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Abstract

Place cells are excitable pyramidal neurons in the hippocampus. These neurons fire
preferentially to a rat’s location in the environment, which is referred to as the place
field. Place cells also fire preferentially to a particular phase of the theta rhythm, which
is an electroencephalograph recording of the hippocampus observed in rats during
exploratory movement. As the rat moves through a place field, the particular phase
of the theta rhythm at which the place cell fires has been observed to systematically
precess, i.e. firing occurs at progressively earlier phases of the theta rhythm. The
underlying neural mechanism of phase precession might be the basis of a temporal
code utilized for further information processing in the hippocampus. We construct
a network model of connected neurons in order to generate phase precession. Each
neuron is modeled by considering a conductance based cell model.

1 Introduction

Our objective of this paper is to model the phase precession phenomenon. We explore
a minimal biophysical model adaptation of the Hodgkin and Huxley model to capture
the firing patterns of place cells and local interneurons [1]. Once we model the spiking
behavior of the place cells and interneurons, we will connect them in a network. Our aim
is to generate phase precession using this network.

O’Keefe and Nadel observed that place cells in the hippocampus of rats fire prefer-
entially to their location in the environment [10, 9, 12]. This preferred location of firing
is referred to as a place field. Place fields have been observed while a rat has freedom
of movement in a confined space regardless of size and shape [6]. This phenomenon can
be witnessed by looking at recordings of these neurons and observing increased firing fre-
quency at specific locations within the environment. This evidence supports the idea of
place cells being neural substrates of a cognitive map, i.e. a neuronal representation of
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the environment [10, 9].
CA3 is an area of the hippocampus containing interneurons and pyramidal neurons

or place cells, both terms used interchangeably. Interneurons inhibit place cell firing via
a neurotransmitter GABA. Place cells excite interneurons via a neurontransmitter glu-
tamate. These neurons vary in morphology allowing division of the CA3 area into three
regions based on these morphologies [7]. In our paper we focus on place cells and interneu-
rons in the CA3b region [7].

Figure 1: The hippocampus with various regions labeled including the CA3 region which
receives input from the dentate gyrus (DG) and the enthorial cortex (EC).

Theta oscillations are electroencephalograph recordings of the hippocampus typically
between 4-12 Hertz [10, 11]. These oscillations are the result of multiple complex interac-
tions of regions in the hippocampus, entorhinal cortex and medial septum [5]. Compar-
itively speaking, theta osciallations in rats are more correlated with motor movement or
exploratory activity and during the REM sleep cycle [13]. The precise utlity or function of
the theta rhythm is unknown but one school of thought believes it to be associated with
spatial information processing, i.e. a mechanism for the rat to keep track of its location in
the environment [10, 9]. Place cells have been observed to fire preferentially to particular
phases of the the theta rhythm. As a rat runs through the place field, the phase at which
place cells fire occurs at progressively earlier phases, i.e. phase precession [4, 10, 3].
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Our method is to first construct a simplified version of a conductance based neuron
model that captures the firing patterns of place cells and interneurons. After analyzing
the behavior of uncoupled neurons, we will couple the cells into a network and explore
changes in synaptic and network connectivity in order to study the generation of phase
precession.

2 Model Description

In the following section we describe how neuronal place cell and interneuron cell dynamics
may be captured by considering the electrical properties of the cell membrane.

Neurons including place cells generate and propagate electrical signals by a sudden
increase in the membrane voltage, i.e. an action potential [8]. Charged particles called
Ions move in and out of the neuron resulting in a change of membrane voltage poten-
tial. The charged particles flow through the cell membrane via voltage-gated ion channels,
which are embedded proteing in the cell membrane. The charged particles we consider are
sodium ions Na+ and potassium ions K+ both with positive charge.

There are two mechanisms by which these ions move through their memebrane chan-
nels. They diffuse through the membrane to move down their concentration gradient or
by an electric potential gradient [8]. Ions diffuse down their concentration gradient means
they move from an area of high concentration to an area of low concentration, however,
this movement results in an electic potential that works against diffusion. The Nernst
Equilibrium of the ion is reached when these these two opposite forces equal each other
and there is no cross-membrane potential [8]. We refer to ENa and EK as the Nernst
Equilibrium potentials of sodium and potassium, respectively.

Let the total sodium current be:{
INa = gNa(V − ENa), (1)

where gNa is sodium conductance and (V-ENa) is the difference between the cell membrane
potential and the Nernst Equilibrium of sodium. Observe that total current of sodium is
zero if the cell membrane potential equals the Na+ Nernst Equilibrium.

Similarly, let total potassium current be:{
IK = gK(V − EK), (2)

As mentioned previously, we are considering voltage-gated ionic channels. This means
ionic channels open or close due to changes in the membrane potential,i.e. they may

3



activate or inactivate. If we let m be the proportion of sodium channels in the active
state, then INa becomes: {

INa = gNam(V − ENa), (3)

Similarly, if n is the proportion of potassium channels in the active state, then In becomes:{
IK = gKn(V − EK), (4)

By Kirchhoff’s law, we consider the total current, I, flowing through a patch of membrane
to be: {

I = CV̇ + INa + IK + IL, (5)

where CV̇ is the capacitve current and INa, IK are sodium and potassium currents
respectively [8]. IL is current leaking from the cell and I is considered to be current from
an alternative source, e.g. injected current.

The neuronal dynamics of each pyramidal place cell can be modeled by considering
the rate of change of membrane potential, activation kinetics of a Na+, and the activation
kintetics of a K+. Let the rate change of the membrane potential be described by:

CV̇ = I − gL(V − EL)− gNam∞(V )(V − ENa)− gKn(V − EK),

ṅ =
n∞ − n
τ(V )

,
(6)

with, 
m∞(V ) =

1

1 + exp
Vhalf−V

km

,

n∞(V ) =
1

1 + exp
Vhalf−V

kn

,

(7)

m∞(V) and n∞(V) were derived using voltage-clamp experimentation [8]. They are
functions of voltage which give the asymptotic vaule of the proportion of open gates for a
particular voltage membrane potential, see Figure(2). Since the range of these functions
is between 0 and 1, the probability of the sodium gate being open is m∞(V). Similarly the
potassium gate has probability n of being in the open state. ṅ describes the rate at which
the potassium gates open. The sodium gate activates instantaneously, i.e. m instantly
reaches its asymptotic value for a given membrane potential, and therefore ṁ=0. τ(V) is
the time constant which controls how fast the potassium gate opens, i.e. a higher τ(V)
value results in slower potassium gate activation.
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Figure 2: Steady State curves for sodium, m∞(V) (solid line), and potassium, n∞(V)
(dotted line), activation gates. Both gates are sensitive and thus open as the membrane
potential increases.

3 Analyzing a Place cell

In order to capture firing patterns outside of the network, we analyze an uncoupled place
cell in this section. We can investigate the dynamics of our place cell via phase plane
analysis. This gives us insight to the changes in the qualitative behavior based on changes
in parameter values. Refer to the Table below for parameter values used in the following
numerical simulations [8].

Parameters Value Biological meaning
Cm 1 uF

cm2 membrane capacitance
gNa 20 mS

cm2 sodium conductance
gk 10 mS

cm2 potassium conductance
gL 8 mS

cm2 leak conductance
ENa 60 mV Reverse potential for sodium current
Ek -90 mV Reverse potential for potassium current
EL -78 mV Reverse potential for leak current
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Figure 3: Left: Increasing the external current, I, results in a saddle-node bifurcation. This
coalescence of two equilibrium points occurs on a homoclinic orbit, shown as a dash-dotted curve.
Right: Saddle-node bifurcation on an invariant circle. The limit cycle results from injected current
exceeding I > 5.

3.1 Membrane potential dynamics and class 1 excitability

Class 1 excitability is a classification of neurons based on their response to injected current.
These neurons are sensitive to the externally applied current, they exhibit low spiking fre-
quency, and increase in their spiking frequency in response to increased injected current,
see Figure (4) . If vhalf = -25 in the function n∞(V), i.e. half of the potassium gates
open at -25mV, then a place cell will exhibit class 1 excitability. If no current is injected
into the system, i.e. I=0, then there are three equilibrium points represented by the inter-
section of the V and n nullclines. As shown in Figure(3), increasing the injected current
two equilibria coalece and the system bifurcates into a stable limit cycle via saddle-node
on an invariant circle bifurcation. This results in sustained oscillations for the membrane
potential.
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Figure 4: Injected ramp current on Class 1 excitable neuron. Notice the spiking delay and
increased spiking frequency due to increased current.

3.2 Membrane dynamics and class 2 excitability

Class 2 excitability is a classification of neurons which remain relatively insensitive to
increased external current. If we assume vhalf = -45mV, then the system will display class 2
excitability. As shown in Figure(5), the V and n nullclines intersect at one location marking
an equilibrium point. If we apply no current to the place cell, the membrane potential
will approach the resting state around -78 mV, i.e the only stable point is the expected
resting potential of the place cell. Applying current, I > 5, the membrane potential
undergoes sustained oscillations indicative of a stable limit cycle, see Figure (6). As
current is applied, the v-nullcline is moving up on the phase space such that the equilibrium
point loses stability via Hopf bifurcation. Also, the membrane potential exhibits damped
subthreshold oscillations, see Figure(7). This is chatacteristic of a resonating neuron.
In dynamical systems terms, this means the resting potential lies near Hopf bifurcation.
These neurons prefer external input an a narrow frequency band [8]. Unlike integrating
neurons, resonators don’t have a clearly defined threshold from resting to spiking. Merely
applying high frequency current may not result in an action potential.

If the threshold for potassium gate activation is increased to vhalf to -25mV in the
function n∞(V) and adjusting τ(V) = 0.16, there exists three equilibrium points with no
applied external current as described previously, see Figure (8). Increasing the external
current results in the appearance of a limit cycle from a saddle homoclinic orbit bifurcation,
see Figure (9). The homoclinic orbit connects to a saddle instead of a saddle-node as
discussed previously. Applying ramp current results in a delay to spking, characteritic
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of an integrator, see Figure(10). These neurons prefer high frequency external input. A
neuron may be an integrator or resonator, i.e. it may have a resting state near either a
saddle homolcinic or Hopf bifurcation respectively, and exhibit class 2 excitability.

Figure 5: Increasing the injected current, I > 4, results in a saddle homoclinic orbit bifurcation.

Figure 7: Injected ramp current, i.e. increasing current over time, elicits a supercritical hopf
bifurcation from resting potential to periodic spiking.
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Figure 6: Left: Appling ramp current to the membrane potential results in a delay to spiking.
Further increase in the injected current gives increased spiking frequency. Right: Increasing the
injected current, I > 4, results in a saddle homoclinic orbit bifurcation.

3.2.1 Saddle homoclinic orbit bifurcation

Figure 8: Adjusting the model parameters such that the potassium gates open at a faster rate, i.e.
τ = 0.16, and injecting no current results in three equilibrium points represented by the intersecting
null-clines. The solid solution curve settles to the stable equilibrium point representing the resting
membrane potential. 9



Figure 9: Left: The solid curve represents a homoclinc orbit at the saddle point. Right: In-
creasing the externally applied current, I > 4, results in a saddle homoclinic orbit bifurcation.

Figure 10: Appling ramp current to the membrane potential results in a delay to spiking. Further
increase in the injected current gives increased spiking frequency.
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Hodgkin neuron excitability classifications are determined by the spiking pattern of the
membrane potential when applying external ramp current. In terms of dynamical sys-
tems, class 1 excitability is observed in neurons near saddle-node bifurcations on invariant
circles. Class 2 excitability is observed in neurons near both Hopf and saddle homoclinic
orbit bifurcations. Therefore, a class 2 neuron may either be a resonator or an integrator
characterized by the resting state lying near either a Hopf or saddle homoclinic orbit bi-
furcation respectively. In the following section, a network of resonating neurons exhibiting
class 2 excitability is contructed.

4 Coupling a place cell and an interneuron

We will use a network of neurons proposed by Bose and Reece, see Figure (4.1) [2]. They
propose a one place cell P, two interneurons I1 and I2, a theta modulator T and a den-
tate gyrus cell D. The place cell receives slow inhibition from interneuron 2, I2, which in
turn receives fast inhibition from the theta modulator, T. Interneuron 2 also recevies slow
inhibtion from interneuron 1, I1. I1 receives fast excitation from the place cell and fast
inhibition from the theta modulator. The dentate gyrus cell, D, excites the place cell once
the rat has entered a place field.

4.1 Synaptic connections

GABA is a neurotransmitter that is released from the presynaptic cell and binds to the
postsynaptic cell inhibiting an action potential. We model inhibitiory connections as out-
ward flowing currents. Glutamate is a neurotransmitter which elicits an action potential.
It is defined as an inward flowing current. Both excitatory and inhibitory synaptic con-
nections are defined by: {

Ixy = gxywxy(Vx − Vxy), (8)

where x is the presynaptic cell and y is the postsynaptic cell. We vary Vxy to achieve fast
and slow inhibtion or excitation.
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Figure 11: Network diagram showing connectivity among neurons in the hippocampus.

5 Results

The network exhibits two behaviors, the rat outside of the place field and the rat inside
the place field. When the rat is outside the place field we expect synchronization of the
place cell and the theta modulator. The theta modulator inhibits I2 which in turn in-
hibits the place cell, therefore the place cell is synchronized with theta. Once the rat
enters the place field, the place cell gets a one-time dose of excitation from D, the den-
tate gyrus. This causes the place cell to elicit an action potential from I1, which inhibits
I2 thus the place cell is freed from the theta modulator. As a result the place cell will
fire at progressively earlier phases of the theta modulator. Eventually the theta modu-
lator will gain control of I1 and I2 and return the place cell to theta phase synchronization.

As shown in Figure (5), give a breif 1 millisecond excitation to P from D. The place
cell then systematically precesses for the next 5 cycles of theta, T. After 1 second, T is
able to recaputre and inhibit I1 and I2 which in turn inhibits P to bring both P and
T back to synchroniztion. However the model doesn’t exactly exhibit the behavior we
expect. First the place cell doesn’t always stay synchronized with theta before we give the
brief dose of excitation. Second the place cell goes in and out of phase with theta after
phase precession. In order to solve these problems, we need to explore synaptic strengths
between all the neurons. It is important to have both interneurons synchronized with
theta since they keep the place cell phase-locked with theta.
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Figure 12: Theta modulator is represented as the dotted line and the place cell represented as
the solid line. Beginning at 3.5 seconds, place cell phase precesses until synchronization around
4.3 seconds.

6 Discussion

In order to generate phase precession from a network of neurons in the hippocampus,
we began by constructing a place cell. This was done by using a simplified version of
a Hodgkin Huxley type model of an excitable neuron. We derived the model based on
Ohm’s law and expressing the change of membrane potential as summing the inward flow-
ing current, sodium, and the outward flowing currents including potassium and the leaky
current.

We assumed the voltage-gated sodium current opens instantaneously and the potas-
sium gate opens at a slower rate governed by ṅ. The potassium and sodium gate channels
open as the membrane potential increses, therefore the proportion of open gates is a func-
tion of the membrane potential. The asymptotic vaules of the proportion of open gates are
governed by a sigmoid fucntion ranging from 0 to 1. As stated previously we assume the
sodium gate instantaneously reaches this aymptotic vaule of proportion of gates open but
the potassium gate exponentially grows or decays toward its aymptotic vaule goverened
by the time constant τ(V). Varying the rate at which the potassium gate opens gives us
qualitvative differnces in our membrane potential solution curve, i.e. the spiking behavior
of our neuron.

Assuming half the potassium gates are open at a relatively high membrane potenital
we get class 1 spiking behavior. This behavior includes delay in spiking. Adding current
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to this class 1 neuron results in a bifurcation from the resting state membrane potential
to periodic solutions or spiking as a result of a birth of a limit cycle from saddle-node
bifurcation on an invariant circle. This neuron has a clearly defined threshold to spiking
and prefers high frequency external current. These neurons are called integrators, since
integrating enough external current results in aciton potentials.

Assuming half the potassium gates open at a lower membrane potential, we get class
2 spiking behavior. The spiking frequecny is relatively insensitive to applied external
current compared to class 1 spiking. Injecting current into the class 2 neuron results
in periodic solutions of the membrane potentital via Hopf or saddle homoclinic orbit bi-
furcation. Decreaing the time constant τ(V), which is effectively increasing the rate of
openning potassium gates, still gives us class 2 spiking behavior. However, the bifurcation
from the resting membrane potential to periodic spiking is a result of saddle homoclinc
orbit bifurcation. Therefore, a class 2 excitable neuron can either be a resonator or an
integrator.

A network was constructed coupling resonating neurons exhibiting class 2 spiking be-
havior. The place cell excites one interneuron via glutamic excitation and is inhibited by
another interneuron via GABA inhibition. Both interneurons receive fast inhibtion from
the theta modulator. Interneuron 2 also receives inhibition from interneuron 1.

The network has two behaviors. The first behavior has the place cell and the interneu-
ron synchronized with the theta rhythm. This occurs because the theta rhythm causes I2
to spike after releasing it from inhibition which in turn causes the place cell to fire after
it is released from inhibition from I2. This synchronized behavior is behavior of the rat
outside the place field where the place cell does not phase precess.

The second network behavior is desychronization. Once the rat enters a place field,
the place cell is given a 1 millisecond pulse of excitation from the dentate gyrus, D. What
this means, in terms of the network behavior, is that now the place cell fires before it
receives inhibition from I2. P can now fire at its own intrinsic frequency which is now
greater than T, thus phase precession. I1 fires as a result of the excitation from the place
cell which inhibits I2 from inhibiting the place cell. As long as the place cell excites I1
we get desynchronization with respect to the theta rhythm. At a later time the theta
rhythm is able to regain control of the interneurons which in turn gains control of the
place cell resulting in synchronization. This marks the end of the place field. This is the
basic scheme of how our model should work but as discussed previously we need to explore
different synaptic strengths to capture this behavior.

Once we work out the bugs in our simulation we would like to address the dependency
of phase precession on the network architecture. If it doesn’t depend on network architec-
ture, then given an all-to-all connectivity does phase precession depend on the synaptic
weights. In future work we will explore different networks including all-to-all in order to
address this issue.
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