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Abstract

A discrete time SIR model to study the dynamics of influenza in a
multi-city setting is introduced. Data from three cities in mexico that
include the rate of movement of individuals from city to city is used
to explore the impact of “travel” on A/H1N1 outbreaks. The model is
expanded in order to evaluate the potential impact of treatment and
social distancing.

1 Introduction

Different continuos time models have been used to study the spread of in-
fluenza. (refs) To study the 2009 flu pandemic (A/H1N1) we formulate a
discrete time SIR model, the motivation on using this type of model is be-
cause the confirmed infected cases are reported daily. Also, there are more
than 500,000 Mexicans traveling everyday between the capital, Mexico City
and their nearby towns.

1. What can be done about flu pandemics

2. what was done about this particular one
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3. how we incorporate the three features in our model: Treatment Social
Distancing and movement.

4. Central research question; main difference from previous work

5. mapping out how our seccions will answer our questions

The total population at time t is divided into susceptible St, infected
(infectious) It and recovered Rt. The time of getting infected follows an
exponential distribution with rate β It

Nt
. We ignore the demographic change

in the populations but take into account the disease induced deaths.
Social distancing is the public health practice of encouraging people to

keep their physical distance from each other during disease outbreaks in order
to slow the spread of infection. In our model we investigate the effectivity
of social distancing by assuming that the contact rate β(t) is a function of
time, i.e β is smaller during the time that social distancing policy is applied.

One of our aims is to compare two control strategies, treatment to infected
individuals and social distancing, we want to study their efficacy in reducing
the final size of the pandemic. In order to study treatment, we expand the
model and include a class of treated infected individuals Tt assuming that
they recover faster than not treated individuals.

Finally, we want to study the spread of the disease by looking at the
movement of people between cities. There are two vacational periods per
year where the number of travelers increases, e.g. spring break and christmas.
We introduce a multi-city model where every city has its own dynamics and
the movement parameter mij(t) from city i to city j depends on time, it is
bigger during the vacational periods.

2 SIR Model

To begin we study the dynamic in one single city. For each city we consider
a discrete SIR model, i.e. the total population is divided into susceptible
(S), infectious (I) and recovered (R) individuals. For discrete time models
we think that events occurring only at discrete times. In this model we
assume that recovery occurs at the beginning of the stage, after that some
infected individuals die and some susceptible individuals that have contact

with infectious individuals become to be infectious. Let Gt = e
−β

It
Nt be the

fraction of susceptible individuals at time t that remain susceptible at time
t + 1, σ1 the fraction of infectious individuals that get recovered and δ the
fraction of infected individuals that die due to the disease. We do not consider
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birth and natural mortality. The model is given by the system of difference
equation.

St+1 = StGt

It+1 = St (1−Gt) + (1− σ1) (1− δ) It

Rt+1 = Rt + σ1It

(1)

As in the continuos model we want to verify that as t → ∞ there are
susceptibles individuals that never get the infection and that the infection
eventually dies out, in other words we want to proof that

1. I∞ = 0

2. S∞ > 0

Let us notice that Gt ≤ 1, then the sequence St is decreasing. Similarly if
we add the equations for S and I from the model (1) we get

St+1 + It+1 = St + It (1− σ1) (1− δ) ,

where(1− σ1) (1− δ) ≤ 1, therefore St+1 + It+1 is a decreasing sequence and
has a limit S∞+I∞ast →∞. Now, if we take St ' Nt and I ' 0 the equation
for I from the model (1) has the following form

It+1 = (1− σ1) (1− δ) It

or the equivalant expresion It+1 − It = −[1 − (1 − σ1)(1 − δ)]It, where it is
clear that this sequence tends to zero and therefore I∞ = 0.

2.1 Final Size

As we mentioned before the mortality due the epidemics δ is consider to take
into account the number of dead individuals. For the following calculations
we consider δ ' 0, in this case the population is almost constant and Gt =

e−β
It
N . Let us observe first that

St+1 = S0G0G1 · · ·Gt ,

now, taking logarithm in both sides and t → ∞, the previous expression
takes the following form

ln

(
S0

S∞

)
=

β

N

∞∑
i=0

Ii (2)

By adding equation S and I in model (1) we obtain

Sk+1 + Ik+1 = Sk + (1− σ1) (1− δ) Ik
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therefore

Sk − Sk+1 = Ik+1 − (1− σ1) (1− δ) Ik

and summing over k and taking t →∞we have

S0 − S∞ = (1− (1− σ1) (1− δ))
∞∑
i=0

Ii − I0

Then

N0 − S∞ = (1− (1− σ1) (1− δ))
∞∑
i=0

Ii

From (2)
∑∞

i=0 Ii = N
β

ln
(

S0

S∞

)
, by replacing in the previous expression we

obtain the final size relation

R0

(
1− S∞

N

)
= ln

(
S0

S∞

)

for

R0 =
β

(1− (1− σ1) (1− δ))
(3)

Therefore the final reproductive number is given by (3).

3 Model with treatment

Now we assume that a fraction τ of the infectious individuals get treatment

at stage t + 1. Let p be the treatment effectivity and Gt = e
−β

It+pTt
Nt the

fraction of susceptible individuals at time t that remain susceptible at time
t + 1, σ2 the fraction of trated individuals that get recovered. The model
become to be

St+1 = StGt

It+1 = St (1−Gt) + (1− σ1) (1− τ) (1− δ) It

Tt+1 = (1− σ2) Tt + τ (1− σ1) It

Rt+1 = Rt + σ1It + σ2Tt

(4)

Similar to the previous model we have that I∞ = 0. In order to obtain
an expresssion for the final size; we assume that N is constant therefore

Gt = e−β
It+pTt

N . Besides

St+1 = S0G0G1 · · ·Gt ,

4



and taking logarithm in both sides and t →∞, the previous expression takes
the following form

ln

(
S0

S∞

)
=

β

N

∞∑
i=0

(Ii + pTt) (5)

therefore
N

β
ln

(
S0

S∞

)
=

∞∑
i=0

Ii +
∞∑
i=0

pTi (6)

By the other hand adding equations for St+1 and It+1 in (4) we obtain

Sk+1 + Ik+1 = Sk + (1− σ1) (1− τ) (1− δ) Ik

therefore
Sk − Sk+1 = Ik+1 − (1− σ1) (1− τ) (1− δ) Ik

and summing over k and taking t →∞we have

S0 − S∞ = (1− (1− σ1) (1− τ) (1− δ))
∞∑
i=0

Ii − I0

Then

N0 − S∞ = (1− (1− σ1) (1− τ) (1− δ))
∞∑
i=0

Ii (7)

From equation for Tt+1 in (4) we have

Tt+1 − (1− σ2) Tt = τ (1− σ1) It

and summing over k and taking t →∞we have

(1− (1− σ2))
∞∑
i=0

Ti − T0 = τ (1− σ1)
∞∑
i=0

Ii

Notice that T0 = 0, then

∞∑
i=0

Ti =
τ (1− σ1)

σ2

∞∑
i=0

Ii

combining the previous equation with (6) we get

N

β
ln

(
S0

S∞

)
=

∞∑
i=0

Ii +
τ (1− σ1) p

σ2

∞∑
i=0

Ii =

(
1 +

pτ (1− σ1)

σ2

) ∞∑
i=0

Ii
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therefore
∞∑
i=0

Ii =
σ2

σ2 + pτ (1− σ1)

N

β
ln

(
S0

S∞

)
(8)

substituing (8) in (7)

N0 − S∞ = (1− (1− σ1) (1− τ) (1− δ))

(
σ2

σ2 + pτ (1− σ1)

N

β
ln

(
S0

S∞

))

Therefore

ln

(
S0

S∞

)
= RC

(
1− S∞

N

)

for

RC =
β

1− (1− σ1) (1− τ) (1− δ)

σ2 + pτ (1− σ1)

σ2

(9)

Notice that for τ = 0, i.e. when we do not get treatment the expression (9)
is equal to (3).

3.1 Control Policies

With the detection of the first outbreak of a new strain of influenza A virus
subtype H1N1, Mexico city was shut down within a few days, many businesses
were closed for a five-day break on a goverment order to slow the spread of
the disease, there were no school classes for almos three weeks. In our model
we investigate the effectivity of these policies by reducing the contact rate.
In our simulations we study the different scenarios of when to apply these
control policies, at the beggining or at the peak of the epidemic.

In order to study the impact of social distancing we reduce the contact
rate during two weeks it looks like

we also assume that treatment is apply at the same time, i.e τ is given
by

the figure shows how the number of infected individuals change when we
apply these policies. Notice that treatment has a stronger impact in order
to reduce the final size. Also we verify that policies have more impact when
they are applied at the beginning of the epidemic.
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Since treatment is the most efficient policie, we do simulations that show
the relation between the number of treated people each day and the final
size.
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Notice that without treatment the final size will be more than 50% of
the total population, however if could give treatment at least at 50% of
the infected individuals the fina size will be least than 15% of the total
population.

4 Multi City Model

Now consider a nodal connection between cities and assume that every city
has its own dynamic. Let Si

t , I i
t , T

i
t and Ri

t the number of susceptible, in-
fectious, treated and recovered in the city i at stage t. Assume mij is the
number of individuals that travel from city i to city j every day. The model
is given by
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Si
t+1 = Si

tG
i
t

(
1−∑

i6=j

mij

Ni

)
+

∑
i6=j

mji

Ni
Sj

t G
j
t

I i
t+1 = (Si

t (1−Gi
t) + (1− σ1) (1− τ) (1− δ) I i

t)

(
1−∑

i6=j

mij

Ni

)

+
∑
i6=j

mji

Ni

(
Sj

t

(
1−Gj

t

)
+ (1− σ1) (1− τ) (1− δ) Ij

t

)

T i
t+1 = ((1− σ2) T i

t + τ (1− σ1) I i
t)

(
1−∑

i6=j

mij

Ni

)
+

∑
i6=j

mji

Ni

(
(1− σ2) T j

t + τ (1− σ1) Ij
t

)

Ri
t+1 = (Ri

t + σ1I
i
t + σ2T

i
t )

(
1−∑

i6=j

mij

Ni

)
+

∑
i6=j

mji

Ni

(
(1− σ2) T j

t + τ (1− σ1) Ij
t

)

By the complexity of the model we do not have analitical results. We
do simulations in order to study the impact of mobility in the spread of the
disease. In the simulations let N0

0 = 200000 be the total population in the
big city (node city), N2

0 = 10000 the population in city 2; assume all of them
are susceptible and let S1

0 = 7000, I1
0 = 1 and R1

0 = 0 the initial conditions in
city 1. and let m10 = m01 = 44 and m10 = m01 = 50 the number of travelers
between city i and city j for i, j = 0, 1, 2.
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In the previous figure we observed a natural delay when an infected indi-
vidual is introduced in the small city. The disease “arrive” to the node city
and after to city 2. We want to study how the mobility affect the final size
in each city. Notice that if the disease began in city 1 (small one), a little
movement of people make the final size decreasing in this city but when the
movement is more than 2% the final size increase. In the node city and city
2 the final size increase when the movement of people increase.
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Finally if we consider that the outbreak began in the node city (city 0)
the final size increase in all cities when the movement of people increase.
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5 Conclusions

• In contrast to the continuous model the discrete one capture a natural
epidemic delay (time series shifting between cities.

• The policies are more efficient if they are implemented at the beggining
of the epidemic.

• Treatment has a stronger impact in reducing the final size.

• At least 60% of the infected individuals shoud get treatment every day.

• Movement of people make increase the final size of the epidemic in
every single city.
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