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Abstract

During the spring of 2009, a novel H1N1 influenza virus posed a serious threat worldwide.
However, seasonal influenza is still a public health concern since each year in the United States
it kills 36,000 people, causes more than 200,000 hospitalizations, and infects up to 20% of the
population. In this paper, we explore what could happen if both a seasonal influenza and H1N1
outbreak were to coincide. First, a simple SAIR model is considered to study the dynamics
of a single influenza strain. Then, a more complex two-strain model is constructed to examine
the dynamics of two coexisting strains. In the two-strain model, we incorporate a seasonal flu
vaccine to study the impact of vaccination on these dynamics. Optimal control theory is applied
to both the single-strain model and the two-strain model with the goal of reducing the overall
morbidity during an outbreak. Two controls are introduced to the systems: social distancing
and treatment of H1N1 infected individuals. Introducing the seasonal vaccine significantly
reduces the number of seasonal influenza cases, yet moderately increases the number of H1N1
infections. In the two-strain model, the application of optimal controls has a substantial impact
on the H1N1 and seasonal influenza dynamics.

1 Introduction

Influenza (flu) is one of the most prevalent diseases that cause high mortality in the world. There
is a flu season every year in the Northern Hemisphere during the winter (from November to April)
[?]. In the United States 5% to 20% of the population gets the seasonal flu and about 36,000 people
die of flu-related causes. For seasonal influenza elderly people, young children, and people with
certain health conditions are at high risk for serious flu complications.

Influenza strains can be divided into three main types A, B and C. Type A is considered the

1



most important in terms of epidemiology because it can infect both birds and mammals. Influenza
A viruses are further subdivided based on two surface proteins - hemagglutinin (Hh) and neu-
raminidase (Nn). These subtypes are further divided into strains or comparatively minor variants.
Type B is specific to only humans and tends to be more deadly. These two types (A and B) are
the cause of seasonal flu epidemics every year in the United States. Type C isn’t as prevalent as its
counterparts and only causes a mild respiratory illness, which is not thought to cause epidemics.
[?].

The influenza viruses are continuously changing over time due to antigenic shift and drift. Since
the virus is changing so frequently it allows the virus to evade the immune system and therefore
attack the body. When an individual is infected and recovers from a specific variant of influenza,
he/she becomes immune to future infections of that strain but the previous infection does not
provide immunity to other strains even if they belong to the same subtype. This makes vaccination
production and vaccination programs a challenge for public health policy. A new vaccine must be
designed and produced each year to protect against the seasonal flu that incorporates subtypes
based on estimations of scientists and international surveillance. The vaccine is a trivalent inactive
vaccine (TIV) that includes one influenza type B, one of A subtype H1N1 and one of A subtype
H3N2 [?].

Historically, influenza A has caused several pandemics such as the deadly 1918 pandemic and the
recent (2009) H1N1 (Swine Flu) pandemic. Pandemics can be the result of the appearance of new
subtypes, like in the Swine Flu pandemic. In this case, laboratories found that this novel strain
has two genes from flu viruses that normally circulate in pigs in Europe and Asia, but also has
avian genes and human genes. This kind of reassortment of flu viruses of different species is a big
concern for authorities of disease control because, as in the case of the recent H1N1 flu strain, it
produces more severe epidemics or pandemics.

The ’Swine flu’, or H1N1 influenza, surfaced in March 2009 in Mexico and spread worldwide [?].
This strain has caused mortality with 87% of the deaths in individuals between the ages of 5 and 59
[?]. Many fear that this variant will go through antigenic drift producing a second wave or outbreak
similar to the 1918-1919 Spanish influenza pandemic that killed 40-50 million people worldwide [?].
Since influenza viruses are more infectious during cold months, it has been predicted that this
H1N1 strain will begin to infect more people during the winter time, which is around the same
time that seasonal flu will begin its course [?]. Many questions and concerns have been formulated,
such as whether or not the seasonal flu and the new H1N1 virus circulating together will bring even
more morbidity and mortality than either separately. Although the seasonal vaccine has a strain
of H1N1, it has shown very little efficacy in reducing the cases of the novel H1N1 virus present in
the Swine flu pandemic. The vaccine for the new H1N1 influenza strain is currently in production
but it won’t be available until October 2009 [?]. So, when the flu season starts, people should get
the seasonal flu vaccine in order to protect themselves against infection with the seasonal strain. It
has been suggested in the past that the very young (< 5) and elderly (65+) should be vaccinated
since they are most susceptible to becoming infected with seasonal influenza [?].
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There are limited amounts of vaccines available for distribution because the pharmaceutical com-
panies cannot make the vaccines fast enough. In the United States, there are only enough resources
to vaccinate about one-third of the population [?]. In order to be efficient with the allocation of
vaccines, they should logically be given to the high-risk groups. Because so many cases of influenza
fail to show flu-like symptoms (asymptomatics), it is likely that some individuals may opt to get
the flu vaccine even though they have already been infected in the past and have immunity against
reinfection. In these cases, the vaccine is considered wasted. Another type of cost associated
with vaccination occurs when someone in the high-risk group for seasonal influenza chooses not
to get the seasonal vaccine. This interferes with the control of the disease because the individual
could contract the virus and as a result, will increase the economic costs and infectiousness in the
population.

In this paper, we explored a vaccination strategy in which we ask the patient whether or not they
have shown flu-like symptoms or if they have received the seasonal vaccine in the current year. If
the individual replies ”No”, they will be administered the seasonal vaccine. We determined the
total morbidity and the total number of wasted vaccines. We also applied optimal control theory
to our model to minimize the total morbidity taking into account the cost of the strategies of social
distancing and treatment of H1N1 strain. In Section 2, we introduce a SAIR model for seasonal
flu and analyzed the effect of individuals recovering with and without showing symptoms. Optimal
control was also applied to the SAIR model in order to reduce infections by producing numerical
results and simulations. Section 3 introduces a two-strain model that incorporates the seasonal flu,
H1N1 virus, and the seasonal flu vaccine. In Section 4, analysis and simulations are performed on
the two-strain model. Sections 5 explains the optimal control that was applied to the two-strain
model to generate numerical results.

2 SAIR Model

We first considered a simple SAIR (Susceptible(S)-Asymptomatic(A)-Symptomatic(I)-Recovered(R))
model for H1N1 influenza in which every infected individual first goes through an asymptomatic
stage and either becomes symptomatic at a rate α or recovers without showing symptoms at a
rate κ. Asymptomatic individuals play an important role in the spread of a virus because they are
unaware of their infectiousness and hence, more likely to come into contact with others. Similarly,
because we are less likely to treat asymptomatic individuals, the duration of infection persists until
they recover naturally.
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Figure 1: Diagram of the SAIR Compartmental Model

Table 1: List of Parameters

Symbol Meaning
S Susceptible
A Asymptomatic
I Symptomatic
R Recovered
β Transmission Rate
α Rate an Individual Shows Symptoms
γ Recovery Rate for Symptomatics
κ Recovery Rate for Asymptomatics

2.1 Differential Equations

dS

dt
= −βSA+ I

N
(1)

dA

dt
= βS

A+ I

N
− (α+ κ)A (2)

dI

dt
= αA− γI (3)

dR

dt
= γI + κA (4)

N = S +A+ I +R (5)

2.1.1 Calculating R0 and the Final Size of SAIR

The basic reproductive number, R0, can be defined as the number of secondary cases created in a
fully susceptible population by one infective individual [?]. The approach we used to find the R0

for this model was the next generation operator. The F matrix is defined by the newly infected
individuals while the V matrix contains the newly symptomatic and recovered individuals. Tran-
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sitions from the symptomatic and the vaccinated asymptomatic compartments are not considered
to be new infections. Hence,

F =

[
β S(A+I)

N

0

]
V =

[
(α+ κ)A

−αA+ γI

]
.

Taking the Jacobian of the matrices and evaluating them at the disease-free equilibrium (N, 0, 0, 0),
we obtain

F
′

=

[
β β

0 0

]
V
′

=

[
α+ κ 0

−α γ

]
.

Next, we take the inverse of V and multiply it by F
′
.

V
′−1 =

[ 1
α+κ 0
α

α+κ
1
γ

1
γ

]
,

F
′
V
′−1 =

[
β β

0 0

][ 1
α+κ 0
α

α+κ
1
γ

1
γ

]
=

[ β
α+κ + β

α+κ
α
γ

β
γ

0 0

]
.

If we examine the F
′
V
′−1 matrix, we notice that it is an upper triangular matrix. Thus, the

eigenvalues are the diagonal entries and the basic reproduction number for the SAIR model is

R0 = max[λ1, λ2],

where

λ1 =
β

α+ κ
+

β

α+ κ

α

γ
,

λ2 = 0.

Hence

R0 =
β

α+ κ
+

β

α+ κ

α

γ
.

The terms in R0 represent the different ways of being infectious. Since β is the rate of entering
A given an infectious contact, and 1

α+κ is the length of time spent in A, β
α+κ describes an indi-

vidual residing in the asymptomatic compartment. Similarly, because an individual must travel
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through the asymptomatic compartment to become symptomatic, β
α+κ

α
γ represents being in the

symptomatic class.

The final size relation of an epidemic model is an expression relating the basic reproductive number
and the number of susceptible individuals at the end of the epidemic. We calculate the final size
relation to gain information about the total morbidity at the end of a seasonal influenza outbreak
in our SAIR model. We do this by finding an expression for S∞ = lim

t→∞
S(t).

Let ∫ ∞
0

(S
′
(t) +A

′
(t) + I

′
(t)) dt = −κ

∫ ∞
0

A(t) dt− γ
∫ ∞

0
I(t)dt, (6)

and ∫ ∞
0

(S
′
(t) +A

′
(t) +R

′
(t)) dt = −α

∫ ∞
0

A(t) dt− γ
∫ ∞

0
I(t)dt. (7)

Evaluating the left hand side of (??), we find that∫ ∞
0

(S
′
(t) +A

′
(t) + I

′
(t)) dt = S∞ +A∞ + I∞ − S0 +A0 + I0, (8)

where A∞ = lim
t→∞

A(t), and I∞ = lim
t→∞

I(t) are 0 and I0 = 0.
Therefore, ∫ ∞

0
(S
′
(t) +A

′
(t) + I

′
(t)) dt = S∞ −N. (9)

Similarly from (6), ∫ ∞
0

(S
′
(t) +A

′
(t) +R

′
(t)) dt = S∞ − S0 −A0 +R∞. (10)

Since S0 +A0 = N and R∞ = N−S∞, the right hand side of (??) reduces to S∞−N+N−S∞ = 0
which implies,

∫ ∞
0

I(t) dt =
α

γ

∫ ∞
0

A(t)dt. (11)

If we substitute (??) into (??) we acquire

S∞ −N = −(α+ κ)
∫ ∞

0
A(t)dt. (12)
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Dividing both sides of S
′

= −βS(t)
A(t) + I(t)

N
by S we develop

S′

S
= −βA(t) + I(t)

N
. (13)

Integrating (??) and substituting (??) we get∫ ∞
0

(
d

dt
ln (S)

)
dt = − β

N

∫ ∞
0

(A(t) + I(t))dt, (14)

= − β
N

(
α+ γ

γ

)∫ ∞
0

A(t)dt. (15)

Since
∫ ∞

0

(
d

dt
ln (S)

)
dt = − ln

(
S0

S∞

)
,

∫ ∞
0

A(t) dt =
N

β

(
γ

α+ γ

)
ln
(
S0

S∞

)
. (16)

Substituting (??) into (??), we obtain

S∞ −N = −(α+ κ)
N

β

(
γ

α+ γ

)
ln
(
S0

S∞

)
. (17)

Again rearranging the terms, we conclude that

ln
(
S0

S∞

)
−R0

(
1− S∞

N

)
= 0, (18)

where

R0 =
β

α+ κ

(
α+ γ

γ

)
=

β

α+ κ
+

β

α+ κ

α

γ
. (19)

In the situation where asymptomatics must eventually show symptoms, the rate κ equals zero. The
final size relation remains the same, with R0 reducing to β

α + β
α
α
γ .

2.2 Simulations

By looking at the final size relation (18)-(19), we notice that if κ increases, the duration and size of
the outbreak decreases. Increasing κ reduces the infectious period of the asymptomatic individuals.
Since asymptomatics move to the recovery compartment at a faster rate, susceptible individuals
have fewer contacts with infectious individuals. This is also supported by the simulations.
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(a) SAIR with k = 0 (b) SAIR with k = 1
3

(c) SAIR with k = 2
3

(d) SAIR with k = 1

Figure 2: SAIR with varying k values ??,??,??,??
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Figure 3: Final Size as a function of κ

2.3 Optimal Control Applied to Single-Strain SAIR Model

Control theory can assist in determining how to produce maximum performance or minimal cost
[?]. First, we determined key variables that impact the outcome of a particular aspect of a problem.
The theory then allowed us to obtain functions describing these variables, which produce the best
outcome within certain reasonable constraints. Optimal control can be used to make public health
policies in order to minimize the costs of an epidemic including illnesses, deaths and financial loss.
In our model, we used control strategies to minimize the magnitude of the influenza outbreak. We
have introduced treatment by controlling the rate at which individuals move from a symptomatic
class to its corresponding recovered class. This objective in control theory is viewed as the ”case
finding”. Case finding refers to pinpointing an infected individual and incorporating some type
of intervention in order to produce a faster recovery [?]. In our model, the case finding will be a
treatment. Also, control was applied to the transmission rates in order to decrease the number of
infected individuals. This goal for reduction in infections is referred to as ”case holding”, where
activities and techniques are seen as an effort to avoid contracting the infection [?]. In our model,
the case holding is social distancing, such as closing schools or public events.

The H1N1 outbreak during the spring of 2009 brought up the question of what the best means
are for controlling the size of such an epidemic. We address this question by applying two time-
dependent controls to the SAIR model for H1N1 influenza. The first control, u1(t) is applied to
the transmission rate β and represents the effort placed in social distancing. The second control,
u2(t), represents effort placed in treatment of H1N1 infected individuals. These control functions
are required to be a bounded, Lebesgue integrable on the interval [0, tf ], where tf is the duration of
time for which we apply our controls. Since we only treat symptomatic individuals, we introduce
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this term by adding γTu2(t), where γT is the additional recovery rate of an H1N1 infected individual
undergoing treatment (i.e. γ + γT = recovery rate with treatment), to the symptomatic equation
(dIdt ). If u1(t) and u2(t) are equal to one, then full effort is being placed in social distancing and
treatment, respectively, at time t. Conversely, if u1(t) = u2(t) = 0, then no effort is being placed
in either control at time t.

We rewrite the state equations (??) to include the two control functions as follows:

dS

dt
= −β(1− u1(t))S

(
A+ I

N

)
dA

dt
= β(1− u1(t))S

(
A+ I

N

)
− (α+ κ)A (20)

dI

dt
= αA− (γ + γTu2(t))I

dR

dt
= (γ + γTu2(t))I + κA

The benefits of implementing control measures are substantial, however each control incurs some
cost. Social distancing generates economic losses, while treatment requires the infrastructure for
administering the treatment. Thus, we give each control a weight which balances the relative cost
of each control with their benefit. The relative cost of the controls is modeled by a quadratic term
B1
2 u

2
1 + B2

2 u
2
2, where Bi represents the weight constant for the control ui (i=1,2). Although the

relative cost of each control depends on the population under consideration, for our simulations
we make the general assumption that social distancing is more costly than treatment. Applying
optimal control theory to the SAIR model for H1N1 allows us to determine the control functions
u∗1(t) and u∗2(t) that produce the optimal outcome in the epidemic. Since our goal is to minimize
the total number of infections during the H1N1 outbreak by applying the controls, we achieve this
goal mathematically by minimizing an objective functional J , which incorporates the two infectious
classes A and I. The objective functional J , a function of the controls, is defined as follows:

J(u1(t), u2(t)) =
∫ tf

0

(
A+ I +

B1

2
u2

1 +
B2

2
u2

2

)
dt (21)

The objective of determining the optimal control function pair (u∗1, u
∗
2) is expressed mathematically

by:

J(u∗1, u
∗
2) = minΩJ(u1, u2), (22)

where

Ω = {(u1(t), u2(t)) ∈ L1(0, tf )‖0 ≤ u1(t), u2(t) ≤ 1, t ∈ [0, tf ]}, (23)
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subject to the state equations (??) for given initial conditions.
Existence of the optimal controls u∗1 and u∗2 in our model are standard results in optimal control
theory [?]. The necessary conditions that the optimal pair must satisfy are derived from Pontrya-
gin’s Maximum Principal. We first convert our problem, expressed by (??)-(??) into the equivalent
problem of minimizing the Hamiltonian H:

H = A+ I +
B1

2
u2

1 +
B2

2
u2

2

+ λ1

(
−β(1− u1(t))S

(
A+ I

N

))
+ λ2

(
β(1− u1(t))S

(
A+ I

N

)
− (α+ κ)

)
+ λ3 (αA− (γ + γTu2(t))I)
+ λ4 ((γ + γTu2(t))I + κA)

Standard use of Pontryagin’s Maximum Principle ([?]) leads to the following Theorem:

Theorem 2.3.1 There exists an optimal pair u∗1(t), u∗2(t) and corresponding solutions, S∗, A∗, I∗,
and R∗, that minimizes J(u1(t), u2(t)) over Ω. The explicit optimal controls are connected to the
existence of continuous specific functions λi(t), namely, the solutions of the following system (called
the adjoint system) of differential equations:

dλ1

dt
= λ1β(1− u1(t))

(
A+ I

N

)
− λ2β(1− u1(t))

(
A+ I

N

)
dλ2

dt
= −1 + λ1β(1− u1(t))

S

N
− λ2

(
β(1− u1(t))

S

N
− (α+ κ)

)
− λ3α− λ4κ (24)

dλ3

dt
= −1 + λ1β(1− u1(t))

S

N
− λ2β(1− u1(t))

S

N
+ λ3(γ + γTu2(t))− λ4(γ + γTu2(t))

λ4

dt
= 0

subject to the transversality conditions,

λi(tf ) = 0 for all i = 1, 2, 3, 4. (25)
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Moreover, the following properties hold

u∗1 = min

(
max

(
LB1,

1
B1

[
βS

(
A+ I

N

)
(λ2 − λ1)

])
, UB1

)
(26)

u∗2 = min

(
max

(
LB2,

1
B2

[γT I(λ3 − λ4)]
)
, UB2

)
,

where LBi is the desired lower bound for ui and UBi is the desired upper bound of ui for i = 1, 2.

Proof The existence of an optimal control pair follows from Corollary 4.1 of [?] and the following
two facts: the integrand of J is convex with respect to (u1, u2) and the state system is Lipshitz
with respect to the state variables. The following relationships follow directly from the application
of Pontryagin’s Maximum Principle [?]:

dλ1(t)
dt

= −∂H
∂S

,
dλ2(t)
dt

= −∂H
∂D

,
dλ3(t)
dt

= −∂H
∂R

,
dλ4(t)
dt

= −∂H
∂R

,

with λi(tf ) = 0 for i=1,2, 3, and 4 evaluated at the optimal control pair and corresponding
states. These evaluations naturally lead to the Adjoint System (??). The Hamiltonian H must
be minimized with respect to the controls at the optimal control pair and so we differentiate H
with respect to u1 and u2 on the set Ω. These computations lead to the following optimality
conditions:

∂H

∂u1
= B1u1 + (λ1 − λ2)βS

(
A+ I

N

)
= 0 at u1 = u∗1

∂H

∂u2
= B2u2 + (−λ3 + λ4)γT I = 0 at u1 = u∗1.

Solving for u∗1 and u∗2 gives

u∗1 =
1
B1

[
βS

(
A+ I

N

)
(λ2 − λ1)

]
, u∗2 =

1
B2

[γT I(λ3 − λ4)] ,

Use of the bounds on LBi ≤ ui ≤ UBi for i = 1, 2 lead to the expressions in (??).

The optimality system consists of the State System (??) coupled with the Adjoint System (??),
the initial conditions, transversality conditions (??), and the formulae in (??).

2.3.1 Numerical Results

We obtained our numerical results using the forward Euler method (See MATLAB code in Ap-
pendix ??). Starting with an initial guess for the value of the controls at time t = 0, we solve the
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state system with controls (??) using forward Euler. Next, the adjoint system is solved using the
solutions from the state system and the transversality conditions (??) in backwards time. After
updating the controls u1 and u2, the error between the old values of ui (i = 1, 2) and the updated
value is calculated, and the process is repeated until the error is less than .001. When the pro-
cess stops, the final values of u1 and u2 are numerical approximations of the optimal control pair
(u∗1, u

∗
2). There are several means of updating the values of the controls u1 and u2. However, when

the simpler approaches, such as taking the average of the current ui and the ui from the previous
iteration, fail to converge, as with the SAIR model for H1N1, a convex combination with a weighted
average can be used [?]. For our model, in order to avoid convergence problems, it was necessary to
use a convex combination with a weighted average, which moves each iteration towards the current
iteration [?].
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Figure 4: Total number of infected individuals (A+ I) at time t without control
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(b) Total number of infections (A + I) With
Control

Figure 5: SAIR optimal control results for B1 = 20, B2 = 10, and A(0) = 100 ??,??

Applying social distancing and treatment controls to the model immediately suppresses the out-
break ??. Our results showed that we should place full effort in both controls at the beginning of
the outbreak. Although we chose social distancing to be the more costly of the two controls, figure
?? indicates that we should place more effort in this control rather than treatment throughout
the duration of the outbreak. Since social distancing reduces the number of infectious contacts
during the H1N1 epidemic, it is a more effective means of control than treatment. If we increase
the relative cost of control u1 by letting B1 = 50, we observe that more effort should be placed in
treatment. In this scenario, the higher relative cost of u1 offsets some of the benefits of this control
(see figure 6).

We then examined what effort is required if we only implement one control at a time, either social
distancing or treatment, and how effectively each control reduces the outbreak. In figure 7(a) in
which only social distancing is implemented, we still observed a significant reduction in the size of
the outbreak, with full effort required only during the first twenty days. However, when the only
control is treatment (figure 8(a)), even when full effort is made, the reduction in the outbreak is
less substantial than with social distancing alone.
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Figure 6: SAIR optimal control results for B1 = 50, B2 = 10, and A(0) = 100
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(a) Optimal control function u1 with u2 = 0
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Figure 7: SAIR optimal control results for B1 = 20, B2 = 10, and A(0) = 100 ??,??
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(a) Optimal control function u2 with u1 = 0
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Figure 8: SAIR optimal control results for B1 = 20, B2 = 10, and A(0) = 100 ??,??

3 Two Strain Model

Initially, everyone is susceptible to both strains of influenza. Individuals can be infected with both
the seasonal influenza and H1N1 virus in a single outbreak, but never at the same time. Another
assumption is that once an individual has been infected with and recovered from either H1N1 or
seasonal flu, an individual can still be infected with the influenza they haven’t contracted yet. Also,
it will be assumed that only the seasonal vaccine is available and there is no cross-immunity. Once
an individual has been infected with a type of influenza, he/she can either die or go to a recovered
class where he/she is considered immune to the infection of that type. There are no vital dynamics,
meaning natural births and deaths are not being considered. The seasonal vaccine is assumed to
be 100% effective and the recovery rates for the two influenzas are assumed to be different. People
who exhibit flu-like symptoms during a flu outbreak, who do not have influenza, are considered
negligible because the outbreak is taking place during the flu season. Asymptomatics (A), as well
as symptomatics (I), are being considered in the model because they play a vital role in disease
transmission and vaccination.

In this single outbreak model, it is assumed that all individuals that become infected will eventually
show symptoms. This is the reason for having those in the A classes going into the I classes.
Only individuals who do not show symptoms will be given the seasonal vaccine(VS , VA1, VA2). For
example, those who have no previous infections (S) or those who have not shown flu-like symptoms
during the outbreak (A1,A2) will be eligible for vaccination. People who have been vaccinated are
not considered immune to the H1N1 virus in the model, and therefore can be infected with H1N1
(A1,2, I1,2, A2,1, I2,1, A

∗
2, I
∗
2 ). Once in the symptomatic classes, an individual will either die or go to
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the protected class (P), where they are considered protected against re-infection from both strains.
The area that represents waste in the diagram is when a person who has asymptomatic seasonal
flu gets a seasonal vaccine. These people are still infectious and will eventually show symptoms.

Figure 9: Diagram of the Compartmental Model, where 1 =Seasonal and 2 =H1N1
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Table 2: List of Classes and Their Meaning, where 1 = Seasonal and 2 = H1N1

Class Meaning
S Susceptible
A1 Infected with Seasonal- Not Showing Symptoms (No Previous Infection)
I1 Infected with Seasonal - Showing Symptoms (No Previous Infection)
R1 Recovered from Seasonal
A2 Infected with H1N1- Not Showing Symptoms (No Previous Infection)
I2 Infected with H1N1 - Showing Symptoms (No Previous Infection)
R2 Recovered from H1N1
Vs Vaccine Given to Susceptible
VA1 Vaccine Given to Asymptomatic with Seasonal Flu
VA2 Vaccine Given to Asymptomatic with H1N1 Virus
A∗2 Infected with H1N1 after Receiving Vaccine- Not Showing Symptoms
I∗2 Infected with H1N1 after Receiving Vaccine- Showing Symptoms
A1,2 Previously Infected with Seasonal, now Infected with H1N1- Not Showing Symptoms
A2,1 Previously Infected with H1N1, now Infected with Seasonal- Not Showing Symptoms
I1,2 Previously Infected with Seasonal, now Infected with H1N1- Showing Symptoms
I2,1 Previously Infected with H1N1, now Infected with Seasonal- Showing Symptoms
P Protected Against Seasonal and H1N1

Table 3: List of Parameters and their Values

Type Parameters Description Value Reference
Seasonal β1 Transmission Rate 0.2167 Estimation

α1 Rate of Progression to Symptomatic 1
2 Estimation

α∗1 Rate to Symptomatic Infection after Vaccination .5 Estimation
γ1 Recovery Rate 1

5 [?]
µ1 Death Rate 10−6 Estimation
ν Vaccination Rate .01 Estimation
Ro Basic Reproductive Number 1.3 [?]

H1N1 β2 Transmission Rate 0.2793 Estimation
α2 Rate of Progression to Symptomatic 1

2 [?]
α∗2 Rate to Symptomatic Infection after Vaccination .5 Estimation
γ2 Recovery Rate 1

33 : 1
100 [?]

µ2 Death Rate 10−6 Estimation
Ro Basic Reproductive Number 1.8 [?]
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3.1 Differential Equations

dS

dt
= −β1SJ1 − β2SJ2 − νS (27)

dA1

dt
= β1SJ1 − (α1 + ν)A1 (28)

dI1

dt
= α1A1 + α∗1VA1 − (γ1 + µ1)I1 (29)

dR1

dt
= γ1I1 − β2R1J2 (30)

dA1,2

dt
= β2R1J2 − α2A1,2 (31)

dI1,2

dt
= α2A1,2 − (γ2 + µ2)I1,2 (32)

dA2

dt
= β2SJ2 − (α2 + ν)A2 (33)

dI2

dt
= α2A2 − (γ2 + µ2)I2 (34)

dR2

dt
= γ2I2 − β1R2J1 (35)

dA2,1

dt
= β1R2J1 − α1A2,1 (36)

dI2,1

dt
= α1A2,1 − (γ1 + µ1)I2,1 (37)

dVA2

dt
= νA2 − α∗2VA2 (38)

dI∗2
dt

= α∗2VA2 + α2A
∗
2 − (γ2 + µ2)I∗2 (39)

dVS
dt

= νS − β2VSJ2 (40)

dA∗2
dt

= β2VSJ2 − α2A
∗
2 (41)

dVA1

dt
= νA1 − α∗1VA1 (42)

dP

dt
= γ2(I∗2 + I1,2) + γ1I2,1 (43)

where

J1 =
I1 +A1 +A2,1 + I2,1 + VA1

N

J2 =
I2 +A2 +A1,2 + I1,2 + I∗2 +A∗2 + VA2

N
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4 Analysis

4.1 Calculating R0

F =



β1SJ1

β1R1J1

β2SJ2

β2R1J2

β2VsJ2

0

0

0

0

0

0

0



V =



(α1 + ν)A1

α1A2,1

(α2 + ν)A2

α2A1,2

α2A
∗
2

−α1A1 − α∗1VA1 + (α1 + µ1)I1

−α1A2,1 + (α1 + µ1)I2,1

−νA1 + α∗1VA1

−α2A2 + (γ2 + µ2)I2

−α2A1,2 + (α2 + µ2)I1,2

−νA2 + α∗2V2

−α∗2VA2 − α2A
∗
2 + (γ2 + µ2)I∗2


Taking the Jacobian of both of these matrices, F ,V, we obtain matrices F and V , respectively

F =



β1 β1 0 0 0 β1 β1 β1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 β2 β2 β2 0 0 0 β2 β2 β2 β2

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



and

V =



α1 + ν 0 0 0 0 0 0 0 0 0 0 0

0 α1 0 0 0 0 0 0 0 0 0 0

0 0 α2 + ν 0 0 0 0 0 0 0 0 0

0 0 0 α2 0 0 0 0 0 0 0 0

0 0 0 0 α2 0 0 0 0 0 0 0

−α1 0 0 0 0 γ1 + µ1 0 −α∗1 0 0 0 0

0 −α1 0 0 0 0 γ1 + µ1 0 0 0 0 0

−ν 0 0 0 0 0 0 α∗1 0 0 0 0

0 0 −α2 0 0 0 0 0 γ2 + µ2 0 0 0

0 0 0 −α2 0 0 0 0 0 γ2 + µ2 0 0

0 0 −ν 0 0 0 0 0 0 0 α∗2 0

0 0 0 0 −α2 0 0 0 0 0 −α∗2 γ2 + µ2
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Using the inverse of V (see Appendix A), we multiply it by F , where A =
β1

γ1 + µ1
, B =

β2

γ2 + µ2
,

and C =
β2

α2 + ν
+

β2

γ2 + µ2

α2

α2 + ν
+

β2ν

(α2 + ν)α∗2
+

β2

γ2 + µ2

ν

α2 + ν
to acquire

FV
−1

=



β1
α1+ν + A +

β1ν
(α1+ν)α∗1

β1
α1

+ A 0 0 0 A A A +
β1
α1

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 C
β2
α2

+ B
β2
α2

+ B 0 0 0 B B
β2
α∗2

+ B B

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



Since FV −1 is an upper triangular matrix, the eigenvalues are equal to the values of the diagonal.
So, the basic controlled reproductive number is

Rc = max{λ1, λ2}

where

λ1 =
β1

α1 + ν
+

β1

α1 + ν

α1

γ1 + µ1
+

β1

α1 + ν

ν

α∗1

α∗1
γ1 + µ1

+
β1

α1 + ν

ν

α∗1

λ2 =
β2

α2 + ν
+

β2

α2 + ν

α2

γ2 + µ2
+

β2

α2 + ν

ν

α∗2

α∗2
γ2 + µ2

+
β2

α2 + ν

ν

α∗2
(37)

The terms in each eigenvalue represent the possible paths an individual will take through the dif-
ferent classes in our model. They also only account for the cases when an individual is infected
with influenza for the first time during the outbreak. In λ1, which represents the basic reproductive
number for seasonal flu, an individual can either 1. become infected with seasonal and not show
symptoms (A1), 2. become infected with seasonal and take two days to show symptoms (A1I1),
or 3. become infected with seasonal and not show symptoms, get vaccinated for seasonal flu, and
then develop symptoms (A1VA1I1). In λ2, which represents H1N1 virus, an individual can either 1.
become infected with H1N1 and not show symptoms (A2), 2. become infected with H1N1 and take
two days to show symptoms (A2I2), 3. become infected with H1N1 without showing symptoms and
then get vaccinated for seasonal flu (A2VA2), or 4. become infected with H1N1 without showing
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symptoms, get vaccinated for seasonal flu, then develop symptoms for H1N1 (A2VA2I
∗
2 ).

In the absence of control, no vaccination, Rc reduces to the basic reproductive number, R0.

Thus, the basic reproductive numbers for seasonal influenza and H1N1 are

R10 =
β1

α1
+
β1

α1

α1

γ1 + µ1

R20 =
β2

α2
+
β2

α2

α2

γ2 + µ2

respectively. Thus, R0 = max{R10, R20}.
The SAIR model in section ?? with κ = 0 is a special case of our more complex two-strain model
with vaccination. Setting the death rate, vaccination rate, and seasonal flu infection rates equal to
zero (µ = ν = β1 = 0) to recreate the setting of the SAIR model for seasonal influenza when κ = 0,
we observe that R0 = max{R20, 0} = R20 is consistent with the basic reproductive number derived
in section ??

R20 =
β2

α2
+
β2

α2

α2

γ2 + µ2

=
β

α
+
β

α

α

γ
.

4.2 Simulations of Two-Strain Model with and without Vaccination

Numerical simulations allow us to evaluate the effects of vaccination on the duration of an outbreak,
as well as the total morbidity at the end of the outbreak of seasonal and H1N1 influenza. In the
presence of vaccination, we can also use simulations to count the total number of wasted vaccines
during an outbreak for different population sizes and initial conditions. In tables Table 4 and Table
5, we summarize some results for a population of 100,000 individuals.

In figures 10 and 11, we compared the outbreaks of seasonal and H1N1 influenza for different initial
conditions, dividing the infectious individuals according to the different infectious states - A1, I1,
A21, I21 for seasonal influenza infections, and A2, I2, A12, I12 for H1N1 infections. The graphs
demonstrate a much larger peak in the H1N1 outbreak than for seasonal influenza; however, the
duration of H1N1 is much shorter. We observed different dynamics in the growth of the A1 class in
figure 10(a) and 11(a). When there are more asymptomatic seasonal infections than asymptomatic
H1N1 infections at the beginning of the outbreak, we noticed fluctuations in the growth of A1.
Initially, A1 increases then begins to decrease as individuals recover from seasonal influenza. Then,
as individuals recover from I2, they are now susceptible to a secondary infection from a seasonal
virus. Because the H1N1 outbreak is large, the number of secondary seasonal infections is greater
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than the number of primary seasonal infections at the beginning of the outbreak. So, as members
of the population enter the A21 class, they begin to infect members of class S, resulting in another
visible increase in the A1 class.

Table 4: Results for varying initial conditions with vaccination

A1(0) = 200 A1(0) = 100 A1(0) = 100 A1(0) = 0
A2(0) = 100 A2(0) = 200 A2(0) = 0 A2(0) = 100

Total Wasted Vaccines 110 55 97 0
Total Successful Vaccinations 48,114 46,812 95,038 50,456

Total H1N1’s Vaccinated 906 987 0 971
Total Unvaccinated 50,869 52,145 4,864 48,572

Total Infected 74,801 74,101 4,857 73,192
Total H1N1 Infections 72,577 72,800 0 73,192

Table 5: Results for varying initial conditions without vaccination

A1(0) = 200 A1(0) = 100 A1(0) = 100 A1(0) = 0
A2(0) = 100 A2(0) = 200 A2(0) = 0 A2(0) = 100

Total Infected 87,256 88,047 59,367 73,192
Total H1N1 Infections 69,602 71,202 0 73,192

Vaccination significantly changes the dynamics of the seasonal influenza infections. In our model
without vaccination, more individuals contract secondary (I21) seasonal infections than primary
(I1) seasonal infections. However, when vaccination is introduced, we observed a higher peak in
the primary seasonal infections than in the secondary seasonal infections. Since our model assumes
no co-infection of influenza virus strains, using the seasonal vaccine has a negative effect in terms
of the H1N1 outbreak. Allowing more individuals to become infected with seasonal influenza, by
withholding vaccination, reduces the number of people susceptible to H1N1. Thus, we observe a
slight increase in the number of H1N1 infections (see Tables 4 and 5) when vaccination is present
in the model.
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(a) Seasonal Infectious classes (b) H1N1 Infectious classes

Figure 10: Unvaccinated Infectious Classes when A1(0) = 200 and A2(0) = 100

(a) Seasonal Infectious classes (b) H1N1 Infectious classes

Figure 11: Unvaccinated Infectious Classes when A1(0) = 100 and A2(0) = 200
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(a) Seasonal Infectious classes (b) H1N1 Infectious classes

Figure 12: Vaccinated Infectious Classes when A1(0) = 200 and A2(0) = 100

(a) Seasonal Infectious classes (b) H1N1 Infectious classes

Figure 13: Vaccinated Infectious Classes when A1(0) = 100 and A2(0) = 200
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In addition to determining the effectiveness of a particular strategy, when a resource is limited we
also want to evaluate the wastefulness of the strategy that decides the allocation of these resources.
Under our vaccination strategy, we only vaccinate those who have never shown symptoms of an
influenza infection during the current outbreak or who have received a vaccine for the current flu
season. There will always be wasted vaccines in this strategy when seasonal influenza is present
because we will vaccinate a portion of individuals who are already infected with seasonal influenza
and simply have not yet shown symptoms (A1). To count the total number of vaccines wasted, we
calculate the total number of people who have passed through the vaccinated asymptomatic seasonal
compartment (VA1) during the outbreak. Since the vaccination rate (.01) is low in comparison to
the rate of becoming symptomatic (0.5), we observe low numbers of wasted vaccine (Table 5).
Our strategy also allows us to vaccinate those who are asymptomatic with H1N1 and have had no
previous influenza infections. These vaccinations are successful vaccinations since once a person
recovers from H1N1, they become susceptible to seasonal influenza if they have not received a
seasonal vaccine. By counting the number of individuals who have traveled through VA2 during
the outbreak, we discovered that our strategy successfully vaccinates many more primary H1N1
infected individuals (A2) than the number of vaccines it wastes on primary asymptomatic seasonal
influenza infected individuals (see figure 14 and Table 4). However, because we cannot distinguish
between seasonal influenza and H1N1 influenza symptoms, our vaccination strategy will also fail
to vaccinate those who have not been infected with seasonal flu and who either have symptomatic
H1N1 (I2) or have recovered from H1N1 (R2). Hence, our strategy may be useful in societies that
have limited resources to administer efficient tests for H1N1 to their patients and cannot afford to
waste the available vaccines.

(a) VA1 (Wasted Vaccine) and VA2 (b) VA1 (Wasted Vaccine) and VA2

Figure 14: In ?? A1(0) = 200 and A2(0) = 100, in ?? A1(0) = 100 and A2(0) = 200
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5 Optimal Control Theory Applied to Two-Strain Model

In section ??, we introduced controls to the single-strain SAIR model for H1N1. We explored the
same controls, social distancing (u1) and treatment (u2), in our two-strain influenza model. Since
social distancing affects a population as a whole, we added this control to the transmission rate
of seasonal influenza β1 in addition to β2. However, we chose to only provide treatment for those
symptomatic with H1N1. This assumes that patients are tested for the H1N1 subtype of influenza
before treatment is administered.

The state system equations for our 17 differential equations will be:

dS

dt
= −β1(1− u1)SJ1 − β2(1− u1)SJ2 − νS (34)

dA1

dt
= β1(1− u1)SJ1 − (α1 + ν)A1 (35)

dI1

dt
= α1A1 + α∗1VA1 − (γ1 + µ1)I1 (36)

dR1

dt
= γ1I1 − β2(1− u1)R1J2 (37)

dA1,2

dt
= β2(1− u1)R1J2 − α2A1,2 (38)

dI1,2

dt
= α2A1,2 − (γ2(1 + u2) + µ2)I1,2 (39)

dA2

dt
= β2(1− u1)SJ2 − (α2 + ν)A2 (40)

dI2

dt
= α2A2 − (γ2(1 + u2) + µ2)I2 (41)

dR2

dt
= γ2(1 + u2)I2 − β1(1− u1)R2J1 (42)

dA2,1

dt
= β1(1− u1)R2J1 − α1A2,1 (43)

dI2,1

dt
= α1A2,1 − (γ1 + µ1)I2,1 (44)

dVA2

dt
= νA2 − α∗2VA2 (45)

dI∗2
dt

= α∗2VA2 + α2A
∗
2 − (γ2(1 + u2) + µ2)I∗2 (46)

dVS
dt

= νS − β2(1− u1)VSJ2 (47)

dA∗2
dt

= β2(1− u1)VSJ2 − α2A
∗
2 (48)
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dVA1

dt
= νA1 − α∗1VA1 (49)

dP

dt
= γ2(1 + u2)(I∗2 + I1,2) + γ1I2,1 (50)

Our goal is to reduce the number of seasonal and H1N1 infections and also increase the number
of recovered individuals. We used the same technique as with the SAIR model for deriving the
optimal control pair (u∗1, u

∗
2). The objective functional to be minimized is

J(u1, u2) =
∫ tf

0
[J1(t)N + J2(t)N +

B1

2
u2

1(t) +
B2

2
u2

2(t)]dt

where u1 is controlling β1 and β2 and u2 is controlling γ2. From Pontryagin’s Maximum Principle,
we find the optimal controls by minimizing a Hamiltonian, H, where

H = J1(t)N + J2(t)N + B1
2 u

2
1 + B2

2 u
2
2 +

17∑
i=1

λigi

Also, from using Pontryagin’s Maximum Principle, we gather that

dλ1

dt
= −∂H

∂S
, λ1(tf ) = 0

· · ·
dλ17

dt
= −∂H

∂P
, λ17(tf ) = 0

From this expression, we obtain the adjoint system:

dλ1

dt
= λ1(β1(1− u∗1)J1 + β2(1− u∗1)J2 + ν)− λ2(β1(1− u∗1)J1)− λ7(β2(1− u∗1)J2)− λ14(ν)

dλ2

dt
= −1 + λ1(β1(1− u∗1)

S

N
)− λ2(β1(1− u∗1)

S

N
− (α1 + ν))− λ3(α1) + λ9(β1(1− u∗1)

R2

N
)

−λ10(β1(1− u∗1)
R2

N
)− λ16(ν)

dλ3

dt
= −1 + λ1(β1(1− u∗1)

S

N
)− λ2(β1(1− u∗1)

S

N
) + λ3(γ1 + µ1)− λ4(γ1) + λ9(β1(1− u∗1)

R2

N
)

−λ10(β1(1− u∗1)
R2

N
)

dλ4

dt
= λ4(β2(1− u∗1)J2)− λ5(β2(1− u∗1)J2)

dλ5

dt
= −1 + λ1(β2(1− u∗1)

S

N
) + λ4(β2(1− u∗1)

R1

N
)− λ5(β2(1− u∗1)

R1

N
− α2)− λ6(α2)

−λ7(β2(1− u∗1)
S

N
) + λ14(β2(1− u∗1)

VS
N

)− λ15(β2(1− u∗1)
VS
N

)
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dλ6

dt
= −1 + λ1(β2(1− u∗1)

S

N
) + λ4(β2(1− u∗1)

R1

N
)− λ5(β2(1− u∗1)

R1

N
) + λ6(γ2(1 + u∗2) + µ2)

−λ7(β2(1− u∗1)
S

N
) + λ14(β2(1− u∗1)

VS
N

)− λ15(β2(1− u∗1)
VS
N

)− λ17(γ2(1 + u∗2))

dλ7

dt
= −1 + λ1(β2(1− u∗1)

S

N
) + λ4(β2(1− u∗1)

R1

N
)− λ5(β2(1− u∗1)

R1

N
)− λ7(β2(1− u∗1)

S

N
+ (α2 + ν))

−λ8(α2)− λ12(ν) + λ14(β2(1− u∗1)
VS
N

)− λ15(β2(1− u∗1)
VS
N

)

dλ8

dt
= −1 + λ1(β2(1− u∗1)

S

N
) + λ4(β2(1− u∗1)

R1

N
)− λ5(β2(1− u∗1)

R1

N
)− λ7(β2(1− u∗1)

S

N
)

+λ8(γ2(1 + u∗2) + µ2)− λ9(γ2(1 + u∗2)) + λ14(β2(1− u∗1)
VS
N

)− λ15(β2(1− u∗1)
VS
N

)

dλ9

dt
= λ9(β1(1− u∗1)J1)− λ10(β1(1− u∗1)J1)

dλ10

dt
= −1 + λ1(β1(1− u∗1)

S

N
)− λ2(β1(1− u∗1)

S

N
) + λ9(β1(1− u∗1)

R2

N
)− λ10(β1(1− u∗1)

R2

N
− α1)

−λ11(α1)
dλ11

dt
= −1 + λ1(β1(1− u∗1)

S

N
)− λ2(β1(1− u∗1)

S

N
) + λ9(β1(1− u∗1)

R2

N
)− λ10(β1(1− u∗1)

R2

N
)

+λ11(γ1 + µ1)− λ17(γ1)
dλ12

dt
= −1 + λ1(β2(1− u∗1)

S

N
) + λ4(β2(1− u∗1)

R1

N
)− λ5(β2(1− u∗1)

R1

N
)− λ7(β2(1− u∗1)

S

N
)

+λ12(α∗2)− λ13(α∗2) + λ14(β2(1− u∗1)
VS
N

)− λ15(β2(1− u∗1)
VS
N

)

dλ13

dt
= −1 + λ1(β2(1− u∗1)

S

N
) + λ4(β2(1− u∗1)

R1

N
)− λ5(β2(1− u∗1)

R1

N
)− λ7(β2(1− u∗1)

S

N
)

+λ13(γ2(1 + u∗2) + µ2) + λ14(β2(1− u∗1)
VS
N

)− λ15(β2(1− u∗1)
VS
N

)− λ17(γ2(1 + u∗2))

dλ14

dt
= −λ15(β2(1− u∗1)J2) + λ14(β2(1− u∗1)J2)

dλ15

dt
= −1 + λ1(β2(1− u∗1)

S

N
) + λ4(β2(1− u∗1)

R1

N
)− λ5(β2(1− u∗1)

R1

N
)− λ7(β2(1− u∗1)

S

N
)

−λ13(α2) + λ14(β2(1− u∗1)
VS
N

)− λ15(β2(1− u∗1)
VS
N
− α2)

dλ16

dt
= −1 + λ1(β1(1− u∗1)

S

N
)− λ2(β1(1− u∗1)

S

N
)− λ3(α∗1) + λ9(β1(1− u∗1)

R2

N
)− λ10(β1(1− u∗1)

R2

N
)

+λ16(α∗1)
dλ17

dt
= 0
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The optimal control pair (u∗1, u
∗
2) is defined by:

u∗1 = min(max(LB1,−
1
B1

(λ1(β1SJ1 + β2SJ2) + λ2(−β1SJ1) + β2R1J2(λ4 − λ5)

+λ7(−β2SJ2) + β1R2J1(λ9 − λ10) + β2VsJ2(λ14 − λ15))), UB1)

u∗2 = min(max(LB2,
γ2

B2
(λ6I12 + I2(λ8 − λ9) + I∗2 (λ13 − λ17))), UB2);

5.1 Numerical Results

In this section, we analyzed numerically an optimal control strategy on our two-strain influenza
model. For the figures presented, we assumed that the number of asymptomatic seasonal individuals
is 200 while the number of asymptomatic H1N1 is 100 at time t = 0. These figures are divided
into two cases: with vaccination and without vaccination. For the simulation, we let the cost
of implementing social distancing (B1=30) be greater than treatment (B2=10), and we run the
simulation for a time span of 100 days.

(a) Controls
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(b) Total Seasonal (c) Seasonal Infectious classes

(d) Total H1N1 (e) H1N1 Infectious classes

Figure 15: Optimal Control Strategy without Vaccination
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Figure 15 illustrates the optimal control strategy without vaccination. These results showed that
in order to reduce the duration and intensity of the outbreak, treatment and social distancing
efforts must be kept at maximum efficiency through the peaks of the infectious classes. After that,
social distancing remains at 100% for 10 days to ensure that the virus completely dies out while
the treatment effort diminishes after the climax. The controls are so effective that they prevent
secondary outbreaks from occurring. Since the u1 control disables the ability of the virus to spread,
we can surmise that it is more effective than the u2 control which can be verified by the plots. If
these controls were not applied, the simulation depicts a more significant impact on the severity
and duration of the seasonal and H1N1 viruses.

(a) Controls (b) Seasonal Infectious classes

(c) H1N1 Infectious classes

Figure 16: Optimal Control Strategy with Vaccination

Figure ?? demonstrates the optimal control strategy with vaccination. We noticed that the amount
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of effort in the controls decreases at a fairly constant rate, and eventually, they become equivalent
before leveling off. The u2 control effort still remains at optimal level for the same period of time as
the model without vaccination, but the u1 control effort is maintained at a maximum for a shorter
time span. Similarly, the presence of control causes a related pattern in the total H1N1 infections
regardless of the vaccination factor. However even with the control, the seasonal influenza manages
to influence a larger proportion of the infected population. Yet if the controls were not present,
the vaccine still plays an important part in minimizing the outbreak of the seasonal flu. When
comparing figures ?? and ??, we observed that in the presence of vaccination, more effort is placed
in treatment than when vaccination is absent in our system. This result is consistent with our
earlier finding that H1N1 cases increase in the presence of vaccination.

6 Conclusions and Future Work

Simulations were performed on the SAIR Model, the two-strain model and control theory in order to
study the effects of the seasonal vaccine and optimal control on an influenza outbreak with seasonal
and H1N1 viruses. In the SAIR model, in order to increase the final size in the recovered class, κ
needs to be small. This means that if there is a significant number of people that are infected with
influenza that don’t show symptoms, they will most likely infect more individuals because they are
not aware of their infectiousness. Therefore, there will be more people who contract influenza and
less end up in the recovered class. The analysis of the SAIR model helped us understand how the
viruses interactions occur in the larger, and more complicated two-strain model.

After doing simulations for the two-strain model, the results showed that administering the seasonal
vaccine overall reduced the number of infectious individuals in an outbreak. However, it increases
the number of H1N1 infections. These results make sense because if people are being vaccinated
against seasonal and the transmission rate for H1N1 is higher than for seasonal, the outcome would
be more people being infected with H1N1. Also, it was shown that when the initial population
of those infected with seasonal is larger than that of H1N1, there is a higher chance of wasting
vaccines.

Using optimal control theory determined that implementing treatment and social distancing has
a substantial effect on controlling the number of infections during an outbreak. When the social
distancing begins, the number of infectious individuals declines rapidly. The controls are so effective
in suppressing the spread of infection that they prevented secondary influenza infection cases from
forming. Although social distancing is more effective than treatment in controlling the disease, the
effort placed in treatment became more important in the presence of vaccination.

In conclusion, social distancing has proven to be the better strategy for controlling seasonal in-
fluenza infections, while treatment is more effective when trying to control the H1N1 infections.
In the future, we would like to explore ways to improve our model or ask more questions about
the movement in the two-strain model. These ideas include incorporating the H1N1 vaccine, hav-
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ing individuals move directly from asymptomatic to recovered, including low-risk and high risk
susceptibles, and using a different objective function involving only H1N1.
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A Inverse of V

The inverse of V where A = (γ1 + µ1)−1 and B = (γ2 + µ2)−1:


(α1 + ν)−1 0 0 0 0 0 0 0 0 0 0 0

0 α1
−1 0 0 0 0 0 0 0 0 0 0

0 0 (α2 + ν)−1 0 0 0 0 0 0 0 0 0

0 0 0 α2
−1 0 0 0 0 0 0 0 0

0 0 0 0 α2
−1 0 0 0 0 0 0 0

A 0 0 0 0 A 0 A 0 0 0 0

0 A 0 0 0 0 A 0 0 0 0 0

ν
(α1+ν)(α1) 0 0 0 0 0 0 α1

−1 0 0 0 0

0 0
α2

(γ2+µ2)(α2+ν) 0 0 0 0 0 B 0 0 0

0 0 0 B 0 0 0 0 0 B 0 0

0 0 ν
α2(α2+ν) 0 0 0 0 0 0 0 α2

−1 0

0 0
ν (α2)

α2(γ2+µ2)(α2+ν) 0 B 0 0 0 0 0
(α2)

α2(γ2+µ2) B
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B Control Code for SAIR

MATLAB Code for Optimal Control Simulations: 

 

%% Euler Method for finding optimal control pair (u1*,u2*) 

  

clc 

clear all 

  

tf=100; 

MAX = floor(tf/.01)+1; 

dt = 0.01; 

  

%% parameters 

  

N=10^5; 

  

b= .2793; 

a=.5; 

g=.225; 

k=0; 

gT = g; 

m = 0; 

  

%% Upper and lower bounds 

LB1 = .05; 

UB1 = .95; 

LB2 = .05; 

UB2 = .95; 

  

%% Weight constants 

B1 = 20; 

B2 = 10; 

  

%% initialize column vectors 

 u1_old = 0.5*ones(MAX,1)'; 

 u2_old = 0.5*ones(MAX,1)'; 

  

u1_old = 0*ones(MAX,1)'; 

u2_old = 0*ones(MAX,1)'; 

  

u1_new = 0*ones(MAX,1)'; 

u2_new = 0*ones(MAX,1)'; 

  

S = zeros(1,MAX)'; 

A = zeros(1,MAX)'; 

I = zeros(1,MAX)'; 

R = zeros(1,MAX)'; 

  

l1=0.5*ones(1,MAX)'; 

l2=0.5*ones(1,MAX)'; 

l3=0.5*ones(1,MAX)'; 

l4=0.5*ones(1,MAX)'; 

  

l1_new=zeros(1,MAX)'; 

l2_new=zeros(1,MAX)'; 

l3_new=zeros(1,MAX)'; 

l4_new=zeros(1,MAX)'; 
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%% initial conditions 

  

A(1) = 100; 

I(1) = 0; 

R(1) = 0; 

S(1) = N-A(1)-I(1); 

  

iter = 0; 

error = 1; 

while error >.001  

    iter = iter+1 

     

    %% forward Euler 

  

    for i = 1:MAX-1 

         

        S(i+1)=S(i) + dt*(m*N-b*(1-u1_old(i))*S(i)*(A(i)+I(i))/N-

m*S(i)); 

  

        A(i+1)=A(i) + dt*(b*(1-u1_old(i))*S(i)*(A(i)+I(i))/N-

A(i)*(a+k)-m*A(i)); 

  

        I(i+1) = I(i) + dt*(a*A(i)-(g +gT*u2_old(i))*I(i)-m*I(i)); 

    end 

     

    l1(MAX)=0; 

    l2(MAX)=0; 

    l3(MAX)=0; 

    l4(MAX)=0; 

     

        

       %% backwards Euler 

        

        for i = MAX:-1:2 

            l1(i-1)=l1(i) - dt*((l1(i)*(b*(1-u1_old(i))*(A(i)+I(i))/N-

m)+l2(i)*(-b*(1-u1_old(i))*(A(i)+I(i))/N))); 

  

            l2(i-1)=l2(i) - dt*(-(1+l1(i)*(-(b*S(i)*(1-

u1_old(i))/N))+l2(i)*(b*S(i)*(1-u1_old(i))/N-m-(a+k))+l3(i)*(a))); 

%+l4(i)*(k))); 

  

            l3(i-1)=l3(i) - dt*(-(1+l1(i)*(-b*S(i)*(1-u1_old(i))/N)+ 

l2(i)*(b*S(i)*(1-u1_old(i))/N)+l3(i)*(-(g+gT*u2_old(i))-m))); 

%+l4(i)*(g+gT*u2_old(i)))); 

        end 

         

         

        c=0.9; 

    for i=1:MAX 

         

        %% Define u1 and u2 

          u1 = min(max(LB1, 1/B1*(b*S(i)*(A(i)+I(i))/N)*(l2(i)-

l1(i))),UB1); 

          u2 = min(max(LB2,1/B2*(gT*I(i)*(l3(i)-l4(i)))),UB2);   

          

         %%control updates for u1 using weighted convex combination 
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         if (u1 >u1_old(i)) 

             u1_new(i)=UB1*c^iter+u1_old(i)*(1-c^iter); 

         else 

             u1_new(i)=LB1*c^iter+u1_old(i)*(1-c^iter); 

         end 

          

         %%control updates for u2 using weighted convex combination 

         if (u2>u2_old(i)) 

             u2_new(i)=UB2*c^iter+u2_old(i)*(1-c^iter); 

         else 

             u2_new(i)=LB2*c^iter+u2_old(i)*(1-c^iter); 

         end 

  

    end 

        error = max(abs(u1_old-u1_new)+abs(u2_old-u2_new)) 

  

        u1_old = u1_new; 

  

        u2_old = u2_new; 

        

end 

 

 

%% Solve state system without control 

  

x0 = [N-A(1);A(1);0;0]; 

  

tspan = 0:0.01:tf;    

  

[WW,z] = ode45(@SAIR2,tspan,x0); 

  

AA = z(:,2); 

II = z(:,3); 

  

%% plot 

TT = 0:0.01:tf; 

  

l=1; 

figure(l) 

size(TT) 

plot(TT,A'+I','--r','LineWidth',2) 

xlabel('time (in days)') 

ylabel('Number of Individuals') 

legend('With Control') 

  

l = l+1; 

figure(l) 

plot(tspan,AA+II,'b','LineWidth',2) 

  

xlabel('time (in days)') 

ylabel('Number of Individuals') 

legend('Without Control') 

  

l=l+1; 

figure(l) 

plot(TT,u1_old,'b','Linewidth',2) 

hold on 
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plot(TT,u2_old,'--r','LineWidth',2) 

  

xlabel('time (in days)') 

ylabel('Control effort') 

legend('u_1','u_2') 

 

 

MATLAB Code for Solving SAIR System Without Control: 

 

function [dzdt] =SAIR2(WW,z) 

  

N=10^5; 

  

%% H1N1 parameters 

b1= .2793; 

a1=.5; 

g1=.225; 

k1=0; 

  

%% State Equations for SAIR model 

dzdt(1)=-b1*z(1)*(z(2)+z(3))/N; 

  

dzdt(2)=b1*z(1)*(z(2)+z(3))/N-z(2)*(a1+k1); 

  

dzdt(3)=a1*z(2)-g1*z(3); 

  

dzdt(4)=g1*z(3)+k1*z(2); 

  

dzdt=dzdt'; 

 

 

40


