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Marcel Muñoz Figueroa3

Xavier Mart́ınez Rivera2

Thomas Seaquist1

Britnee Crawford 1

Anuj Mubayi 1

Kehinde Salau4

Christopher Kribs-Zaleta1

1.Department of Mathematics, University of Texas, Arlington
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Abstract

Chagas disease is a tropical parasitic disease that affects Latin
America. The parasite causing Chagas, Trypanosoma cruzi, is trans-
mitted by an insect vector of the subfamily Triatominae. Chagas is
uncommon in the United States, but is becoming more common in
the southern part of the country. This may be due to a more virulent
strain type of the parasite moving northward from Mexico and invad-
ing the less virulent, native strain type. A region in southern Texas
where there is a mixing of two Triatoma species is modeled with two
different modeling frameworks. A mathematical deterministic model
is created to describe the interactions between one host and one vec-
tor and determine the outcome of an invasion of a non-native strain
type into the region. A stochastic, agent based model is created to
determine the effect space and randomness may have on the interac-
tions. Within the models, three modes of parasite transmission are
considered to account for the different characteristics of each strain
type.

We vary the horizontal transmission ability of the invasive strain
and run simulations for an equivalent time period of 30000 days (82
years). We find that the horizontal transmission potential of the inva-
sive strain must be about 1.5 times as great as the other in order for
over 50% of the runs to end with the invasive strain dominating. How-
ever, in the ODE model, the horizontal transmission of the invasive
need only be 1.056 times that of the other strain. We also determine
from the ODE model that considering three modes of transmission and
no migration of vectors into the region being modeled, it is impossible
for the two strains to coexist.

1 Introduction

Chagas disease is a parasitic disease affecting an enormous number of people
throughout Latin America. The WHO estimated that before successful con-
trol programs were established in the Americas in the 1980’s, there were 16 to
18 million infections of the parasite causing Chagas, Trypanosoma cruzi. As
much as 20% of Bolivia was infected in the eighties and 4.5% of rural Brazil
was infected in 1970’s. An estimated 23,000 deaths occur annually from Cha-
gas. Only acute respiratory infections, diarrhoeal disease, and AIDS produce
a greater socioeconomic burden than Chagas disease in Latin America [12].
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Chagas is a vector borne disease transmitted by blood feeding assassin
bugs of the subfamily Triatominae. The typical prey of the insects include
opossums, raccoons, woodrats, dogs, armadillos, birds, bats and many others.
The parasite is typically transmitted by an infected Triatoma biting its prey
and then defecating near the wound. If the feces enter the wound, the host
may become infected by the parasite. The Triatoma are infected by ingesting
blood containing the parasite. The parasite resides in the insect’s digestive
tract where it remains for the remainder of the insect’s life. This is why the
insect must defecate near the wound in order to infect the host; just biting
is not enough. Two other ways a host may become infected are by eating an
infected insect or by inheriting the infection congenitally. Amongst humans,
blood transfusions play a significant role in parasite transmission in urban
areas, responsible for approximately 10% of all cases [12].

T. cruzi is not limited to Latin America. It is seen in alarmingly high
rates among sylvatic hosts in the southern United States. For example, 104
out of 221 (47%) raccoons caught in S. Carolina and Georgia were infected
with Trypanosoma cruzi [16]. There are six distinct classes of strains of the
parasite circulating throughout Latin America and the United States; T.
cruzi type I and type IIa through e. Only type I and IIa are prevalent in
the United States. It is believed that the strains in the United States are
less virulent than those existing in Latin America [10] and probably even
non-chagasic. By virulence here, we are referring to the severity of chagasic
symptoms which it induces in humans. In the southern part of Texas, there
exists predominantly two species of Triatoma vector: Triatoma sanguisuga
and Triatoma gerstaeckeri. Triatoma gerstaeckeri is generally associated
with the northern part of Mexico while Triatoma sanguisuga is associated
with the southern United States. It is possible that Triatoma gerstaeckeri is
bringing with it a Chagasic strain of T. cruzi from Mexico. As evidence of
this, three dogs died of Chagas disease at a residence in San Benito, Texas,
2003. Upon investigation, a severe infestation of Triatoma gerstaeckeri was
found at the residence and many of the insects were determined to contain
the parasite T. cruzi [2].

There has been limited research on modeling T. cruzi in sylvatic hosts.
Kribs-Zaleta [8] investigated the significance of T. cruzi transmission through
vector consumption. This is a single strain study which explores contact
saturation in vector consumption. In this model a predator-prey structure
is superimposed on a vector-host infection cycle in a system of ordinary
differential equations. Cherif et. al. [4] created a model considering two
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strains of T. cruzi in a population of one host and one vector. A two patch
model is used to describe the migration of the infection in two regions. It was
found that without migration between the two patches, the strains could not
coexist, however when migration was included, coexistence was possible. A
model considering non-sylvatic hosts was created by Devillers et. al. [6]. This
model is an agent-based model which considers transmission of two strains of
the parasite among humans. It was found that a reservoir host was needed as
an additional agent in the model in order to obtain realistic simulation results
of the prevalence of the two strains. This is in agreement with research in
that it is generally sylvatic hosts which maintain the infection. In our model,
we use an agent-based model for only a sylvatic population.

This paper is concerned with determining the capability of a virulent
strain of T. cruzi to dominate in a region endemic with a less virulent strain
of the infection. The region we will be modeling is in southern Texas where
there is coexistence of T. sanguisuga and T. gerstaeckeri. The assumption
is that T. gerstaeckeri is bringing a virulent strain of T. cruzi into a region
dominated by a less virulent, non-chagasic strain [2]. A system of non-linear
differential equations is used to model the transmission of T. cruzi between
hosts and vectors. Three modes of disease transmission are considered along
with natural death and births. A stochastic agent based model is also created
to consider the effect randomness and space may have on the system. The
agent based model focuses on matching precisely the rates in the differential
equation model so that the two can be compared. It does not, however,
consider particular host or vector behavior in the spatial domain.

2 Model

2.1 Model Considerations and Assumptions

As discussed previously, the models will consider a specific region in south
Texas where T. sanguisuga and T. gerstaeckeri coexist. It will be assumed
that a virulent, chagasic strain, here after referred to as strain I, is invad-
ing this region endemic with a less virulent non-chagasic strain, henceforth
referred to as strain II. Two important hosts in this area are raccoons and
woodrats. We consider only woodrats in the models because of their strong
association with Triatoma gerstaeckeri [10], the vector that may be bring-
ing strain I from Mexico. We model three different modes of transmission
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in the models based on the evolutionary advantages of each strain. Verti-
cal transmission is the process of giving birth to infected young, horizontal
transmission is passage of the parasite through vector feeding, and oral trans-
mission occurs when a host becomes infected by ingesting a vector. Hall et
al. states,“Because of the increased potential for coevolution with placen-
tal mammals, the T. cruzi strains cycling in the southeastern United States
may have adapted mechanisms to facilitate vertical transmission. Our own
preliminary experiments in mice have confirmed that a Type IIa strain of
T. cruzi isolated from one of the ring-tailed lemurs is twice as likely to be
vertically transferred as a Type I isolate [7].” We consider it to be the case
that strain II is better adapted to vertical transmission and treat strain II in
the models with a much higher vertical transmission rate. Because of a less
aggressive nature of establishing itself within a host, we consider that strain
II is less adept in transmission through insect blood-feeding. We also include
transmission to host through vector consumption. In this form of infection,
very little data has been found on transmission probability and no studies
to our knowledge have been done on strain difference in oral transmission
[10]. We allow for the transmission rates to be different in the development
and analysis of the model, however, we treat these two rates as equal in the
simulation and numerical analysis. Because Chagas is an endemic disease
and is known to have been around for very long periods of time, we consider
both birth and death in the models. The death considered is only due to
natural mortality and not to disease induced death.

2.2 ODE Model

Our deterministic model is a system of non-linear ordinary differential equa-
tions that describes the interactions and vital dynamics of a population of
hosts and vectors. The susceptible vectors and hosts will be denoted by Sv
and Sh respectively, the infected vectors and hosts will be denoted by Ivj
and Ihj respectively where j represents the strain with which the individual
is infected.

A flow chart for the compartmental model is given in Figure 1. In this
model, individuals can enter the class of susceptible vectors by birth and
they can leave by death or getting infected. Death is caused by predation
of hosts or natural. By infection they will enter class of infected with strain
I or II. Infected vectors leave their respective classes only by death due to
predation by hosts or by natural death. Hosts enter the class of susceptible
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hosts only by birth. They leave when they get infected with strain I or II due
to oral or horizontal transmissions. They also leave the class due to natural
death. Hosts can also enter an infected class with strain I or II by vertical
transmission upon birth by an infected mother. They leave the class only by
natural death.

The non-linear ordinary differential equations system is:

dSv
dt

=rvNv

(
1− Nv

Kv

)
− βv1

Ih1
Nh

Sv − βv2
Ih2
Nh

Sv − µvSv −
(
HNh

Nv

)
Sv (1)

dSh
dt

=rh (Sh + (1− γ1)Ih1 + (1− γ2)Ih2)

(
1− Nh

Kh

)
− βh1

Iv1
Nh

Sh

− ρ1

(
HNh

Nv

)
Iv1
Nh

Sh − βh2
Iv2
Nh

Sh − ρ2

(
HNh

Nv

)
Iv2
Nh

Sh − µhSh
(2)

dIv1
dt

=βv1
Ih1
Nh

Sv − µvIv1 −
(
HNh

Nv

)
Iv1 (3)

dIv2
dt

=βv2
Ih2
Nh

Sv − µvIv2 −
(
HNh

Nv

)
Iv2 (4)

dIh1
dt

=βh1
Iv1
Nh

Sh + ρ1

(
HNh

Nv

)
Iv1
Nh

Sh + γ1rhIh1

(
1− Nh

Kh

)
− µhIh1 (5)

dIh2
dt

=βh2
Iv2
Nh

Sh + ρ2

(
HNh

Nv

)
Iv2
Nh

Sh + γ2rhIh2

(
1− Nh

Kh

)
− µhIh2 (6)

where

Nv = Sv + Iv1 + Iv2

Nh = Sh + Ih1 + Ih2

In the model above, we assume logistic growth rate for both vectors and
hosts. We also assume host saturation, that is, there are many hosts com-
pared to the number of vectors meaning that the ratio of vector to host is
low. As a consequence, vectors have plenty to eat. We will show why this
implies that βhj, for j = 1, 2, has units hosts

(vector)(time)
. The assumption of host

saturation allows us to consider βhj, for j = 1, 2, constant because the num-
ber of bites per vector per time can be considered as constant since there
is no competition for food between vectors. Let λv be the number of bites
per vector per day. λvNv is the total number of bites per day for the vector
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population. As a result of these bites, we will have new infected vectors and
new infected hosts. With this i will derive the terms βhj

Ivj

Nh
Sh and βvj

Ihj

Nh
Sv,

for j = 1, 2, in the equations above. Since we are concerned with the number
of new infected hosts, we have to consider only the the bites on susceptible
hosts. We have λvNv

Sh

Nh
, but these bites have to come from infected vectors

with strain j, so we have λvNv
Sh

Nh

Ivj

Nv
. We also know that not always when

an infected vector bites a susceptible host, the host will be infected. This
implies that the number of new vectors infected with strain j per day is
λvNv

Sh

Nh

Ivj

Nv
πh where πh is the number of infected hosts per bite given that an

infected vector bit a susceptible host. We see that the expression simplifies

to πhλv
Ivj

Nh
Sh, and πhλv has units of

(
infected hosts

bite

) (
bites

(vector)(day)

)
and clearly

these terms have units of hosts
(vector)(day)

, so we conclude that βhj = πhλv; this

completes the derivation of the term βhj
Ivj

Nh
Sh.

In a similar way, the number of infected vectors per day will be λvNv
Sv

Nv

Ihj

Nh
πv

where λvNv is the total number of bites per day for the vector population.
We multiply by Sv

Nv

Ihj

Nh
to consider only the cases in which a susceptible vector

bites an infected host, then we multiply by πv, the number of infected vectors
per bite, given that a susceptible vector bit an infected host. λvNv

Sv

Nv

Ihj

Nh
πv =

πvλv
Ihj

Nv
Sv and now πvλv has units of

(
infected vectors

bite

) (
bites

(vector)(time)

)
which is

equivalent to the units of 1
time

. We conclude that βvj = πvλv; this completes

the derivation of the term βvj
Ihj

Nh
Sv.

The term HNh

Nv
Sv in (1) represents the number of susceptible vectors that

die per unit of time by host predation. Let H be the number of vectors eaten
per host per day, soHNh represents the total number of vectors that get eaten
per unit of time by the host population, however, we are only interested in
susceptible vectors, so we multiply by Sv

Nv
to obtain HNh

Sv

Nv
= HNh

Nv
Sv.

We can also derive the term ρ1

(
HNh

Nv

)
Iv1

Nh
Sh in (5). This term represents

the number of susceptible hosts per unit of time that become infected with
strain I. As we said, HNh is the number of vectors eaten by the population of
hosts per unit of time. We are interested in the case where a susceptible host
becomes infected with strain I, so we must consider only the case in which
a susceptible host eats an infected vector with strain I. We must multiply

HNh by
(
Sh

Nh

)(
Iv1

Nv

)
and consider that not always when a susceptible host

eats an infected vector will the host become infected. To account for this, we
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multiply HNh by ρ1, the number of hosts per vector that become infected
given that a susceptible host ate an infected vector with strain I, to obtain

HNh

(
Sh

Nh

)(
Iv1

Nv

)
ρ1 = ρ1

(
HNh

Nv

)
Iv1

Nh
Sh.

The terms in (5) and (6) with the form γjrhIhj

(
1− Nh

Kh

)
represent the

number of hosts per unit of time that obtain strain j, for j = 1, 2, by vertical
transmission. γj represents the probability that an infected host with strain
j produces an infected child upon giving birth.

The parameters µv and µh represent the natural death rates of vectors
and hosts respectively. In our model we will assume that the hosts do not
die from any of the two strains. There is no evidence that either host dies
from the disease in nature.

2.3 Agent Based Model

The agent based model is created to be directly comparable to the ODE
model, meaning the rates at which events take place should be derived from
the ODE model. The ABM model serves as a discrete, stochastic version of
the ODE’s which also considers movement and space. However, the model
disregards host and vector behavior; all agents move randomly and in the
same way in the program. Space is considered only to observe a crowding
out effect; if an infected vector is surrounded by only infected hosts, the
vector has no potential to infect the hosts. Movement among the agents
tends to disperse these events, but also tends to create more of them in time.
Three events may take place in the model: infection, birth, or death. The
probability of an event happening in a given time step are taken from the
rates in the ODE model.

Generally in ABM modeling, interactions between agents only occur when
agents are within a certain distance of each other; however, we want to avoid
the difficulty in model comparisons that can occur when modeling this way.
Instead we poll a set of the agents who may have an interaction, and then
find the closest agent for the that first agent to interact with. In this way,
the problem of interaction based on a interacting distance is eliminated. We
have two types of agents in this model: vectors and hosts. In the model we
assume an area of one hectare and calculate the population size accordingly;
see Table 2. We take the time step in which events can occur as one day.
Each vector and host have a property indicating the infection state of the
agent. The vectors can only become infected by biting infected hosts. The
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hosts become infected by being bitten by an infected vector, giving birth to
infected young, and by eating infected vectors. Each of these events may
happen at every time step, here days, but only if a certain probability is
satisfied. The probabilities are taken from the rates in the ODE model.
To show how these rates are changed to probabilities in discrete time steps
consider the following very simple ODE system for recovering infectives:

İ = −γI
Ṙ = γI

The solution for I(t) is given by

I(t) = I(0)e−γt

So, after a time step T we have

I(0)e−γT

individuals remaining in the infective class and

I(0)(1− e−γT )

individuals in the recovered class. Thus the proportion of recovered individ-
uals in time step T is given by 1 − e−γT . This can also be interpreted as
the probability that an individual recovers in time step T . The particular
probabilities for our system will be given in the explanation of each process
in the following paragraphs.

Horizontal infection to vectors: At each time step, each vector is
asked to find the closest host; if the host is infected, then the vector will
become infected with a certain probability which is dependent on strain type.
If the host is uninfected, nothing will happen. Let’s assume the vector has
found a strain I infected host. The ODE for susceptible vectors leaving due
to horizontal infection of strain I is shown below.

Ṡv = −βv1
Ih1
Nh

Sv

In the ABM, the proportion of infected hosts, Ih1

Nh
, is dealt with directly in the

layout of the model. When the vector finds the closest host, the probability
that this host is infected is Ih1

Nh
. Sv is handled by polling only the susceptible
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vectors. Thus the proportion Ih1

Nh
in the rate can be ignored, yielding the

probability
1− e−βv1T ,

for a vector to be infected with strain I by horizontal transmission in a time
step T . The infection probability for strain II is found in exactly the same
manner and is

1− e−βv2T .

Horizontal infection to hosts: To infect the hosts, each susceptible
host is asked to find the closest vector. If that vector is infected there is a
probability that the host obtains the same infection. The ODE describing
host infection by horizontal transmission of strain I only, is

Ṡh = −βh1
Iv1
Nh

Sh,

which can be rewritten

Ṡh = −
(
βh1

Nv

Nh

)
Iv1
Nv

Sh.

Again, we have the proportion Iv1

Nv
handled implicitly in the model, however,

Nv

Nh
must be included in the probability to account for host saturation just as

is done in the ODE’s. Note that the units in βh1
Nv

Nh
are 1/time, as is desired.

The probability for a host to become infected after finding an infected vector
with strain I and II respectively are:

1− e−
(
βh1

Nv
Nh

)
T
,

1− e−
(
βh2

Nv
Nh

)
T
.

Vector consumption: To decide if a vector is consumed, each vector
is polled, and if a probability is satisfied, the vector dies. The probability is
derived from the ODE describing the rate of decrease of the vector population
due to consumption. The ODE is

Ṅv = −
(
H
Nh

Nv

)
Nv.

Note that we write the rate as
(
H Nh

Nv

)
in order to make the units 1

time
, see

Table 3. Even though the number of vectors consumed is only dependent on
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the number of hosts, we must poll the vectors to get the appropriate units
in the rate. The probability that a vector dies in a time step, derived from
this equation, is

1− e−H
Nh
Nv

T .

If this vector that is consumed happens to be infected, the vector will find
the closest host and infect that host with a probability ρ, but only if that
host is susceptible. ρ is an experimentally measured fraction of hosts that
become infected after consuming an infected vector. See Table 1.

Vector and host birth: Vector and host birth is assumed to be logistic.
Consider the logistic birth ODE for vectors:

Ṅv = rvNv

(
1− Nv

Kv

)
.

Each vector or host respectively will give birth to one other vector or host in
a time step with the probability

1− e−rv(1−Nv
Kv

)T ,

and

1− e−rh
(
1−Nh

Kh

)
T
.

Note that Nv is never greater than Kv as long as the initial set up of the
system creates population lower than the carrying capacity of the region.
The hosts have the added complication of possibly giving birth to infected
young. If the host that gives birth is infected, the young will be infected with
the probability γ1 or γ2 depending on the strain. γ1 and γ2 are simply the
proportion of young born infected from infected mothers; see Table 1.

Vector and host death: Vectors and hosts are assumed to die at a
linear rate, shown in the following ODE:

Ṅ = −µN.

The probability that a given agent dies in one time step is given by

1− e−µT ,

where µ will vary depending on whether agent being observed is a host or
vector.
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3 Analysis

In this section we analyze the ODE model presented previously. The analysis
of this model will be carried out under the assumption that the birth rates
are greater than the death rates: rv > µv, rh > µh. It can be shown that the
behavior of our model is asymptotic by showing that the two populations,
Nv and Nh, are asymptotically constant. The ODE’s describing the vital
dynamics of the two populations are given by:

dNv

dt
= rvNv

(
1− Nv

Kv

)
− µvNv −HNh (7)

dNh

dt
= rhNh

(
1− Nh

Kh

)
− µhNh (8)

It can be shown that under our assumptions, the population of hosts is
asymptotically constant, by proving that all solutions of (8) converge to
Kh(rh−µh)

rh
, under the model’s assumptions. For details, see appendix. A

theorem of Thieme [13] and [14] suggests that we can analyze (7) while
treating Nh as its limiting value as t approaches infinity:

dNv

dt
= rvNv

(
1− Nv

Kv

)
− µvNv −H

(
Kh(rh − µh)

rh

)
. (9)

This can be rewritten as an equation with logistic growth and constant yield
harvesting:

dNv

dt
= (rv − µv)Nv

(
1− Nv

Kv(rv−µv)
rv

)
−H

(
Kh(rh − µh)

rh

)
. (10)

For details of this type of differential equation, please refer to [3]. The equi-
libria of (10) can be written as

Nv1 =
A−

√
A2 − 4BA

D

2

Nv2 =
A+

√
A2 − 4BA

D

2

where A := Kv(rv−µv)
rv

, B := H
(
Kh(rh−µh)

rh

)
, D := rv − µv and Bc := DA

4
.

We assume that the population Nv is sufficiently large and the harvesting
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is small enough such that the population does not go extinct, meaning that
Nv > Nv1 and B < Bc. Under the last assumption, Nv1 is unstable and Nv2 is
asymptotically stable. Considering both of the assumptions, the population,
under any initial conditions, will tend to Nv2.

We have justified why we can consider both populations constant in the
model. The respective values for Nv and Nh will be considered as

N∗
v =

A+
√
A2 − 4BA

D

2
,

N∗
h =

Kh(rh − µh)
rh

.

3.1 Disease Free Equilibrium

We will write the equilibrium points of the system as an ordered vector with
the following form: (Sv, Sh, Iv1, Iv2, Ih1, Ih2) where the state variables will be
fixed.

The first step to finding the disease free equilibrium is to let Iv1 = Iv2 =
Ih1 = Ih2 = 0, and solve for Sv and Sh. At the disease free equilibrium,
Sv = Nv and Sh = Nh and equations (3-6) are equivalent to zero. We now
solve for Sv and Sh considering Sv = Nv and Sh = Nh. The 2-dimensional
system consisting of (1) and (2) becomes

dNv

dt
= rvNv

(
1− Nv

Kv

)
− µvNv −HNh

dNh

dt
= rhNh

(
1− Nh

Kh

)
− µhNh

which we have already analyzed, using (7) and (8). We have the following
disease free equilibrium point:

E0 :=

A+
√
A2 − 4BA

D

2
,
Kh(rh − µh)

rh
, 0, 0, 0, 0
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3.2 Basic Reproductive Number

To calculate the basic reproductive number (R0) we use the second generation
operator approach [15]. Before we show R0, we will define the next terms:

µ̃v := µv +H
Nh

Nv

(11)

β̃h1 := βh1
Nv

Nh

+ ρ1H (12)

Rh1 :=

√
β̃h1βv1
µhµ̃v

(13)

β̃h2 := βh2
Nv

Nh

+ ρ2H (14)

Rh2 :=

√
β̃h2βv2
µhµ̃v

(15)

The terms µ̃v, β̃h1, and β̃h2 are effective rates with units 1
time

that only
consider horizontal transmission. Oral transmission is included in the terms
since it is specific type of horizontal transmission. Rh1 and Rh2 are the basic
reproductive numbers that come from the system only considering horizontal
transmission.

The basic reproductive number is max{R1, R2}, where

R1 =
1

2

(
γ1 +

√
(γ1)2 + 4(Rh1)2

)
, (16)

R2 =
1

2

(
γ2 +

√
(γ2)2 + 4(Rh2)2

)
. (17)

R0 < 1 implies that E0 is asymptotically stable. If R0 > 1, then E0

will be unstable. Also note that if γ1 = 0 and γ2 = 0, then R1 = Rh1 and
R2 = Rh2.

3.3 Endemic Equilibria

The endemic equilibrium for strain I (E1), is:

(N∗
v − I∗v1, N∗

h − I∗h1, I∗v1, 0, I∗h1, 0)
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where

I∗v1 =
µ̃vµh((R1)

2 − 1)Nv

β̃h1(µ̃v + βv1)
, (18)

I∗h1 =
µ̃vµh((R1)

2 − 1)Nh

βv1(β̃h1 + µh(1− γ1))
. (19)

By (18) and (19), it can be seen that E1 will be biologically significant
(will be positive) if and only if R1 > 1.

The endemic equilibrium for strain II (E2) is:

(N∗
v − I∗v2, N∗

h − I∗h2, 0, I∗v2, 0, I∗h2)

where

I∗v2 =
µ̃vµh((R2)

2 − 1)Nv

β̃h2(µ̃v + βv2)
, (20)

I∗h2 =
µ̃vµh((R2)

2 − 1)Nh

βv2(β̃h2 + µh(1− γ2))
. (21)

By (20) and (21), it can be seen that E2 will be biologically significant (will
be positive) if and only if R2 > 1.

3.4 Invasive Reproductive Numbers

The invasive reproductive numbers describe the ability of a particular strain
to invade a population that is endemic with other strain. If the reproductive
number is greater than one, the invading strain has the ability to become
endemic in a population that is already endemic with another strain. The
invasive reproductive numbers for strain I and II are R̃1 and R̃2. These are
obtained using the second generation operator approach [15] as well and are
given by

R̃1 =
1

2

(
γ1 +

√
(γ1)2 + 4(1− γ2)

(Rh1)2

(Rh2)2

)
, (22)

R̃2 =
1

2

(
γ2 +

√
(γ2)2 + 4(1− γ1)

(Rh2)2

(Rh1)2

)
. (23)
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By observing the basic and invasive reproductive numbers we can prove
that R̃j < Rj iff 1−γi

(Rhi)2
< 1 (for j 6= i). With some algebra, it is straightfor-

ward to show that Ri > 1 iff 1−γi

(Rhi)2
< 1 and conclude that Rj > 1 iff R̃i < Ri.

These results biologically mean that the ability of one strain to invade a pop-
ulation where the other is already endemic, is less than the strain’s ability
to invade a completely susceptible population. This result is expected since
the strains considered are in competition with each other; only one parasite
strain can persist in a single host or vector. In the case of mutualism, we
would expect that Rj > 1 iff R̃i > Ri.

If R̃1 > 1 and R̃2 > 1 then there is the possibility of coexistence within
the population. However, if R̃1 > 1 implies R̃2 < 1 and R̃2 > 1 implies
R̃1 < 1 then there is no possibility that coexistence can occur.

Proposition 1: R̃j > 1⇐⇒ R̃i < 1, where j 6= i.

Proof:

(=⇒) Suppose R̃j > 1. So we have that

1

2

(
γj +

√
(γj)2 + 4(1− γi)

(Rhj)2

(Rhi)2

)
> 1

(2− γj)2 − (γj)
2 < 4(1− γi)

(Rhj)
2

(Rhi)2

4− 4γj < 4(1− γi)
(Rhj)

2

(Rhi)2

4(1− γj) < 4(1− γi)
(Rhj)

2

(Rhi)2

(1− γj)
(Rhi)

2

(Rhj)2
< 1− γi
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We know that,

R̃i =
1

2

(
γi +

√
(γi)2 + 4(1− γj)

(Rhi)2

(Rhj)2

)

Since 0 ≤ γi ≤ 1, see Table 3, we are assured that 1 − γi ≥ 0 and (γi)
2 +

4(1− γi) ≥ 0. This allows the following step:

R̃i <
1

2

(
γi +

√
(γi)2 + 4(1− γi)

)
=

1

2

(
γi +

√
(γi)2 − 4γi + 4

)
=

1

2

(
γi +

√
(γi − 2)2

)
=

1

2
(γi + |γi − 2|)

=
1

2
(γi + (−(γi − 2)))

= 1

Therefore R̃j > 1⇒ R̃i < 1.

(⇐) If one supposes that R̃i < 1 then it can be proven that R̃j > 1. We
will not prove it since it does not contribute to showing the impossibility for
coexistence in our model. �

It can be proven in a similar manner that R̃j = 1 if and only if R̃i = 1.
Proposition 1 suggests that in our deterministic model there is no possibility
for coexistence, which is surprising since vertical transmission is included and
coexistence between the two strains in the population is expected. In other
words you do not expect competitive exclusion.

We see that in the bifurcation graph, Figure 2, there are three distinct
regions. In region I, the disease free equilibrium is stable and no biologically
relevant endemic equilibriums exists. In region III E2 exists and is positive
and in region II, E1 exists and is positive. At the boundary of region I and
II a transcritical bifurcation is exhibited where switching from region I into
II, the endemic equilibrium E1, becomes positive and stable, and the disease
free equilibrium becomes unstable. At the boundary of region I and III,
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there exists another transcritical bifurcation where switching from region
I into III, E2 becomes positive and stable, and E0 and becomes unstable.
At the boundary of region II and III, there is a degenerate transcritical
bifurcation where E1 and E2 trade stability. We can see from the graph, and
guess intuitively based on the aforementioned competitive exclusion, that if
R1 > R2 ≥ 1, then strain I becomes endemic in the population and strain II
dies out and vice versa if R2 > R1 ≥ 1.

4 Numerical Results

4.1 Parameter Estimation

All of our parameter estimations come from Kribs-Zaleta’s (2009) exhaus-
tive study on contact process saturation in sylvatic hosts. From this paper,
we have compiled a list of parameters and infection rates for woodrats and
Triatoma gerstaeckeri in Texas shown in Table 1. Since no direct estimates
for the horizontal transmission rates βv and βh exist, we estimate them by
using T. cruzi prevalence data from Texas, see Table 2, and assume that this
data reflects an equilibrium state. This is a reasonable assumption since T.
cruzi is endemic in this region and has been for a long period of time. We
disregard strain variation in the region and assume there is only one strain
in the region. The estimation method is shown below.

İh = βh
Iv
Nh

Sh + ρH
Iv
Nv

Sh + γIhrh

(
1− Nh

Kh

)
− µhIh = 0

İv = βv
Ih
Nh

Sv − µvIv −H
Iv
Nv

Nh = 0

We can then solve for βv and βh:

βh =
µhIh − ρH Iv

Nv
Sh − γIhrh

(
1− Nh

Kh

)
µhIh

Iv
Nh
Sh

βv =
µvIv +H Iv

Nv
Nh

Ih
Nh
Sv

Parameter values, infection ratios, and population values from tables 2 and
1 are substituted into the equation. For example, from Table 2, we know
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the infection rate for vector is 45%. We can make the calculation for one
hectare, so Nv = 316. From these two pieces of information we see that
Iv = .45 · 316 = 142.2. The same can be done for the hosts. The vertical
transmission γ is calculated as the average of γ1 and γ2. These values are
assumed to be the transmission terms, βv2 and βh2, associated with strain II
since this is the strain prevalent in the region the data was taken from. This
is a reasonable estimate since strain II is the dominant strain in this region.
The values calculated are shown in Table 1. Since the other values, βv1 and
βh1, are to have higher horizontal transmission ability, they will be assumed
to be equal to βv2 and βh2 multiplied by a value q that is greater than or
equal to one:

βv1 = qβv2

βh1 = qβh2 where q ≥ 1.

4.2 ODE Approximations

In the ODE model, for a particular value of q, one behavior is always observed
because this is a deterministic model. At a threshold value for q, strain II dies
and strain I dominates. We calculate this value by finding for what value of
q, R̃1 = 1. This value is q = 1.056. We plot the ODE’s while varying q from
1 to 2 in order to determine how quickly one strain dominates; see Figure 4.
We also evaluate R1, R2, and R̃1 for every q value we use; see Table 4.

4.3 Simulations

In the simulations, we experiment with the value of q in order to determine
when strain I will dominate. In the ABM model, since it is a stochastic
model, strain I may dominate in one run and strain II in another; see Figure
3. This is very different from the ODE model, see section 4.2. We run 30
simulations for q ranging between 1 and 2 and average the results. We also
record how many times a particular strain dominates and how long it takes
for the other strain to die completely. We run the simulation a total of
30000 time steps, equivalent to 30000 days or 82 years. We want to observe
an invasion of strain I, so we assume a 5% infection rate of strain I in the
vector population. The initial set up of the system 5% infection of strain I
in vectors, 40% infection of strain II in vectors, and 33% infection of strain
II in hosts; see Table 2.
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For all values of q, both strains on occasion are the dominant strain. For
example, when q = 1, two times out of the 30 runs, strain one dominates
despite it being a less effective strain; see tables 4 and 5. The reason we
can say that strain I is the less effective strain when q = 1 is because the
horizontal transmission probability for both strains are the same, and strain
II has the advantage with a greater vertical transmission probability. The
stochasticity of the system allows for either strain to dominate for a particular
q value; strain I may be lucky in infecting many hosts while strain II is
unlucky in having hosts and vectors infected with strain II die. On occasion
both strains would survive the entire 30000 time steps; this happened a total
of 2 times out of 330 (0.6%). More frequently, though, both strains would
go extinct; this happened a total of 14 times out 330 (4.24%). Of course the
most usual outcome was for one or the other of the two strains to dominate.

When the graphs of all runs for a particular q value are averaged, a plot
more similar to the ODE plots is seen; see figures 3 and 4. There is, however,
one major difference between the averaged plots and the deterministic plots.
In the deterministic plots, when q ≥ 1, strain II goes to zero while strain I
approaches an endemic equilibrium. In the averaged ABM plots, it appears
that strain II persists, as if there is coexistence; this is however not the
correct interpretation. In almost all simulations, one or the other of the
strains dominate. There are only 4 runs out of 330 where neither of the
strains die. The appearance of strain II not going to zero comes from the
occasional runs where strain I dies before it can take hold, and then strain II
persists the remainder of simulation creating a persistent non-zero average.

As q was increased from 1 to 2, the number of times strain I dominated
went from 2 times to 22 times out of 30; see Table 5. With q = 1, strain I
dominates 7% of the time. If q is increased to only q = 1.1, strain I dominates
20% of the time. This dramatic increase can be explained by observing the
reproductive numbers for strain I and strain II and in particular the invasive
reproductive number for strain I in Table 4. We see that when q = 1, R2

is only slightly larger than R1. Vertical transmission only plays a small role
in the strengths of the respective reproductive numbers. When q = 1.1, R2

surpasses R1, and more importantly, R̃1 ≥ 1, thus strain II has a harder time
defeating the invasion of strain I. Compare this to the deterministic plots,
and we see that as long as the invasive reproductive number for strain I is
greater than one, then strain one will dominate. This is exactly as is to be
expected.

Observing Table 5, we see that as q increases, the time it takes both
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strains to dominate decreases. This can be explained by noting that as q
increases the invasive reproductive number for strain I increases (see Table
4) and therefore the number of new infectives per infective individual with
strain I increases. As a result, the speed of infection spread will increase as
well. This means that the time it takes for strain I to dominate decreases.
The time it takes for strain II to dominate, when it does dominate, decreases
as well since usually the reason it dominates is because strain I dies out before
it can take hold. This happens quickly when it happens.

5 Conclusions and Future Directions

In conclusion, the difference in the ODE versus the ABM model are quite
significant. In the ABM model, strain I does not reach over 50% domination
in the runs until q is about 1.5. In the ODE’s, q need only be 1.056 and
strain I will dominate. This can be explained by observing how one infected
individual affects the different systems. In the ODE model, one infected
individual will immediately begin infecting the susceptible population at a
certain rate. In the stochastic model, one infected vector may die before it
can spread its infection. The stochastic model better interprets reality in
this respect; interactions happen discretely and probabilistically in nature.
Another interesting finding is that it appears that the adaption to vertical
transmission for strain II is not a significant advantage in preventing an
invasion of strain I. This can be seen in the threshold value of q = 1.056 for
strain I to dominate.

It is apparent from the results in Table 4 that the model does not consider
enough biology to give strain II an ability to compete with strain I. Also the
finding of competitive exclusion in the model suggests more must be consid-
ered. Strain II may have other strengths not considered in the model that
may allow for coexistence in the region. For example, this model does not
consider constant migration of strain I and strain II into the region. Includ-
ing migration into the model may well create a possibility of coexistence as
is shown in [4]. Perhaps if a larger area was considered, for example many
square miles, the effect of space would be more apparent in our model and
migration would imitated. One infectious region may die out while another
region flourishes with the infection. One hectare is too small to observe this
type of behavior. One may also want to include differences in oral transmis-
sion between the strains; strain II may have the advantage of being better
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adapted to oral transmission as well as vertical transmission.
Another key factor that may affect the spread of the disease is host be-

havior. A consideration of multiple hosts and a careful modeling of their be-
havior would reveal information about how the parasite may move through a
region. As an example, consider the two hosts woodrats and raccoons. The
two hosts have distinctly different behavior. Male woodrats tend to stay in a
relatively small region of about .19 hectares [5] and have a density of about
21 woodrats per hectare [10]. A woodrat in general has only a few nests
at which it sleeps and only forages around in a limited region around these
nests. When the hosts sleep is when they have the potential to be bitten by
the Triatoma. Raccoons have a home-range of about 60.5 hectares [1] with
a density of about .144 raccoons per hectare [10]. Within this home-range,
they have many places at which they may sleep. Thus they cover a wide
area where they have the possibility to become infected and a larger area
over which they can carry the infection once they are infected. This model
would most likely have to be made in a way such that it would be difficult to
analyze side by side with a system of ODE’s; however, the results may well
be interesting and useful.
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7 Appendix

Proposition 2: Nh(t = τ) 6= 0 for τ arbitrary ⇒ Nh will be asymptotically
constant to

Nh =
kh(rh − µh)

rh

Proof:

Lets assume that Nh(t = τ) 6= 0 and that τ is arbitrary. The general
solution of (8) is

Nh =
1

rh
kh(rh−µh)

+ Ce−(rh−µh)t
(24)

where C is an arbitrary constant. Under the assumption that rh > µh,

we see that as t→∞, Nh → kh(rh−µh)
rh

. Referring to [11], since dNh

dt
and

∂
dNh
dt

∂Nh

are continuous on any rectangle in the t−Nh plane, we are guaranteed that
any two solutions of the family of solutions for (8) will never intersect. This
implies the solution of (8) with initial condition Nh(τ) = Nhτ where τ and
Nhτ are arbitrary but Nhτ 6= 0 will be unique and can be obtained from (24)

and will always tends to kh(rh−µh)
rh

. In the case that Nhτ = 0 there is no real

value for C such that (24) is equal to zero but we know that Nh = 0 is a par-
ticular solution of (8), so the solution of (8) with initial condition Nh(τ) = 0
for τ arbitrary must be Nh = 0. The fact that the general solution of (8)
will never be zero and if there is another possible solution that can cross
the t axis implies that it will be Nh = 0, guarantees that all the solutions
of (8) in our model will tend to kh(rh−µh)

rh
as t → ∞, since we assumed that

Nh(t = τ) 6= 0. �
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Figures

Figure 1: Flow chart for the ODE model.
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Figure 2: Bifurcation graph.
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Figure 3: Averaged results for the vector population of ABM simula-
tion: y axis is percentage and x axis is time where 1 unit represents
50 days.Green(S) is the percentage of the population that is susceptible
Red(I1) is the percentage of the population that is infected with strain I
and Yellow(I2) is the percentage of the population that is infected with
strain II.
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Figure 4: Numerical approximation of the ODE’s: y axis is percentage and
x axis is time in days. Green(S) is the percentage of the population that is
susceptible Red(I1) is the percentage of the population that is infected with
strain I and Yellow(I2) is the percentage of the population that is infected
with strain II.
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Tables

Parameters Value Units Source
rv 100 1/year [10]
rh 1.8 1/year [10]
µv .562 1/year [10]
µh 1 1/year [10]
Kv 319 vectors (In 1 hectare) [10]
Kh 52 hosts (In 1 hectare) [10]
βh2 .0549 hosts/(vectors year) [10]
βv2 1.574 1/year [10]
H 1 vectors/(hosts year) [9]

ρ1, ρ2 .28 host/vector [10]
γ1 .01 unitless [10]
γ2 .10 unitless [10]

Table 1: Parameter Values

Species Infection per Hectare Source
woodrat 33% 23 [10]

T. gerstaeckeri 45% 316 [10]

Table 2: Population densities and infection prevalence in Texas
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Parameter Definition Units
rv Reproduction rate for vectors 1/time
rh Reproduction rate for hosts 1/time
µv Death rate for vectors 1/time
µh Death rate for hosts 1/time
Kv Carrying capacity for vectors vectors
Kh Carrying capacity for hosts hosts
βv1 Infection rate of strain 1 from host to vector hosts/(vectors year)
βv2 Infection rate of strain 2 from host to vector 1/time
βh1 Infection rate of strain 1 from vector to host hosts/(vectors year)
βh2 Infection rate of strain 2 from vector to host 1/time
H Number of vector consumed per host per

time
vectors/(hosts year)

γ1 Proportion of young born infected from an
infected mother with strain 1

unitless

γ2 Proportion of young born infected from an
infected mother with strain 2

unitless

ρ1 Proportion of hosts infected with strain 1 af-
ter consuming on vector with strain 1

host/vector

ρ2 Proportion of hosts infected with strain 2 af-
ter consuming on vector with strain 2

host/vector

Table 3: Parameter definitions
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q value R1 R2 R̃1 % Strain I dominates
q = 1.0 1.60 1.65 0.95 7%
q = 1.1 1.74 1.65 1.03 20%
q = 1.2 1.88 1.65 1.12 30%
q = 1.3 2.02 1.65 1.20 33%
q = 1.4 2.16 1.65 1.28 43%
q = 1.5 2.29 1.65 1.36 57%
q = 1.6 2.43 1.65 1.44 70%
q = 1.7 2.57 1.65 1.52 60%
q = 1.8 2.70 1.65 1.61 57%
q = 1.9 2.84 1.65 1.69 77%
q = 2.0 2.98 1.65 1.77 73%

Table 4: Values of strain I reproductive number, strain II reproductive num-
ber, and strain I invasive reproductive number from parameter estimates in
Table 1, and percent of the time strain I dominates in 30 simulations.

q A B C D
q = 1.0 2 28 49 (20) 15 (13)
q = 1.1 6 22 57 (16) 13 (13)
q = 1.2 9 21 38 (12) 12 (10)
q = 1.3 10 20 31 (10) 9 (4)
q = 1.4 13 17 32 (8) 9 (7)
q = 1.5 17 13 30 (13) 6 (3)
q = 1.6 21 9 23 (9) 7 (3)
q = 1.7 18 12 23 (7) 9 (5)
q = 1.8 17 13 23 (6) 7 (3)
q = 1.9 23 7 19 (4) 6 (3)
q = 2.0 23 7 21 (7) 5 (2)

Table 5: Here column A is the number of time Strain I dominates, B is the
number of time Strain II dominates, C is the average time in years for strain
II to go to extinction with standard deviation, and D is the average time in
years for strain I to go to extinction with standard deviation.
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