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Abstract

Hepatitis C infection becomes chronic in most patients leading to end-stage liver disease. The
standard-of-care treatment for HCV patients is only suboptimal. Several patients who exhibit
undetectable viral load during, at the end of, or six months after cessation of therapy, observes
relapse over variable time. This suggests that there may exist, a sub-clinical threshold, which
governs the achievement of lasting cure. We propose an immunological model of hepatocytes and
HCV to investigate this threshold behavior, where the infected hepatocytes are differentiated
by the age of infection in them. The goal of the model is to obtain observed patient profiles
if treatment is provided. Preliminary analysis of the model provides conditions for existence
of two endemic equilibria for R0 < 1. Analysis of a reduced model without age of infection
suggests backward bifurcation at R0 = 1. Artificial values of the parameters are taken to show
bistability region for R0 < 1. However, it may not be possible to observe the patient profile in
this region without treatment. The critical reproduction number below which the disease free
equilibrium is stable may lead us to the decisive sub-clinical viral load threshold.
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Abbreviations: HCV, Hepatitis C virus, peg-IFN, pegylated Interferon, RBV, Ribavirin,
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1 Introduction

About one hundred and seventy million people live with Hepatitis C virus (HCV) infection world-
wide [?]. Currently, there is no vaccine for HCV. The major mode of transmission of HCV is by
exposure to infected blood. Sexual transmission is observed only in people coinfected with HIV and
vertical transmission of HCV is rare [?]. The HCV infects hepatocytes which form a major portion
of the cytoplasmic mass of the liver. Although HCV predominantly replicates in hepatocytes, traces
of it have been detected in other cell types [?, ?]. Around 15-30% of the acutely infected Hepatitis
C patients who are asymptomatic and more than 50% of patients with symptoms spontaneously
clear the virus [?], observed more in infants and young women. Whereas, in 55-75% people who
develop acute Hepatitis C remain infected [?]. In the the Hep-C patients where the immune system
cannot clear the virus by itself medical intervention is necessary. A combination of drugs, Interferon
(IFN-α) and ribavirin (RBV) is prescribed for 24 to 48 weeks [?].

Hepatitis C virus (HCV) is a very slowly evolving disease, where chronic HCV infection can
continue for decades, with or without treatment. Due to this reason it has not been proved beyond
doubt that treatment provides absolute cure and halts progression to adverse liver infections like
cirrhosis and hepatocellular carcinoma among others. Thus therapy of HCV is primarily targeted
towards restricting deterioration of liver condition necessitating liver transplant or causing patient’s
death.

As a consequence, response in patients to treatment are measured by ”surrogate virological
parameter”, instead of a specific ”clinical end-point”. Several types of virological response thresh-
olds are defined depending on time, relative to treatment duration, having differential degree of
reliability as a prescient of long term clinical cure [?].

The most important among these is the sustained virological response (SVR), which is the
absence of HCV viral load after six months beyond therapy cessation. SVR is largely considered as
”virological cure” and usually followed by years of no drastic decline in liver health. The probability
of achievement of SVR is dependent on the genotype of the viral HCV-RNA. The IFN-α and RBV
treatment is very effective with SVR rates of about 45-50% in genotype-1 patients and 85-90% in
genotype 2 and 3 patients [?].

The rapid virological response (RVR) is defined as observation of undetectable viral load four
weeks into treatment with a lower limit of 50 IU/ml−1. Fulfillment of this threshold indicates a
high probability of successful achievement of SVR [?, ?].

Another therapeutic landmark is end-of-treatment response (ETR), which is defined by unde-
tectable viral load at the end of 24 or 48-week course of therapy. ETR is a necessary but not
sufficient condition to achieve SVR .

An early virological response (EVR) characterized by ≥ 2 log reduction or undetectable viral
load at week 12 of therapy is yet another necessary but insufficient predictor of achievement of SVR
[?, ?].

It is remarkable that several patients who achieve undetectable viral load in EVR, ETR or even
RVR do not always achieve SVR. Some typically observed patient profiles can be see in the Figure
1.

This leads us to believe that there exists other viral-load threshold below detectable levels which
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Figure 1: Shows the different observed HCV-RNA dynamics in treated patients. Figure modified from [?]. The red
doted line shows the possible sub-clinical threshold that determines cure.

determine attainment of SVR.
Previous immunological models of HCV as in Dahari et. al. [?] have provided considerable

headway in determining the efficacy of peg-IFN and RBV treatment using mathematical ODE
models. In their model, all parameters related to infected hepatocyte proliferation, viral production
and death rate are considered constant throughout the period of infection. It has been noted in
clinical trials that difference in patient’s response to treatment, including cases when they achieve
ETR and do not proceed to successful achievement of SVR is often due to their different strength
of immune system. And since in simple immunological models the aforesaid parameters bear the
immune system implicitly, we think that it is important to study them in more details. Moreover,
in-vivo and in-vitro observations suggest that, once a virus enters a susceptible host, the normal
functions of the host cell is shut down to conserve energy for production of viral material. It takes
some time for the virus to complete its life cycle in the cell and finally start budding off to produce
new viruses. This differential intra-cellular viral behavior with respect to age of infection effects
every natural event related to the host cell, including self-proliferation rate, death rate and viral
production rate of infected hepatocytes. The probability of death of an infected cell increases with
age of infection. Since it is beneficial to the virus that the life-span of their host cell is longer,
the virus does not directly kill the infected hepatocyte. The cell dies due to exhaustion caused by
excessive proliferation and extensive budding of viruses formed inside it. Sometimes, the virus may
induce the infected hepatocyte to proliferate to produce more infected hepatocytes, presumably to
build more cells to produce more viruses [?]. These biological time delay can be easily incorporated
into a deterministic mathematical model by including age of infection into the infected hepatocyte
population.

The use of age-structured mathematical models to understand infectious disease dynamics at
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the cellular level is not uncommon. Age of infection models were used to study various aspects of
HIV infection by Thieme and Castillo-Chavez, Rong et al and Nelson et al [?, ?, ?]. We attempt
to use similar techniques to further our understanding of HCV immunology and analyze effects of
standard antiviral treatment of peg-IFN-α+RBV to possibly estimate the sub-clinical threshold
that dictates the long-term cure in a Hepatitis C patient. Also if we wish to characterize each
individual patient as a separate parameter set, the age of infection model gives us more flexibility
to study a variety of patient profiles.

In this paper, we introduce an age of infection model for Hepatitis C infection in the liver and
give preliminary results at equilibrium. Then we simplify into an ordinary differential equation
model which is similar to the extended Dahari et al (2007) [?], modified by incorporate the differ-
ential proliferation rates of healthy and infected hepatocytes as in [?]. We also present preliminary
results and observations.

2 Age of Infection Model

In the following model, T and V represent the density of healthy hepatocytes and free virus re-
spectively in a HCV patient at time t. τ is the age of infection of an infected hepatocyte and i(τ, t)
represents the number of infected hepatocytes with age of infection τ at time t. The scheme of the
model can be seen in Figure 2.

Figure 2: Shows the schematic model.

The moment a hepatocyte gets infected is at τ = 0. Thus, the term i(τ, t) is the density
of hepatocytes which have been infected for time τ at chronological time t. Therefore, the total
number of infected cells at time t should be given by

I(t) =
∫ ∞

0
i(τ, t)dτ.
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Then the system of equations which represent the HCV dynamics in the liver cells is given by
the following.

dT

dt
= s+ r1T

(
1− T + I

Tmax

)
− dT − βTV

∂i

∂τ
+
∂i

∂t
= −δ(τ)i(τ, t)

i(0, t) = βTV +R2(t)
(

1− T + I

Tmax

)
dV

dt
= P (t)− cV (1)

where,

R2(t) =
∫ ∞

0
r2(τ)i(τ, t)dτ

P (t) =
∫ ∞

0
p(τ)i(τ, t)dτ

Here s denotes the constant recruitment rate of healthy hepatocytes and r1 is its maximum possible
density dependent proliferation rate. Tmax is the maximum number of hepatocytes a liver can
support including the healthy and infected hepatocytes, thus acting as the ’carrying capacity’ in
the logistic growth term of T . The natural death rate of T is given by d. β is the number of healthy
hepatocytes one virus will infect in a completely susceptible population per unit time. Thus, βTV
is the the number of hepatocytes getting infected per unit time. These infected hepatocytes move
into the infected population per unit time.

The function δ(τ) gives the probability that an infected hepatocyte will die at the age of infection
τ . Thus the total number of death among the infected hepatocyte cohort of age of infection τ is
equal to δ(τ)i(τ, t), in the time interval t to t+∆t, which is the same as the time interval between τ
and τ + ∆τ . Hence we obtain Equation (1). The functional form of this function can be considered
linear for simplicity. For example,

δ(τ) = d+ d1τ,

where d is the natural death rate of healthy hepatocytes, as defined before and d1 is the rate of
increase in the chances of dying with age of infection.

The number of new infections at a time point t is given by i(0, t). This includes the hepatocytes
which got infected at time t represented by the rate of new infection βTV with age of infection τ = 0,
and the number of infected hepatocytes born out of previously infected hepatocytes. The latter
is represented by a logistic term, with the rate of this proliferation depending on age of infection
being r2(τ). The rate of change of virus density with respect to chronological time is given by the
number of new virus particles produced from infected hepatocyte at the rate of p(τ) depending on
age of infection again. The rates r2(τ) and p(τ) have to be considered as piecewise functions, since
these processes get arrested or do not initiate, respectively, immediately after infection.
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Although the actual expression of infected hepatocyte’s proliferation rate with respect to age
of infection r2, has not been experimentally determined, it is thought to be initiated by the virus
inside the hepatocyte to create more reservoirs of itself. So, a possible function could be of the
form,

r2(τ) =

{
(τ−τ0)2

K+(τ−τ0)2
, τ > τ0

0 , elsewhere

Here, τ0 gives the time necessary for the virus to gain control over the cell to initiate and complete
infected hepatocyte replication and K giving the half maximum mark of proliferation rate.

The expression for p(τ) used in [?] for production of HIV which can also be used for HCV is as
follows,

p(τ) =
{
pmax

(
1− eπ(τ−τ1)

)
, τ > τ1

0 , elsewhere

Here, pmax is the maximum level of possible proliferation, π determines how quickly p(τ) reaches
saturation and τ1 is the time necessary for the virus to complete replication inside the infected
hepatocyte.

Now we move on to analyze this model at equilibrium with respect to chronological time.

2.1 Analysis of Time-since-Infection Model

To find the equilibrium points of the system (1), we equate all the time derivatives to zero. That
gives us the following system.

0 = s+ r1T

(
1− T + I

Tmax

)
− dT − βTV

∂i

∂τ
= −δ(τ)i(τ, t) (2)

i0 := i(0, 0) = βTV +R2(t)
(

1− T + I

Tmax

)
0 = P (t)− cV (3)

Now we solve for i∗(τ) from equation (2) to get

i∗(τ) = i0e
−
∫ τ
0 δ(η)dη. (4)

Using this value we can define the following at equilibrium.

I∗ :=
∫ ∞

0
e−

∫ τ
0 δ(η)dηdτ (5)

R∗2 :=
∫ ∞

0
r2(τ)e−

∫ τ
0 δ(η)dηdτ (6)

P ∗ :=
∫ ∞

0
p(τ)e−

∫ τ
0 δ(η)dηdτ (7)
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These constants when multiplied with i0 essentially represent the total number of infected
hepatocytes (of all ages of infection), rate of proliferation of infected hepatocytes and rate of
production of viruses respectively, when an equilibrium is reached with respect to chronological
time.

Result 1:-
The Infection Free Equilibrium is (T ∗0 , 0, 0), where,

T ∗0 =
(r1 − d) +

√
(r1 − d)2 + 4s r1

Tmax

2r1
Tmax

(8)

Observation 1:- The Basic Reproduction Number, R∗0 is calculated by establishing the stability
of the Infection free equilibrium, given by,

R∗0 =
βP ∗

c
T ∗0 +

(
1− T ∗0

Tmax

)
R∗2 (9)

(Derivation shown in Appendix.)

The basic reproduction number can be interpreted as the number of secondary infections (hep-
atocyte or virus) that are caused when a single infected hepatocyte (or virus) is introduced into a
completely susceptible population of hepatocytes in its entire lifetime. The first term accounts for
the fact that the infected hepatocyte can produce up to P ∗ virions in its lifetime of 1

δ(τ) units of
time, at age of infection τ , and each virus can infect a healthy hepatocyte at the rate β over its
life time of 1

c units of time. The second term accounts for the total number of infected hepatocytes
being produced by proliferation from the introduced infected hepatocyte, at all ages of infection,
over its lifetime.

Now we proceed to investigate the existence of endemic equilibria. Solving out we can get two
possible endemic equilibria (T ∗1 , I

∗
1 , V

∗
1 ) and (T ∗2 , I

∗
2 , V

∗
2 ) given by the following.

I∗1,2 =
∫ ∞

0
i∗1,2(τ, 0)dτ

where,

i∗1,2(τ, 0) = i01,02e
−
∫ τ
0 δ(η)dη.

Now,

i01,02 =
−B ±

√
B2 − 4AC
2A

where,

A := − r1
Tmax

γ2
1 −

r1
Tmax

γ1I
∗ − βP ∗

c
γ1

B := r1γ1 − 2
r1
Tmax

γ1 −
r1
Tmax

I∗γ2 − dγ1 −
βP ∗

c
γ2

C := s+ r1γ2 −
r1
Tmax

γ2
2 − dγ2
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and also,

γ1 :=
R∗2I

∗

Tmax
γ2 := 1−R∗2

Then we have,

T ∗1,2 = γ2 + i01,02γ1

V ∗1,2 =
P ∗

c
i01,02.

If we have, A,C > 0 and B < 0 we have T ∗1 , I
∗
1 , V

∗
1 , T

∗
2 , I
∗
2 and V ∗2 positive, giving us two

endemic states. Further exploration of conditions under which these equilibria will be biologically
relevant needs to be made.

3 Ordinary Differential Equation Model

To study the dynamics of the previous system at equilibrium with respect to time in more details, we
propose the following ordinary differential equation, which is a modified version of the first model in
Reluga et al, [?]. The state variables, T, I, V here also represent the concentrations of healthy and
infected hepatocytes, and viral load respectively. However in this model all the parameters related
to the infected hepatocytes and the virus are constants. For example, an infected hepatocyte starts
proliferating and budding out viruses at a constant rate, starting from the moment it is infected to
the moment it dies. Thus the model becomes the following.

dT

dt
= s+ r1T

(
1− T + I

Tmax

)
− dT − βTV (10)

dI

dt
= βTV + r2I

(
1− T + I

Tmax

)
− δI (11)

dV

dt
= pI − cV (12)

In the first equation, s is the natural production and r1 the maximum proliferation rate of
healthy hepatocytes due to a body’s effort to homeostasis . The proliferation rate is capped by a
carrying capacity of Tmax, which is the maximum concentration of hepatocytes (both healthy and
infected included) a liver can sustain. And d is its death rate. β is the number of infections caused
by one infected cell per unit time. βT is the number of healthy hepatocytes infected by one virion
per unit of time. βTV is the total number of healthy hepatocytes infected by the amount of virus,
V , per unit of time. The total number of infected hepatocytes, i.e. βTV , goes into the second
class of hepatocytes which is the infected hepatocytes, I. The rate of proliferation of the infected
hepatocytes are given by r2 with the same carrying capacity of Tmax. Here, δ is the per-capita rate
of clearance of infected hepatocytes including natural death and the effect of immune response, per
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unit time. δI is the total number of infected hepatocytes cleared per unit of time. The per capita
proliferation rate of HCV is represented by p, i.e. the number of virions produced by one infected
hepatocyte, per unit time. pI is the number of virions produced by the total population of infected
hepatocytes per unit time. Since c is the death rate of virion in absence of treatment, cV is the
total number of deaths of virions per unit time. A list of the parameters with a brief description is
given in the Table 1.

Parameter Interpretation
s natural rate of production of healthy hepatocytes
r1 maximum proliferation rate of healthy hepatocytes
Tmax maximum hepatocyte concentration a liver can support
d natural death rate of healthy hepatocytes
β rate of new infections per virion
r2 maximum proliferation rate of infected hepatocytes
δ clearance rate of infected hepatocytes
p proliferation rate of virus
c clearance rate of virus

Table 1: Parameter Interpretation Table

3.1 Analytic Results

Analysis of the system reveals at most three equilibriums, viz. a unique infection free equilibrium
and at most two infected equilibriums.

The Basic Reproduction Number is calculated as

R̄0 =
βp

cδ
T 0 +

r2
δ

(
1− T 0

Tmax

)
(13)

reproduction number can be interpreted as before. Derived in appendix.

We compute the unique infection free equilibrium (T 0, 0, 0) where,

T 0 =
Tmax
2r1

(
(r1 − d) +

√
(r1 − d)2 + 4s

r1
Tmax

)
.

The see two possible endemic states, (T 1, I1, V 1) and (T 2, I2, V 2) where,

T 1,2 =
δ − r2

(
1− I1,2

Tmax

)
β̃ − r2

Tmax

,

V 1,2 =
p

c
I1,2,
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I1 =
−B +

√
B2 − 4AC
2A

,

I2 =
−B −

√
B2 − 4AC
2A

,

A =
r2
Tmax

α1 (14)

B = (δ − r2)α1 +
r2
Tmax

α2 (15)

C = (δ − r2)α2 − 2s (16)
(17)

and

α1 =
r1
Tmax

r2
Tmax

+
(
β̃ − r2

Tmax

)(
r1
Tmax

+ β̃

)
α2 =

r1
Tmax

(δ − r2)− (r1 − d)
(
β̃ − r2

Tmax

)
β̃ =

βp

c
.

The conditions under which the system has zero, one or two endemic equilibriums are inves-
tigated. Firstly, we observe that, when A,C > 0 and B > 0, the values T i, Ii, V i are positive
i = 1, 2.

We define the function f(I) and F (I) from the nonlinear system

0 = s+ r1f(I)
(

1− f(I) + I

Tmax

)
− df(I)− β̃f(I)I, (18)

F (I) =
β̃

δ
f(I) +

r2
δ

(
1− f(I) + I

Tmax

)
. (19)

We see that,

F (0) =
β̃

δ
T 0 +

r2
δ

(
1− T 0

Tmax

)
= R0

, where, f(0) = T 0.
A non-trivial solution for I exists only when F (I) = 1 has a real solution. If we consider F (I) as

a curve on the F − I plane, we have the aforesaid solution only when F (I) intersects the horizontal
line F = 1. To explore the conditions under which that happens we calculate F ′(I). Since, F (I) is
an implicit function of f(I), we first calculate f ′(I) from the equation (18). We get,

f ′(I) = −
(

r1
Tmax

+ β̃

)(
r1

Tmax + s
f(I)2

)−1

, (20)
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which is < 0 for all I. Then

F ′(I) = (β̃ − r2)
f ′(I)
δTmax

− r2
δTmax

. (21)

Since, f ′(I) < 0 always, the sign of F ′(I) depends on (β̃ − r2). Hence we make the following
observation.

Observation 1. For R0 > 1, a unique endemic equilibrium exists and for R0 < 1 we have two
possibilities.

1. when (β̃ − r2) > 0, there is no non-negative Endemic Equilibrium.

2. when (β̃ − r2) < 0, at most 2 non-negative Endemic Equilibria may exist.

Proof given in Appendix.

3.2 Conditions for Hysteresis

In this section we explore the existence of multiple equilibria and their stability. We have already
seen before that there will exist atmost 2 endemic equilibrium if R0 < 1. Since, the existence
of a bistability region under backward bifurcation may lead us to the ’sub-clinical’ threshold, we
investigate conditions under which it shall be possible.

Here we take the maximum proliferation rate of the infected hepatocytes r2 as the bifurcation
parameter. Mainly because it is the introduction of this parameter which results in existence of
multiple equilibria. Using the expression of the function F (I) from equation (21) and equating it
to 1, we get,

r2(I) = δ

(
1− β̃

δ
f(I)

)(
1− f(I) + I

Tmax

)−1

(22)

From this we calculate the following expression for r2(0).

r02 := r2(0) = (δ − β̃T 0)
(

1− T 0

Tmax

)−1

(23)

Firstly, for the backward bifurcation to exist, it is necessary that r02 > 0 and ∂r2
∂I
|I=0 < 0. Since(

1− T 0
Tmax

)
> 0, the condition r02 > 0 reduces to

δ − β̃T 0 > 0. (24)

Using equation 22, we have,

11



∂r2

∂I
|I=0 =

(
r02
Tmax

− (β̃Tmax − r02)
f ′(0)
Tmax

)(
1− T 0

Tmax

)−1

(25)

Since, f ′(0) < 0, we need β̃Tmax − r02 < 0 for ∂r2
∂I
|I=0 < 0. Using the expression for r02 we get,

β̃Tmax − (δ − β̃T 0)
(

1− T 0

Tmax

)−1

< 0.

This condition reduces to

β̃Tmax − δ < 0. (26)

R∗ :=
βp

cδ
Tmax. (27)

We can interpret R∗ as the maximum reproduction number.
The sufficient condition for backward bifurcation would be that both the infectious equilibrium

(T 1, I1, V 1) and (T 2, I2, V 2) lie in the first quadrant.
Also note that, since R0 = F (0) < 1, when the two positive solutions for I, we will have,

F ′(I1) > 0 and F ′(I2) < 0.

Observation 2. Multiple endemic states when R0 < 1, exists in the system (10-12) iff the condi-
tions given by, equation (24), (27) hold together with positive solutions for I1 and I2.

3.3 Numerical Results of ODE Model

In this section we use parameters values taken from Dahari et. al. [?] and [?], except for δ and r2.
We use the parameters listed in the third column of Table 2 to calculate r02 = 3.70 day−1. We also
numerically calculate the value for rcrit2 , which marks the lower boundary of the bistability region.
Now with

r2 ε [1.01, 3.70]

we generate the backward bifurcation graph in (Fig 3).
We know that the value of R0 = 1 at r02 and we calculate the value of R0 at the lower limit of

r2 as, Rcrit = 0.8331.
For the parameter values in the column 1 in the Table 2, we have R0=0.9437. Thus here,

Rcrit < R0 < 1. Simulating the ODE system with these parameter values, we note that the change
in initial values of the state variables causes the viral load to either go below detectable levels Fig
4 or go to a non-zero equilibrium in Fig 5.

But if we have our R0 = 0.8322 < Rcrit, the system converges to the infection free equilibrium,
even when we start with a large viral load, as seen in Figure 6.

For the set of parameters in the column 2 of the Table 2 we get R0= 1.2386. Here even if we
start with very low viral load and infected hepatocyte concentration these state variables go to a
non-zero endemic equilibrium. The graph of all the state variables are in the Figure 7.
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Figure 3: The bifurcation graph of I with respect to parameter r2 within the interval [1.01, 3.7]. Software Mathe-
matica is used to generate this graph.

Parameter Values when R0 <1 Values when R0 >1 Units
s 4 × 10−6 4 × 10−6 nL−1 day−1

r1 0.5 0.5 day−1

Tmax 9.13 9.13 cells nL−1

d 0.013 0.013 day−1

β 0.5 × 10−1 0.5 × 10−1 nL day−1 virion−1

r2 2.8 2.8 day−1

δ 0.42 0.32 day−1

p 4.0 4.0 virion cell−1 day−1

c 5.5 5.5 day−1

Table 2: Parameter Estimation Table. The parameters have been estimated primarily from [?] and [?].

4 Discussion

Chronic Hepatitis-C virus (HCV) infection is a global health problem affecting 3.2 million individu-
als in the United States alone. The importance of HCV infection is its proclivity to cause insidious
liver damage including chronic hepatitis, cirrhosis and liver cancer [?]. The financial burden of
this viral infection is staggering with projected medical costs of $10.7 billion in adults in the years
2010-2019 in the US [?]. Achieving a sustained virological response (SVR) confers long-term viral
clearance and represents a cure. However, with current standard-of-care drug regimens, this critical
therapeutic milestone is achieved in only 50% of treated patients. It has been observed that several
patients who exhibit undetectable viral load in response to treatment at the during therapy, of-
ten do not achieve sustained virological response in the long run. Although, therapeutic virological
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Figure 4: Here Rc < R0 < 1 and the initial conditions (8, 0.08, 0.01) cause the infected hepatocyte concentration
and viral load to go below detectable levels. Software Matlab is used to generate this graph.

Figure 5: Here although Rc < R0 < 1, the initial conditions (8, 1, 1) cause the infected hepatocyte concentration
and viral load to settle at a non-zero infectious equilibrium. Software Matlab is used to generate this graph.

thresholds like RVR and ETR are necessary conditions for successful attainment of SVR, there is no
medical estimate that will confirm eventual SVR to a great extent. In addition, PEG-RBV combi-
nation therapy is expensive and is associated with treatment-limiting side-effects including anemia,
neutropenia, thrombocytopenia, flu-like symptoms, depression and a general ”on treatment” poor
quality of life [?]. Clearly, there is an urgent need to define a precise thresholds that will improve
the likelihood of establishing cure . This will help doctors to formulate an effective dosing strategy,
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Figure 6: Here R0 < Rc, the initial conditions (8, 1, 1) cause the infected hepatocyte concentration and viral load
to settle at a non-zero infectious equilibrium. Software Matlab is used to generate this graph.

Figure 7: Here R0 > 1 and the initial conditions (8, 0.01, 0.01) cause the infected hepatocyte concentration and
viral load to go to a non-zero infectious equilibrium. Software Matlab is used to generate this graph.

take precautions against possible drug related toxicities and in general help patients to take an
informed decision about whether they want to go through the financial and physical perils of the
upcoming 24 or 48 weeks of rigorous treatment.

Mathematical modeling has emerged as an important tool in medicine. Models of HCV infection
have been effectively used to predict SVR (8-9) and to assess factors associated with favorable
responses. Viral and pharmacokinetic studies using mathematical models have shed light on our
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understanding of HCV pathobiology and standardizing its treatment [?, ?]. In aggregate, these
studies have contributed enormously to improve patient care. In this paper the four distinct patient
profiles were generated giving an idea of the functional property of the sub-clinical threshold. It
might be possible to calculate the sub-clinical threshold using Rcrit, the lower boundary of the
bistability region. The age of infection model with comparable dynamics should allow study of wide
range of HCV patients under various assumptions hence leading to more precision in formulating
treatment strategies.

For future work, I would like to replicate a wide range of HCV infected patient profiles from real
patient data and investigate the presence of the sub-clinical threshold. I would further like to study
the effects of different treatment regimes on each typical profile and include drug-related toxicities
due to adequate antiviral dosing, to find optimal individualized and therapeutic solutions.
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6 Appendix

6.1 Analysis of Age of Infection Model

Observation 3. The infection free equilibrium is locally asymptotically stable for R0 < 1 and
unstable for R0 > 1.

To investigate the stability of the disease free equilibrium we introduce the following perturba-
tions.

T (t) = T ∗ + x̃(t)
i(τ, t) = ỹ(τ, t)
V (t) = z̃(t)

Now substituting this in the system 2 and applying the conditions from disease-free equilibrium

16



we get the following system.

dx̃

dt
= r1x̃

(
1− T ∗0

Tmax

)
− dx̃− βT ∗0 z̃ − r1T ∗0

x̃+ Y

Tmax
∂ỹ

∂t
+
∂ỹ

∂τ
= −δ(τ)ỹ(τ, t) (28)

dz̃

dt
=

∫ ∞
0

p(τ)ỹ(τ, t)dτ − cz̃

ỹ(0, t) = βT ∗0 z̃ +
(

1− T ∗0
Tmax

)∫ ∞
0

r2(τ)ỹ(τ, t)dτ

where,

Y (t) =
∫ ∞

0
ỹ(τ, t)dτ.

Now we look for exponential solutions of the form

x̃(t) = eλtx

ỹ(τ, t) = eλty(τ)
z̃(t) = eλtz,

where λ is a constant. Substituting this we get the following system.

λx = r1x

(
1− T ∗0

Tmax

)
− dx− βT ∗0 z − r1T ∗0

x+ Y

Tmax

λy +
dy

dτ
= −δ(τ)y(τ) (29)

λz =
∫ ∞

0
p(τ)y(τ)dτ − cz

y(0) = βT ∗0 z +
(

1− T ∗0
Tmax

)∫ ∞
0

r2(τ)y(τ)dτ

We solve the second differential equation to get,

y(τ) = y(0)e−λτe−
∫ τ
0 δ(η)dη

Using this we solve the third equation giving this expression for z,

z = y(0)
Pλ
c+ λ

,

where,

17



P (λ) =
∫ ∞

0
p(τ)e−λτe−

∫ τ
0 δ(η)dηdτ.

Now canceling out y(0) from the last equation in system (29) we get the following characteristic
equation,

1 =
βT ∗0
λ+ c

Pλ +
(

1− T ∗0
Tmax

)
R2λ

where,

R2λ =
∫ ∞

0
r2(τ)e−λτe−

∫ τ
0 δ(η)dηdτ.

Now we define,

G(λ) :=
βT ∗0
λ+ c

Pλ +
(

1− T ∗0
Tmax

)
R2λ. (30)

Differentiating with respect to λ we get,

G′(λ) = − βT ∗0
λ+ c

λPλ −
βT ∗0

(λ+ c)2
Pλ −

(
1− T ∗0

Tmax

)
λR2λ

< 0, ∀λ

If we consider λ as a real variable we get that G(λ) is a decreasing function of λ with

lim
λ→∞

G(λ) = 0

Thus, if G(0) > 1 then G(λ) will definitely intersect G(λ) = 1 at least once. That would imply
that the infection free equilibrium will become unstable.

Now if G(0) < 1, G(λ) = 1 does not have any real solutions. In that case, we explore the sign
of the real part of the solution of λ in the complex field. If possible, let λ = a+ ib, where a > 0.

|G(λ)| ≤ βT ∗0
|λ+ c|

|Pλ|+
(

1− T ∗0
Tmax

)
|R2λ|

≤ βT ∗0
Reλ+ c

PReλ +
(

1− T ∗0
Tmax

)
R2Reλ

≤ βT ∗0
c
P ∗ +

(
1− T ∗0

Tmax

)
R∗2

= G(0)
< 1

Here, PReλ and R2Reλ are the values of Pλ and R2λ at λ = a respectively. We equate λ to 0
to get the last inequality, giving us G(0). Thus, G(λ) = 1 does not have any solutions with the
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Reλ ≥ 0. Thus, here the Infection free equilibrium is locally asymptotically stable. Thus, since
G(0) < 1 is the criterion for local stability of the infection free equilibrium, we define, G(0) as the
basic reproduction number, R0.

R0 =
βT ∗0
c
P ∗ +

(
1− T ∗0

Tmax

)
R∗2.

6.2 Analysis of ODE Model

Proof of Observation (1).
First we calculate limI→F (I)∞ .

F (I) =
β̃

δ
f(I) +

r2
δ

(
1− f(I) + I

Tmax

)
− δ (31)

≤ β̃Tmax
δ
− r2I

δTmax
, (32)

since, f(I)
Tmax

< 1 at any moment of time, we have

lim
I→∞

F ′(I)→ −∞.

When, R0 > 1, i. e. F (0) > 1, F (I) can intersect F = 1 only odd number of times, since F (I)
has to eventually decrease. Moreover, since from previous computations we see that I has atmost
2 solutions, we conclude that, under this case, there exists a unique endemic equilibrium.

But when, R0 < 1, we consider 2 possible scenarios.
If we have β̃− r2 > 0, we have from Equation (21) that F ′(I) < 0, for all I, since f ′(I) < 0, for

all I also, from Equation (20). Thus, F (I) does not intersect F = 1, hence no endemic equilibrium
exists.

But if we have β̃ − r2 < 0, we may expect the existence of two endemic equilibria.
Stability of Infection Free Equilibrium
To linearize the ordinary differential equation system we construct the Jacobian and simplify

certain terms.

J =

 −
s
T
− r1T

Tmax
− λ − r1T

Tmax
−βT

βV − r2I
Tmax

r2

(
1− T+I

Tmax

)
− r2

Tmax
I − δ − λ βT

0 p −c− λ



At the Infection free equilibrium (T 0, I0, V 0) the Jacobian reduces to,

J(T 0,I0,V 0) =


− s
T 0
− r1T 0

Tmax
− λ − r1T 0

Tmax
−βT 0

0 r2

(
1− T 0

Tmax

)
− δ − λ βT 0

0 p −c− λ


19



Thus the first eigenvalue is

λ = − s
T
− r1T

Tmax

is always negative, owing to the positivitity of our parameters. In the remaining 2×2 matrix, the
trace,

trJ(T 0,I0,V 0) = r2

(
1− T 0

Tmax

)
− δ − c

is negative and the determinant,

detJ(T 0,I0,V 0) = c

(
r2

(
1− T 0

Tmax

)
− δ
)
− pβT 0

For the Infection free equilibrium to be stable we require the determinant to be positive. Hence,
we derive the following condition.

βp

cδ
T 0 +

r2
δ

(
1− T 0

Tmax

)
< 1,

giving us Basic reproduction number.
Now going back to the Jacobian, J we investigate the stability of the endemic equilibriums.

First we define the following,

φ1 =
s

T
− r1T

Tmax

φ2 =
βp

cδ
T +

r2
Tmax

I

φ3 = c

We note that φ1, φ2, φ3 are all positive.
Then the determinant of the Jacobian can be reduced to be,

λ3 +A1λ2 +A2λ+A3 = 0

where,

A1 = (φ1 + φ2 + φ3)

A2 =
(
φ1φ2 + φ2φ3 + φ3φ1 − pβT +

r1T

Tmax

(
βp

c
− r2
Tmax

)
I

)
A3 = φ1φ2φ3 − pβT +

r1T

Tmax

(
βp

c
− r2
Tmax

)
Ic+ βp

(
βp

c
− r2
Tmax

)
IT
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It can be easily verified that A1, A2 is always positive and

A3 > 0whenF ′(I1) < 0

A3 < 0whenF ′(I1) > 0

Now applying the Routh-Hurwitz Criterion we show that, under the conditions for backward
bifurcation we have that I1 is unstable and I2 is locally asymptotically stable in the bistability
region.
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