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Abstract

We analyze the long term behavior of a system involved in cyclic competition similar
to the rock-paper-scissors game. Previous studies have used cellular autonoma simu-
lations to model the stochastic interactions and mean field equations to approximate
this stochastic model. However, mean field approximation does not properly account
for spatial correlations, leading to loss of spatial significance. We use pair approxima-
tions to model the local interactions with a system of differential equations. We then
investigate the outcome of various initial conditions of the pair approximation model
using numerical integration. Three categories of initial conditions are found that lead
to three distinct behaviors: one species is present, all three species oscillate around the
fixed point resulting in a heteroclinic cycle, or convergence to an interior fixed point.
We also explore the relative importance of initial conditions and lattice size on fixation
probabilities for each species. We finally discuss the implications of these results in a
biological context.
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1 Introduction

Identification of processes that maintain biodiversity is a central goal of theoretical ecology
[1, 12]. Empirical observations suggest that systems of more than two species often interact
in traditional acyclic hierarchies of dominance. Species higher up on the dominance-chain
displace those that are below them which could lead to a decrease in biodiversity [2]. This,
however, is not the case with cyclic hierarchies. The simplest type of cyclic dominance
hierarchy is characterized by the game rock-paper-scissors, RPS, [8, 4]. In this game, rock
beats scissors, scissors beats paper, and paper beats rock. Here there is no completely
dominant species and the possibility for stable coexistence arises. However, the removal of
one species leads to a linear dominance chain, and the loss of biodiversity. It is therefore
important to investigate the behavior of the system around the equilibria where diversity is
maintained. A common example of an RPS system in nature is the three mating strategies
in populations of male Side-blotched Lizards (Uta stansburiana: [11]). Furthermore, three
strains of Escherichia coli display RPS dynamics where colicin, a bacteriocide toxic to other
strains of E. coli is produced. Although we use the terms RPS throughout, our analyses can
be applied to any biological systems with cyclic competition interactions of three species.

Stochastic and deterministic methods have been used to examine cyclic competition be-
tween three or more species [4]. Spatial lattice models that incorporate these stochastic
interactions as a Poisson process can be found in [4, 6]. The advantage of using the lattice
model is that it captures some of the randomness in nature and it is relatively easy to con-
struct [8]. However, it is difficult to analyze since simulations with the same input will often
have different results due to the stochastic nature of the system. Therefore, approximating
the stochastic model with a deterministic model is helpful as a way of measuring the behavior
of the system. Mean field equations, MF, were used in previous studies to approximate the
lattice model with a set of differential equations describing the change of the rock, paper
and scissors densities over time [3, 10, 4]. However, the MF describes a homogeneous system
without spatial correlations, leading to loss of spatial significance, which may be a key driver
in the dynamics of the system [10]. Lattice models and MF equations have been previously
used to describe various biological systems that exhibit cyclic competition [8, 4].

Here, we incorporate the use of pair approximations, PA, to model local interactions.
These approximations take into account some of the structure of the spatial viability via a
system of differential equations [9, 5]. The results of the mean field and pair approximation
will be compared based on their ability to capture the dynamics of the lattice model. Finally,
we will thoroughly investigate the outcomes of various initial conditions of the PA model
and the lattice model in an effort to demonstrate the behavior of the system.

2 Lattice Model

We begin by constructing a simulation for the dynamics of the RPS system on a lattice. In
constructing our lattice, we utilized a method similar to that of previous studies [5]. This
stochastic cellular autonoma occurs on an n × n square matrix with each site populated
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by either a rock, paper, or scissors. Each individual site has the ability to attempt to
replace a neighboring site with rate φi for rock, paper, and scissors respectively. However, a
replacement is only successful if the spreading site beats the site being replaced. For example,
rock replaces scissors, but fails to replace paper or another rock. For the purposes of our
investigation, we define φ := φR = φS = φP . In order for each site to have four neighbors,
the edges are wrapped-around, identifying our lattice as a torus.

We set the initial conditions for the system by assigning the proportions of each state on
the n × n lattice. These proportions are then used to randomly fill each site in the lattice
with rock, paper, or scissors. Once the initial lattice is created, a series of replacement events
occur. Each event begins with the selection of a species that is attempting to spread. Since
the replacement rates have been assumed equal, the probability for each species to be selected
is the proportion of that species on the lattice. Next, a site containing the spreading species
is chosen from a list of all sites that species occupies. This site then chooses at random one
of its von Neumann neighbors (North, East, South, or West) with equal probability. If the
replacement is successful, meaning that the spreading site beats the replaced site (i.e. rock
invading scissor), then the replaced site’s state will become the state of the spreading site.
Otherwise the lattice does not change. The simulation continues for a specified number of
events or until fixation is reached, meaning one species occupies the entire lattice.

Previous work has shown that when a lattice model is constructed using different re-
placement rates and three species, the species with the smallest replacement rate will tend
to occupy the largest number of sites on average, a phenomenon coined “survival of the
weakest”[4]. However, behavior similar to survival of the weakest can also occur when in-
vasion rates are identical. A specific case that we consider in detail is when the initial
proportion of one species is much greater than the other two. To investigate this we initial-
ize a lattice with: P [R] = 0.9, P [P ] = 0.05, and P [S] = 0.05. We then record where the
system is after 100 epochs. An epoch is defined as a number of events equal to the number of
sites in the lattice. It corresponds to the number of events required for the expected number
of invasion attempts for each site to be 1.

After 100 epochs, the system will be in one of four states. Three correspond to fixation
of one of the species and the last corresponds to a mixture of species at the end time. This
final type will be termed mixture. The simulation is repeated for 1000 trials for each square
lattice size, which is varied from 5× 5 to 75× 75 for the same initial conditions as earlier.

Figure 1 shows that as lattice size increases the probability that fixation is reached in
the first 100 epochs decreases with the given initial conditions. For very large lattice sizes,
mixture occurs almost every time. It is not clear what this lack of quick fixation means
about the system. It is therefore necessary to estimate the probabilities of fixation for each
species for a system that has not reached fixation in the first 100 epochs. Using 10,000 trials
on lattice sizes between 10× 10 and 20× 20, we found that each species fixated with about
an equal probability if the system had not fixated in under 100 epochs.

Examining fixations after 150 and 200 epochs, we found similar results with fixation
proportions for each species being about equal. We then conjecture that this behavior will

3



0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lattice Size

P
ro

ba
bi

lit
y 

of
 fi

xa
tio

n

Fixation Probabilities (Initial Rock = .9 Paper = .05 Scissors = .05)

 

 

Rock
Paper
Scissors
Mixture

Figure 1: The probabilities of fixation or mixture for initial proportions of .9 rock, .05
scissors, and .05 paper.

Lattice Size Rock Paper Scissors

10 59 52 46
11 83 71 72
13 162 188 191
14 256 238 200
15 364 345 361
16 384 416 403
17 494 529 490
18 648 610 606
19 769 726 733
20 869 819 824

Figure 2: The results of fixations after 100 epochs for 10000 trials on square lattices of size
10 × 10 and 20 × 20. Notice that the fixations for rock, paper, and scissors are about the
same.

extend to larger lattices. Unfortunately it is difficult to test since the time to fixation
increases greatly with an increase in lattice as shown on the left in Figure 3. If the 100
epoch observation is extended to larger lattices, a third of the oscillations could be assigned
to each species from the earlier graph to yield a better idea of the probabilities of fixation for
each species as shown on the right in Figure 3. Note that the prey of the dominant species
actually has the highest probability of victory for square lattice sizes from 30×30 to 60×60,
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which is similar to “survival of the weakest” with equal replacement rates. As the lattice
size increases, the probabilities of fixation for each species become about equal.
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Figure 3: The left graph shows the mean time to fixation against lattice size. The right
shows the probabilities of fixation for each species assuming that fixation after 100 epochs
is distributed uniformly.

The previous methods can be used for other initial conditions as shown in Figure 4. The
other initial conditions we looked at produced similar behavior as lattice size increased.
Initial conditions that have a large proportion of one species will fixate in the first 100
epochs more often. However, as the lattice size increases early fixation occurs less frequently
and eventually a size for the lattice is reached where fixation almost never occurs in the
first 100 epochs. We may now use our earlier observation that fixations after 100 epochs are
uniformly distributed between the possible species. Thus, for large lattices, the probability
of fixation will be equal for all the species assuming that uniform fixation after 100 epochs
holds for the larger lattice sizes and all 3 species are represented in the initial conditions.
It is important to note that the simulations were run are for a limited number of initial
conditions. Although we conjecture that this result holds for a broader range, our trials
were not exhaustive.
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Figure 4: The probability of fixation or mixture after the first 100 epochs for various initial
proportions.
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3 Mean Field

The mean field approximation represents a straight forward approach of approximating the
stochastic model with a set of differential equations that describe the change of the three
state densities over time [3, 10]. The assumption of this model is that the state of all adjacent
sites on the lattice are independent. Three state variables, P [R], P [P ], and P [S], describe
the proportion of the lattice in a particular state (i.e. P [R] is the proportion of the lattice in
state R). They also correspond to the probability that a randomly chosen site on the lattice
is a rock, paper or scissors respectively. The change in the proportion of the lattice in state
i over time is given by the following equation:

dP [i]

dt
=

∑

j 6=i

(P [j]rj→i)− P [i]
∑

j 6=i

(ri→j). (1)

In Eq [1] the positive term includes P [j], the probability of a site being in a state other than
i, and rj→i, rate at which it j is replaced by state i. The negative term includes P [i], the
probability of a site being in state i, and ri→j, the transition rate from i to j [6].

Using Eq [1], the differential equations for P [R] is:

dP [R]

dt
= P [S]φQR|S − P [R]φQP |R. (2)

The conditional probability Qi|j represents the probability that a randomly chosen site
in state j has neighbor in state i . Since we are assuming sites are independent in the
lattice, then Qi|j is equivalent to P [i] (i.e. QP |R = P [P ]). We may then derive the following
equations:

dP [P ]

dt
= P [R]φP [P ]− P [P ]φP [S] (3)

dP [R]

dt
= P [S]φP [R]− P [R]φP [P ], (4)

Since, P [R] + P [P ] + P [S] = 1 the sum of the differential equations for the change in
the three states’ proportions must be 0. Therefore, the differential equation for P [S] can be

expressed in terms of dP [P ]
dt

and dP [R]
dt

:

dP [S]

dt
= −dP [P ]

dt
− dP [R]

dt
. (5)

The mean field equations have been previously studied and shown to yield four fixed points
[10]. Three are trivial, with only one species present: (P [R], P [P ], P [S]) = (1, 0, 0), (0, 1, 0),
or (0, 0, 1). These are saddle points since the equilibrium is stable along one edge, and
unstable along the other edge. The last fixed point is a non-trivial,

(
1
3
, 1

3
, 1

3

)
, where all three

species coexist; this is a center.
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4 Pair Approximation

The use of the mean field assumption to approximate the behavior of a lattice model ignores
any local spatial interactions on the lattice which may be key to the dynamics of the process.
Therefore it is important to include an approximation that can capture some of the local
spatial behavior on the lattice. Pair approximation accomplishes this goal [6, 7]. This
requires the inclusion of terms for all of the probabilities of adjacent pairs of sites being in
a particular configuration: P [RR], P [RP ], P [RS], P [PR], P [PP ], P [PS], P [SR], P [SP ],
and P [SS]. By assuming rotational symmetry, which means that P [ij] = P [ji] for all i and
j, we are able to trim the number of state variables to six. The probabilities for each pair
change at rates according to the proportion of the state in the lattice times the rate that a
transition occurs:

dP [ab]

dt
=

∑

i,jε{R,P,S}
(P [ij]rij→ab)−

∑

i,jε{R,P,S}
(P [ab]rab→ij), (6)

where rij→ab is the rate of transition from ij to ab. Using the pair approximation assumption
which reads that the state of a site is independent of a second site conditioned on their shared
neighbor we get that

Qi|j =
P [ij]

P [j]
. (7)

With these equations we calculate the rates of change for each proportion. We use P [RR]
as an example. The pair SR and RS can become RR which can in turn become RP and
PR. The transition rates for all other combinations are zero. For the rate rRS→RR, knowing
that the R in the pair may replace the S, there is a 1

4
probability that the R spreads towards

the S rather than in the direction of one of the three other neighbors and a rate φ at which
invasion occurs. There is also the possibility for one of the other neighbors of S to be an R
and replace the S. There are 3 other neighbors which could be a rock each with probability
QR|S and replace S with rate φ

4
. The equation for the conversion of RS to RR is therefore:

rRS→RR =
3

4
φQR|S +

φ

4
. (8)

Since SR = RS, we double the RS term to yield a total change of 2P [RS]
(

3
4
φQR|S + φ

4

)
.

The probability of a transition that reduces RR can be calculated in a similar fashion. The
total equation for change in RR is therefore:

dP [RR]

dt
= 2P [RS]

(
3

4
φQR|S +

φ

4

)
− 2P [RR]

3

4
φQP |R, (9)

Using this method we can also calculate the change in proportion for the pair RP . The pairs
RR and SR can become RP which can in turn become RR and RS. We may, as earlier,
construct the rates of these four transitions and use them to form the equation

dP [RP ]

dt
=

3

4
P [RR]φQP |R +

3

4
P [PS]φQR|S − P [RP ]

(
3

4
φQP |R +

φ

4
+

3

4
φQS|P

)
. (10)
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The remaining four equations are formed in the same manner:

dP [RS]

dt
=

3

4
P [RP ]φQS|P +

3

4
P [SS]φQR|S − P [RS]

(
3

4
φQR|S +

φ

4
+

3

4
φQP |R

)
, (11)

dP [PP ]

dt
= 2P [RP ]

(
3

4
φQP |R +

φ

4

)
− 2P [PP ]

3

4
φQS|P , (12)

dP [PS]

dt
=

3

4
P [RS]φQP |R +

3

4
P [PP ]φQS|P − P [PS]

(
3

4
φQS|P +

φ

4
+

3

4
φQR|S

)
, (13)

dP [SS]

dt
= 2P [PS]

(
3

4
φQS|P +

φ

4

)
− 2P [SS]

3

4
φQR|S. (14)

In an attempt to analyze the fixed points of the pair approximation equations, we used

marginalization, P [i] =
∑

j∈{R,P,S}
P [ij], to construct the differential equations for P[R], P[P],

and P[S]:

dP [R]

dt
= φ(P [RS]− P [RP ]), (15)

dP [P ]

dt
= φ(P [RP ]− P [PS]), (16)

dP [S]

dt
= φ(P [PS]− P [RS]). (17)

For non-zero φ, the solution to these equations equaling zero is x = P [RP ] = P [RS] =
P [PS], creating a set of fixed points for Equations (15)-(17). However, this does not guar-
antee that Equations (9)-(14) are zero. Substituting x back into Equations (9)-(14) yields
fixed points occuring when either x = 0 or P [RR] = P [PP ] = P [SS] = 5x

2
.

We first consider the fixed points that occur when x = 0. Assume there are at least two
species on the lattice. There must be two neighboring sites that are not in the same state.
This is a contradiction, since x = 0. Therefore, the lattice must be covered by one species,
giving us three fixed points, either P [RR] = 1, P [PP ] = 1, or P [SS] = 1, which describe
when the lattice is completely covered with rock, paper, or scissors, respectively.

When graphing P [R] vs P [P ] vs P [S], a triangular simplex arises as shown in Fig. 5.
This is an invarient plane due to P [R] + P [P ] + P [S] = 1, on which all solutions to the PA
system exist. The three fixed points representing one species on the lattice, are the corners of
this triangle and each edge of this triangle is a heteroclinic orbit. The only initial conditions
that go to these fixed points are ones that are located on the heteroclinic orbits, in which
there are only two species present. This behavior is shown in Fig. 6, where P [RR] starts
close to 1 and steadily decreases to 0, P [RP ] increases as the lattice becomes roughly half
rock and paper, and P [PP ] starts close to 0 but steadily increases to 1. This is because
there are only two species present causing the dominance to be linear instead of cyclic.

We now consider the fixed points that occur when P [RR] = P [PP ] = P [SS] = 5x
2

. The

sum of the probabilities of all possible states must equal one,
∑

i,j∈{R,P,S}
P [ij] = 1. Using
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Figure 5: A graph of P[R] vs. P[P] vs. P[S] showing the invarient plane. This particular
trajectory started near the middle and is spiraling outwards into a heteroclinic cycle.
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Figure 6: This is a graph depicting the situation in which there was only rock and paper
present on the lattice and shows that paper completely dominates.

the x from earlier, this can be rewritten as 6x + 3(5x)
2

= 1. Solving this for x, we get that
x = 2

27
. Therefore, the point with P [RP ] = P [RS] = P [PS] = 2/27 and P [RR] = P [PP ] =

P [SS] = 5/27 is the internal fixed point of our system, where all three species coexist with
equal proportions and interactions. When shown on Fig. 5, this is the point

(
1
3
, 1

3
, 1

3

)
, which

is in the middle of the triangle.
To analyze the stability of the internal fixed point, we compute the Jacobian of our system

and evaluate it at the fixed point. Solving for the eigenvalues yields −1
2
, 0,

−3±
√
−7±16i

√
3

12
.
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These six eigenvalues can be written approximately as −0.5, 0, −0.523755 ± 0.351501i,
0.0237548±0.351501i. Since there is an eigenvalue with positive real part, this fixed point is
unstable but, because there’s a zero eigenvalue, other methods must be utilized to describe
the behavior around it more fully.

We find a basin of attraction for the internal fixed point by making the substitutions,
x = P [RP ] = P [RS] = P [PS] and y = P [RR] = P [PP ] = P [SS], into Equations (9)-(14).
The resulting two equations were:

dx

dt
=

3x2

4(2x + y)
+

3xy

4(2x + y)
− x

(
1

4
+

3x

2(2x + y)

)
,

dy

dt
= − 3

2(2x + y)
+ 2x

(
1

4
+

3x

4(2x + y)

)
.

Using 6x + 3y = 1, we eliminated one equation. Leaving us with dx
dt

= −27x2

4
+ x

2
. Taking

the derivative of this new equation and evaluating at our fixed point, x = 2
27

, we get an
eigenvalue of −1

2
. Since this eigenvalue is negative, points starting on the line 6x + 3y = 1

will converge to the fixed point. One example of this convergence to the fixed point is
shown in Fig. 13 and Fig. 14, the initial condition used to generate those graphs was
P [RR] = P [PP ] = P [SS] = 2

15
and P [RP ] = P [RS] = P [PS] = 1

10
which lies on the line of

attraction.
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Figure 7: A graph of all six state variables of the PA system over time.

In order to attempt to capture all of the types of behavior, we numerically integrated
a wide range of initial conditions and discovered only three behaviors. The first of the
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three behaviors is that if the initial condition only represents two species, then one species
dominates completely. The second is a subset of initial conditions that converges to the
internal fixed point. The final behavior is oscillation becoming a heteroclinic cycle.

0
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0.8

1

P[RR]

0 5000 10000 15000 20000
Time

Figure 8: A graph of P[RR] vs. Time showing that the oscillations continue over time.

As a representative of this type of initial condition, we use P [RR] = 0.2 and P [RP ] =
P [RS] = P [PP ] = P [PS] = P [SS] = 0.1. Numerically integrating yields curves as shown
in Fig. 7. The three curves that oscillate on the bottom are the graphs of P [RP ], P [RS],
and P [PS], while the three curves that oscillate with increasing amplitude and period are of
P [RR], P [PP ], and P [SS]. The figure depicts that there is a spike of a heterogeneous pair
during the transition from dominance of one homogeneous pair to the dominance of another
homogeneous pair. This continues as time approaches infinity, as shown in Fig. 8, due to
there being a heteroclinic cycle. Each state variable spends more time near its value at the
trivial equilibria, as time increases. This can also be seen in Figs. 9, 10, 11, 12.
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Figure 9: A graph of P[RR] vs P[PP] vs P[SS] that shows a trajectory starting below the
curved plane, coming up to it, and then spiraling out into a heteroclinic cycle.
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Figure 10: A graph of P[RR] vs P[RP] vs P[RS] that shows a trajectory starting above the
curved plane, coming down to it, and the spiraling out into a heteroclinic cycle.
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Figure 11: A graph of P[RP] vs P[RS] vs P[PS] that shows a trajectory starting away from
the origin and spiraling inwards to a heteroclinic cycle.
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Figure 12: A 2d view P[RP] vs P[RS] vs P[PS] which better shows that the trajectory started
away from the origin and then oscillated towards the axis into the heteroclinic cycle.
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Figure 13: A graph of P[RR] vs. P[PP] vs. P[SS] shows a trajectory in which all three
variables start near 0.14 and converge at the same rate, hence the linear graph, and they all
converge to 5/27 or 0.185.
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Figure 14: A graph of P[RP] vs. P[RS] vs. P[PS] shows a trajectory in which all three
variables start at 0.1 and converge at the same rate, hence the linear graph, and they all
converge to 2/27 or 0.075.
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5 Discussion and Conclusion

Now that we have shown the behavior of the mean field and pair approximation equations,
we can compare their abilities to capture the qualitative behavior of the lattice model. To do
this, we run the lattice model, recording the values of each pair (RR, RP, etc.) periodically.
We then run the same initial conditions through the pair approximation and mean field
equations and compare the trajectories.
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Figure 15: The top left graph shows one simulation on a 10 × 10 lattice. The top right
graph shows one simulation on a 20×20 lattice. The bottom left and right show a numerical
integration on the mean field and pair approximation equations respectively using the initial
conditions from the 10× 10 simulation.

Figure 15 shows that the mean field approximation fails to capture any change in ampli-
tude of the oscillations that occur in the lattice model. For smaller lattice sizes the lattice
model behaves closely to the pair approximation with oscillations increasing in amplitude
until fixation is reached. However, for larger lattices the oscillations seem to vacillate be-
tween large and small amplitudes, not closely resembling either of the models. It is clear
that neither the pair approximation nor the mean field do an adequate job of capturing the
behavior of the system.
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With the lattice model, we have shown that a form of survival of the weakest, where
the species with the smallest initial population size is most likely to fixate, can occur for
intermediate lattice sizes based on initial conditions even if the invasion rate for each of the
three species is the same. We have also shown that by increasing the lattice size, the effect of
initial conditions is greatly reduced, although initial conditions that are strongly dominated
by one species require larger lattice sizes for fixation to be evenly distributed. Lastly, based
on our data, increasing the lattice size increases the mean time in epochs to fixation. In
nature, the size of the lattice is likely to be very large. This means that initial population
levels will be unlikely to effect fixation and diversity may be maintained for a long period of
time.

With the pair approximation model we utilized an alternative assumption to the mean
field in order to better capture the behavior of the lattice. We discovered three sets of initial
conditions that lead to separate results. The first was starting with two or fewer species
leading to quick fixation of one species. The second was starting along a line where the
proportion of matching pairs (P [RR], ...) were all equal and the proportion of cross pairs
(P [RP ], P [RS], ...) were all equal. This leads to an internal fixed point which would not be
viable in the lattice model, since its stochastic nature would lead to a perturbation off the
stable line. Lastly, all other initial conditions lead to a heteroclinic cycle. Again, since the
lattice model is stochastic, it is not able to stay in the heteroclinic cycle and eventually hits
a heteroclinic orbit which leads to the fixation of one species.

6 Biological Significance

Pair approximation is successful at approximating the behavior of small habitats; however,
due to the increase in oscillation amplitude, coexistance of the three species cannot be
maintained for long periods of time. However, pair approximation does a not seem to capture
the behavior in large habitats. Using the lattice model we showed that by increasing the size
of the lattice leads to longer times to fixation. Thus large habitats are likely to maintain
diversity. Additionally, when starting with a system that includes each of the three species,
we showed that increasing the lattice size decreases the effect of the population proportions
on the likelihood of fixation for each species. However, when one of the species in the system
is more predominant, a larger habitat is necessary for equal fixation probabilities. In nature,
the habitat size is likely to be very large. Consequently, initial population densities will be
unlikely to affect fixation and diversity may be maintained for a long period of time. When
three species are presents and there are no disturbances to the system, species diversity is
likely maintained.

7 Future Work

Some of our results from the lattice model were based on extrapolating the behavior after
100 epochs based on the smaller lattice sizes. Unfortunately extrapolation does not always
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work and the verification of these results on larger lattices is computationally difficult since
the time to fixation increases exponentially with the lattice size. Further study on the larger
lattice sizes may be done to validate our assumption. Additionally, the heteroclinic cycle
occurs because we set all of the invasion rates equal. If we allow the replacement rates to be
different, we may find the hopf bifurcation necessary to have a true limit cycle. Lastly, our
system was for 3 states even though cyclical hierarchy can be extended to larger systems.

8 Acknowledgements

This project have been partially supported by grants from the National Science Foundation
(NSF - Grant DMPS-0838704), the National Security Agency (NSA - Grant H98230-09-
1-0104), the Alfred T. Sloan Foundation and the Office of the Provost of Arizona State
University. We would also like to thank Drs. Faina Berezovskaya and Fabio Sanchez for
their help and support with this project.

18



References

[1] Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31,
343366 (2000).

[2] Chesson, P. and J.J. Kuang, The Interaction Between Predation And Competition,
DOI: 10.1038/nature07248, Nature 456, 235-238, 2008.

[3] Feller, M., An Introduction to Probability Theory and Its Application, 3rd ed (Wiley,
New York, 1968).Vol. 1.

[4] Frean, M., and E.R. Abraham Rock-Scissors-Paper and the Survival of the Weakest,
Proc. Royal Soc. London B, vol. 268, no. 1474,1323-1327, 2001.

[5] Hiebeler, D., Stochastic spatial models: from simulations to mean field and local struc-
ture approximations. Journal of Theoretical Biology 187, 307319, 1997.

[6] Hiebeler, D.E., Populations on Fragmented Landscapes with Spatially Structured Het-
erogeneities: Landscape Generation and Local Dispersal, Ecology 81(6), pp 1629–1641
(2000).

[7] Hiebeler, D.E., and B.R. Morin, The Effect of Static and Dynamic Spatially Structured
Disturbances on a Locally Dispersing Population, Journal of Theoretical Biology, 246(1),
136–144 (2007). doi:10.1016/j.jtbi.2006.12.024

[8] Kerr, B., M. A. Riley, M. W. Feldman, and B. J. M. Bohannan. Local dispersal promotes
biodiversity in a real-life game of rock-paper-scissors. Nature 418 : 171-174 2002.

[9] Levin, S.A., R. Durrett. From individuals to epidemics. Philos. Trans.: Biol. Sci. 352,
1615-1621, (1996).

[10] Reichenbach, T., M. Mobilia, and E. Frey, Coexistence versus extinction in the stochas-
tic cyclic LotkaVolterra model. Physical Review E, 74, (2006) 051907:1-11.

[11] Sinervo, B., and Lively, C.,The Rock-Paper-Scissors Game and the evolution of alter-
native male strategies. Nature 340, 240-243, 1996.

[12] Tilman, D. and S. Pacala, Species Diversity in Ecological Communities (eds Ricklefs,
R. E. and Schluter,D.) 1325 (Univ. Chicago Press, Chicago, 1993).

19


