3. System (1) has no closed orbits.

Proof: By Dulac’s criterion, if there exists a function ϕ ∈ C1 such that ∂(ϕẋ)
∂x

+ ∂(ϕẏ)
∂y
6= 0,

then the planar system ẋ, ẏ has no closed orbits. Let ϕ = 1
xy

. Then:

∂(ϕẋ)

∂x
=

∂

∂x

[
q1
y

+
(1− q2)

x
− q1

RII(1− x− y)y

]
= −(1− q2)

x2
− q1

RII(1− x− y)2y

∂(ϕẏ)

∂y
=

∂

∂y

[
(1− q1)

y
+
q2
x
− q2

RAA(1− x− y)x

]
=
−(1− q1)

y2
− q2

RAA(1− x− y)2x
.

Since q1, q2 ∈ [0, 1] and RAA,RII > 0 the sum ∂(ϕẋ)
∂x

+ ∂(ϕẏ)
∂y

is always negative. Thus there

are no closed orbits for System (3). Since the dynamics are identical for System (1) we have
precluded limit cycles in it and have shown what was intended.
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3.2 Sensitivity of Gonorrhea Transmission Model

In a perfect world, public health initiatives would be simple, multifaceted, and have great
effects on the dynamics of a disease. However, this is not always the case and moreover,
economic costs have to be considered in determining which interventions to support. An
important question is whether the size of the population is important to the dynamics of the
disease and intervention. In order to address these concerns, in this section with we examine
the sensitivity of the system to changes in the parameter values. We take two approaches,
first the time-dependent sensitivity of the original system to changes in parameter values. In
addition, as stated in Section 3, the existence and nominal value of the endemic equilibrium
depends on the control reproductive number. Furthermore, since we are interested in the
effect education has on disease transmission dynamics, the sensitivity of RE is determined.

3.2.1 Sensitivity of S(t)

In order to discuss the importance of individual parameters one must investigate how their
value affects the state variables over time. We will consider the concept of elasticity. For-
mally, one may define elasticity of a function X(t; θ) with respect to a parameter θi ∈ θ
as

Eθi
(t) =

θi
X(t; θ)

∂X(t; θ)

∂θi
.

This measures the ratio of a percent change in a parameter to that of the function. This
gives us a unit-less and scaled method with which to compare each parameter’s affect on the
solution S(t). However, we do not have a closed form for S(t) and thus we must make an
approximation.

In general consider dX
dt

= f(t,X; θ) where θ is a parameter vector. Now consider the

vector of nominal parameter values, θ̂, and a small perturbation, ∆i, of the ith element, θ̂i,
and call this new parameter vector θ̂i. If what we are interested in is ∂X

∂θi near the nominal

value then we could do the following. Numerically find the solutions X(t; θ̂) and X(t; θ̂i)
then take the difference quotient to arrive at

∂X

∂θi
(t) ≈ X(t; θ̂i)−X(t; θ̂)

∆i

. (10)

We may use this approximation in our computation of the elasticity of S(t) with respect to
each parameter.
The sensitivity of the susceptible class overtime with respect to the nominal parameters is

presented in Figure 1. Considering the parameters that affect the susceptible population in
a positive manner, q1 seems to induce the most sensitivity. Unfortunately, there appears to
be no way to directly control the proportion of infected individuals who develop symptoms,
so manipulation of this powerful parameter becomes useless as a control measure.

The following results, while intuitive, offer useful insights into disease control. Investi-
gating the sensitivity of α, the shorter period of time an individual is infectious then the
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Figure 1: Sensitivity of the susceptible population with respect to each model parameter
using the nominal values (µ, λ1, λ2, β, α, p, q1, q2, ε) = (1

4
, .744, .256, 25, 365

18
, 1

6
, .9, .1, .173) and

N = 10000 with S(0) = 99999, I(0) = 0, and A(0) = 1.

fewer individuals they can infect, and thus treatment regimes that would return an individ-
ual to susceptible faster would clearly benefit the population. The effects of using a condom
more often, λ2, getting tested more often, p, and using a condom more effectively, ε, are all
inelastic. In other words massive changes would have to be made to these parameters to
see any real difference in the susceptible population. This supports the result of Hethcote
[4] that contact tracing of highly sexually active groups is effective in controlling an STD.
Furthermore, the model exhibits a great deal of sensitivity to β and only a small amount
to λ1. A negative change in either of these parameters causes an increase in the susceptible
population. Thus a very effective control on the number of infections would be to limit the
number of risky sexual contacts one has in a year.
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To measure the effect that total size has on the population we constructed the same
sensitivity curves over a series of different total populations. In Figure 2 the long term
sensitivity of each parameter does not seem to be affected by the population size but the
maximum effect each parameter has on the susceptible population slowly increases as N
does.

Figure 2: Sensitivity of the susceptible population with respect to each
model parameter using the nominal values (µ, λ1, λ2, β, α, p, q1, q2, ε) =
(1/4, .744, .256, 25, 365/18, 1/6, .9, .1, .173) and A(0) = 1. N was varied from 1000 to
10000 incremented by 1000 each step.
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The p value of 1
6

that we’ve selected leads to the assertion that a very sexually active
individual would get tested once every 3 months for STDs. Fixing the other parameters,
with N = 10000, we varied p from 0 to 1. Figure 3 shows the results of varying p. Of note,
when p = 0 then asymptomatic individuals remain in the system on average for four years.
As a result there is a very large peak in the sensitivity for q1. Intuitively if there is such a
large infectious period for a particular infectious class then it would be desirable to avoid
this infectious class. There is also a sustained dependance on µ that does not carry over
for other values of p. Overall as p increases to 0.3 the peak sensitivity for each parameter
decreases in magnitude and shifts to occur later in the time series. Also it appears that for
p ≥ 0.4 there is no change in sensitivity with respect to time for any of the parameters.
However, there is a very tiny peak, on the order of 10−4 for each variable very early on in
the epidemic. Thus it may be conjectured that for low p values the system is much more
sensitive to the system parameters than otherwise.

Figure 3: Sensitivity of the susceptible population with respect to each
model parameter using the nominal values (µ, λ1, λ2, β, α, p, q1, q2, ε) =
(1/4, .744, .256, 25, 365/18, 1/6, .9, .1, .173), N = 10000, and A(0) = 1. P was varied
from 0 to 1 incremented by .05 each step.
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3.3 Reducing RE

Holding all but one parameter constant we varied the free parameter until RE < 1. With an
ε = 0.03, implying that a condom is used properly 100% of the time, RE ≈ .9949. If p = .32,
roughly meaning getting tested for STD’s every 57 days, or once every other month, then
RE ≈ .9986. While unrealistic to expect from a population at large, this would be a simple
measure to suggest to a highly sexually active population. If regular condom use, despite
its relatively high failure rate, increased to approximately 31%, a change to λ2 ≈ .31, then
RE ≈ .9972. Finally, the nominal β value assumes 50 risky contacts per year, if we reduce
that to 47.6 then RE ≈ .9854. If each control parameter is varied a very little we find that
λ2 = .271, β = 24.78, p = .192 and ε = .148 then RE < 1. What these parameters imply
is that if one reduces their annual risky contacts from 50 to 49.56, the percentage of time
one uses a condom from 25.6% to 27.1%, getting tested every 93.75 days down from 108
days and using a condom so that the failure changes from 17.3% of the time to 14.8%. This
multifaceted approach includes many changes, but each of which are relatively minor.
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4 Conclusion and Discussion

In this paper, a simple model of homosexual gonorrhea transmission is analyzed and the
parameter sensitivities are determined. In section 3.2, it is shown that disease education is
useful in disease control, however education has to be multifaceted and include reductions in
the average number of contacts and awareness that leads to testing. In detail, the system is
most sensitive to q1 (the portion of contacts with symptomatic infected individuals that lead
to symptomatic infection), however this parameter is hard to be impacted via public policy
then it is not the most useful parameter to focus on. As shown in Section 3.2, in magnitude,
p (increased duration of asymptomatic infection) and λ2 (the portion of time the population
spends in good behavior) are the next most sensitive education related parameters. The
analysis suggests that public health efforts should be concentrated on encouraging people to
practice safe sex more often and to be tested more frequently. These initiatives would be
better aimed at a reducing β, thus impacting the highly active core subpopulation, a result
coinciding with Hethcote & Yorke’s.

We have shown that some single methods of education, within realistic bounds, are not
completely effective at reducing disease prevalence. Since people generally pay for their STD
testing, while from a public health perspective frequent testing is best, on an individual
level, testing is too costly and inconvenient. Along this line, work has been done from a
game-theoretic perspective by Reluga [10].

In this paper we have considered the average, safe and risky behavior of the population.
This has given insights into how education affect disease transmission. However, the popu-
lation is not homogenous and in fact there are subpopulations each that interact differently
and have different behaviors. Future work should be done to consider the different subpopu-
lations and not aggregate the populations. Moreover, the question of how education affects
disease transmission can be approached from an agent-based perspective.
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