
Effects of Temperature on Membrane
Electrodiffusion

Oscar Patterson1, Ramón Mart́ınez2, Ilyssa Summer3
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Abstract

From a theoretical point of view, many cell functions such as ac-
tion potential generation and general signaling depend on molecular
transport across their membrane. In this work we aim to increase our
understanding of how the properties of membrane transport depend
on temperature. To start addressing this problem, we use a thermo-
dynamical description of ionic flow across membranes. With this we
model two processes of high relevance: cellular excitability and regula-
tion of extracellular pH. We use dynamical systems theory to analyze
the behavior of the system with respect to temperature. We specif-
ically address the following questions: (1) does temperature affect
the dynamics of action potential generation and firing frequency? (2)
what is the dependence of the transmembrane acidity levels on body
temperature? In regard to excitability, we expect to describe the be-
havior of neurons and other excitable cells in cold blooded animals
as the environment temperature changes. In addition, one potentially
interesting aspect of our findings in regard to pH regulation is to un-
ravel mechanisms explaining why temperature-based therapies work
for the treatment of some cancers.
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1 Introduction

In this work we study how some physical parameters, specially temperature,
affects membrane transport. In order to study this we have taken a biophysi-
cal approach. We have used an equation derived from thermodynamical and
electrodiffusion considerations to describe flux across the membrane. With
these equations we have studied the role of temperature in two interesting
cases. First, we address the flow of potassium and sodium ions in the neu-
ronal membrane that is involved in the generation of action potentials. Then
we decided to study the regulation of pH in the extracellular medium which
is believed to be related to cancer [5].

2 Biophysical background

In this section we make an outline of the ideas first developed by Goldman
and then by Endresen in [8] to build equations for flow of ions through the
membrane.

2.1 Nernst potential

Nearly impermeable to the passage of ions, the cell membrane consists of
differing concentrations of ions inside and outside the cell (i.e., an ion concen-
tration gradient). Similar to the charged perfect conductor of electrostatics,
the intracellular ions tend to concentrate near the membrane. These attract
oppositely charged extracellular ions to produce an electric potential gradient
in addition to the concentration gradient.

Embedded in the membrane are ion-specific channels mediating diffusion.
As described by Fick’s law, the diffusive flow across the membrane can be
written as:

~φdiff = −ukT∇[S], (1)

where ~φ is the ionic flux ( 1
M2s

), [S] is the concentration of ions ( 1
m3 ), u is the

ion mobility (mCN
s

), T is absolute temperature (K), and k is the Boltzmann’s
constant (J or Nm).

Simultaneously, Ohm’s law governs the motion of charges in a potential
gradient as:

~φohm = −zqu[S]∇U, (2)
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where z is the valence of the ion species, q the elementary unit of charge, and
U the electrical potential. Adding these two fluxes yields,

~φtotal = −ukT∇[S]− uzq[S]∇U (3)

= −ukT exp

(
−zqU
kT

)
∇
[
[S] exp

(
zqU

kT

)]
. (4)

This is the Nernst-Planck equation for the total ion flux due to the electric
force and diffusion. The derivation is given in appendix A.1.

To find the formula for the voltage at which the flux due to diffusion and
the electrical force cancels, we set ~φtotal = 0 in the Nernst-Planck equation
(3), separate U and [S], and integrate from the extracellular to the intracel-
lular side of the membrane

−uzq
∫ in

out

∂U

∂x
dx = ukT

∫ in

out

1

[S]
d[S]

=⇒ vS = Uin − Uout =
kT

zq
ln

[S]out
[S]in

. (5)

This is the Nernst potential for an ion species (also know as the reversal po-
tential). It is the potential drop across the membrane, from the intracellular
to the extracellular region, at which the net ion flux vanishes for a given
[S]out/[S]in and T .

2.2 Ion channel current

Consider an ion channel of length d and cross sectional area A = A(x), where
x is the distance from outside to inside and A(x) varies with distance along
the length of the channel. Importantly, the current I is assumed to be the
same in cross section across the pore (i.e., independent of x) and is related
to the x-component of the flux φx as follows:

I = qzφxA, or, φx =
I

zqA
.

Equating the expresion above to the x-component of the Nernst-Planck equa-
tion (3) and multiplying by exp(zq(U − U0)/kT , where U0 is the average of
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the potentials at each end of the channel, yield

I

A
exp

(
zq(U − U0)

kT

)
= −zqukT d

dx

[
[S] exp

(
zq(U − U0)

kT

)]
.

Integrating this last equation from the intracellular to the extracellular region
(U, [S], and A are functions of x) and factoring out

√
[S]out[S]in results in

I =
2zqukT

Q

√
[S]out[S]in sinh

(
ze(v − vS)

2kT

)
, (6)

where

Q =

∫ out

in

1

A
exp

(
zq(U − U0)

kT

)
dx. (7)

The value of this integral is not known for the general case. However,
we can address it for the next particular case: Suppose U = U(x) is linear
(i.e., the electric field is constant), and that the cross-sectional area A(x)
has a constant value A0 except for a short, narrow pore in the center of area
Ap << A0 and length εd. We then obtain:

Q =
2dkT

zqv

[
1

A0

sinh
( zqv

2kT

)
+

(
1

Ap
− 1

A0

)
sinh

(εzqv
2kT

)]
.

For ε and Ap sufficiently small, this may be approximated by a constant:

Q ≈ Q0 =
εd

Ap
.

Then, Eqn. (6) becomes

i = kS sinh

(
zq(v − vS)

2kT

)
(8)

where

kS = 2zqukT
√

[S]out[S]in
Ap
εd
. (9)

Here, kS is independent of the membrane potential v. We use (8) as our
model for ion channel currents.
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2.3 Flux mediated by transporter proteins

The flux mediated by an exchanger protein taking m ions of type X from
outside the cell in exchange for n ions of type Y from inside the cell can be
thought of as the result of a reaction mXo + nYi 
 mXi + nYo with forward
rate α and backward rate β. The balance between the forward and backward
rates can be expressed as

α

β
= exp

(
∆G

kT

)
(10)

where the change in free energy of the system is given by

∆G = q [mzx(v − vx) + nzy(v − vy)] . (11)

As a consequence, the flux is described by writing N(α − β), which written
in terms of the free energy of the system is

F = Nλ(T )
√

[X]mo [X]mi [Y ]no [Y ]ni sinh
[ q

2kT
(mzx(v − vx) + nzy(v − vy))

]
.

(12)

3 Applications

3.1 Application I: Neuron dynamics

We apply Eqn. (6) for the flux that we have derived in the last section to
study the generation of action potential in the neuron membrane.

3.1.1 Mathematical model

Neurons can be thought as dynamical systems [7]. In neurons, the most
important transmembrane fluxes are those of potassium K+ and sodium
Na+. The extracellular medium has a high concentration of sodium ions,
while the intracellular medium has a high concentration of potassium [7].
Figure 1 also depicts the channels through which ions flow. According to (8)
the currents for sodium and potassium are of the form:

iNa = ANa sinh
( q

2kT
(v − vNa)

)
(13)

iK = AK sinh
( q

2kT
(v − vK)

)
(14)
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Figure 1: Inside the cell there
is a higher concentration of
potassium ions. In contrast
the extracellular concentration
of sodium is higher than it’s
intracellular counterpart. The
figure also shows the chan-
nels through which ions diffuse
(Figure taken from wikipedia
commons).

The membrane can be modeled as a capacitor. As such, it has an asso-
ciated capacitor current that will be equal and opposite to the sum of the
channel currents, we obtain:

cm
dv

dt
= −iNa − iK (15)

= −ANa sinh
( q

2kT
(v − vNa)

)
− AK sinh

( q

2kT
(v − vk)

)
.

In addition, the potassium and sodium channels are voltage-gated. This is
taken into account with the introduction of the gating variables m(v), w(v) ∈
(0, 1) by writing:

ANa = aNam
3 (16)

AK = aKw
4. (17)

After substitution of Eqns. (16)-(17) into Eqn. (16) and the factoriza-
tion of the maximal current amplitude for Na+, the equation for membrane
potential becomes

dv

dt
=

āNa
cm

{
−m3 sinh

[
q(v − vNa)

2kT

]
− aK
aNa

w4 sinh

[
q(v − vK)

2kT

]}
(18)

where the gate dynamics [7] are given by:

dm

dt
= m∞(v)−m

τm(v)
(19)

dw

dt
= w∞(v)−w

τw(v)
, (20)
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with τm(v) and τw(v) representing the time constants for m and w, respec-
tively. The steady states of m and w are, respectively, m∞ and w∞.
Fitz-Hugh was the first to realize [3] that we can approximate m(t) by m∞.
Setting āk = aK

aNa
and A = aK

cm
, our system finally reduces to:

dv

dt
= A

[
−m3

∞(v) sinh
( q

2kT
(v − vNa)

)
− ākw4 sinh

( q

2kT
(v − vK)

)]
(21)

dw

dt
=
w∞(v)− w
τ∞(v)

(22)

where,

m∞(v) =
[
1 + exp

(zmq
kT

(vm − v)
)]−1

(23)

w∞(v) =
[
1 + exp

(zwq
kT

(vw − v)
)]−1

(24)

τw(v) =
[
2r cosh

( zwq
2kT

(vw − v)
)]−1

. (25)

In summary, the model of the neuron’s membrane as a capacitor with the
ion channels is being modeled by (6) and the equation for w is called first
order kinetics, usually used in the literature (see for example reference [7]).
The Nernst potentials for sodium and potassium are, respectively, vNa and
vK . vm and vw are the half activation potentials for sodium and potassium
respectively. T is temperature measured in Kelvins. Both Nernst potential
are functions of the temperature throughout. Finally r is the rate of recovery
of the potassium gate. In the equations above we see that temperature is
everywhere. We are going to study this system through simulations to see
how temperature affects the dynamics of the system.

Next, we provide a table of constants for the values that appear in our
model:
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Table 1: Physical constants and relevant parameters for the membrane po-
tential model [6].

Constant Value Units Description
q 1.602176487 ∗ 10−19 C Electrical charge of one electron.
k 1.3806504(24) ∗ 10−23 J

K
Boltzmann constant

cm 100 pF Capacitance of the membrane
aNa 75 nA Amplitude of the sodium channel
aK 14 nA Amplitude of the potassium channel
vw -45 mV Half activation potential for potassium
vm -30 mV Half activation potential for sodium

3.1.2 Analysis

We will start with a study of the sodium and potassium currents and how
they affect the membrane potential. We present our plots of the currents vs
membrane potential in the next figure:

Figure 2: Current vs voltage of the potassium (blue) and sodium current
(green) for different values of the gating variable w. We see that potas-
sium current is always positive for values greater than the Nernst potential
for potassium (≈ −80) and as w increase (the proportion of open channel
increases) the maximum amplitude of the current increases.
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To explain what is happening in this graphs we are going to see how this
currents behave in three intervals:

• (∞, vK) The potassium current is almost zero in this interval except
for big values of w for which the potassium current is negative. In this
interval the potassium current will increase the membrane potential
according to equation (21), and that means that positive ions are going
from the outside of the membrane to the inside. The sodium current
is almost zero in this interval as we show in Fig. 2. Therefore in this
interval the membrane potential is always increasing.

• (vK , vNa) The potassium current is positive in this interval which
means that according to equation (21) the membrane potential is de-
creasing which means that ions are going from inside of the cell to the
outside. On the other hand the sodium current is negative which means
that the membrane potential is increasing and that ions are going from
outside of the cell to the inside. From this argument we can see that
in this regions both currents have different effects in the membrane po-
tential and therefore the value of the gating variable w becomes very
important in determine if the membrane potential is increasing or de-
creasing in this section.

• (vNa,∞) In this interval both currents are positive which means that
the membrane potential is always decreasing.

Another way to interpret the above observations is to think that the currents
are always “pushing” the membrane potential to their respective Nernst po-
tential.

With respect to equation (22) we can see that for every voltage v, w is
going towards w∞(v) with a velocity that is small if τ∞(v) is big and is big
if τ∞(v) is small. This is why τ∞(v) is called relaxation time, is a measure of
how much time it takes for w to arrive to a constant value for a fixed voltage.
Next, we plot τ∞ for different values of r in Fig. 3.

We can see from Fig. 3 that the more far that we are from vm then faster
the gating variable approaches to the variable w∞(v) as v changes.
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Figure 3: 1
τ∞(v)

for
various values of r.
We can see that the
smaller values of
r makes the curve
grows slower.

3.1.3 Current clamp

We want to model how the cell is excited by an external source (for example
another neuron) so in our model we would like to have a way of representing
an external input. In electrophysiology the next circuit is used to have a
controllable current throughout the membrane and solve that problem:

Figure 4: Current clamp cir-
cuit: Here we draw an scheme
of the circuit that is used in
electrophysiology to record the
voltage and input a fixed cur-
rent to the system

We will model that external source in our model as a square pulse, then
the equation (21) becomes:

dv

dt
= I + A

[
−m3

∞(v) sinh
( q

2kT
(v − vNa)

)
− akw4 sinh

( q

2kT
(v − vK)

)]
.

(26)
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Our approach in this study will be to perturb the system with a square wave
to see if it responds different (bifurcates) with different set of parameters for
the same input.

3.1.4 Dependence on the rate of opening of potassium channels r

Time analysis
As mentioned above, the parameter r is proportional to the rate at which

the gating variable w goes to w∞. In a biophysical context it is the basal
rate at which open channels close and closed channels open. According to
the literature r ∈ [.01, 0.1] (see [3], [4]). We wrote a code in python and
carried out simulations of the behavior of voltage and the gating variable
with those values of r and we have obtained qualitative changes on behavior
(a bifurcation value) which we depict in Fig. 5.

Figure 5: Temporal dynamics of v for different values of r. The figure show
simulations for r ∈ {0.02, 0.04, 0.06, 0.08}. The numbers above indicate the
value of r used for each oscillations. The temperature was 37oC.
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Here we used a square pulse I of 0.1 nano-amps from 500ms to 700ms.
As we can see for the first two values of r, the trajectory spirals down to
the original equilibrium point. However, for the last two values of r, the
trajectory spirals out to a limit cycle. We thus observe that a small changes
in r from big values to small results in a different response of the system to
the same input (birth of a stable limit cycle). For w, the result is similar.
We concluded that it is more feasible to have oscillations with lower values of
basal rate r. We made more simulations for r and localized the bifurcation
value r∗ somewhere in (0.047, 0.048).

Figure 6: Temporal dynamics of w for different values of r. The numbers
above indicate the value of r used for each oscillations. The temperature was
37oC.
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Phase plane analysis

Figure 7: Bifurcation as parameter r is varied from 0.02 to 0.04. Here,
T = 37◦C. The plotting program was written in Python (see Sec. A.2 in the
Appendix).

The bifurcation as r is varied while all other parameters are held fixed,
including T = 37◦C, can also be seen by examining the phase plane plots
of Fig. ??. As before, for r = 0.02, 0.04, the input pulse alters the location
of the fixed point and changes its stability from stable to unstable, along
with inducing the birth of a stable limit cycle. However, for r = 0.06, 0.08,
the fixed point during the duration of the pulse has changed from unstable
to stable, indicating the occurrence of a bifurcation between r = 0.04 and
r = 0.06.
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Figure 8: Membrane potential dynamics for r = 0.08 and different tempera-
tures ranging from 0 to 49 degrees Celsius.

3.1.5 Analysis of the influence of temperature

Our main question in this section is how temperature affects the dynamics
of the neurons’ membrane. Therefore, we use some simulations in python for
varying values of temperature in the range [0, 49] Celsius as a parameter for
different fixed values of r. First, we make some simulations for r = 0.08 far
to the right of the bifurcation parameter r∗ (results are show in the Fig. 8).
We see that with large variation in temperature we don’t get changes in the
qualitative behavior of the system.

Next, we made another set of simulations with r = 0.03; far bigger than
the bifurcation parameter r∗ (graphs of the simulations are illustrated in
Fig. ??).
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Figure 9: Membrane potential
dynamics for r = 0.03 and dif-
ferent temperatures.

We can infer from this graphs that for the given change in the tempera-
ture parameter there is no change in the qualitative behavior of the system.
Finally, we present in Fig. ?? the last set of simulations for r = 0.045 which
is very near the bifurcation parameter r∗ of the system. We see that when

Figure 10: Membrane poten-
tial dynamics for r = 0.045
and different temperatures.

we are near a bifurcation value for r changes in T can induce an oscillatory
behavior (a bifurcation).
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Phase plane analysis

Figure 11: Bifurcation as parameter T is varied from 0◦C to 49◦C. Here,
r = 0.045. The plotting program was written in Python (see Sec. A.2 in
the Appendix).
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Once again, phase plane plots offer another view of the bifurcation. In
Fig. ??, T is varied from 0◦C to 49◦C while all other parameters, including
r = 0.045, are held fixed. Here, in contrast to the case of bifurcation due to
varying r discussed above, the fixed point during the duration of the pulse
is a stable one. This stability persists from T = 0◦C to T = 14◦C. Between
T = 14◦C and T = 21◦C, however, a bifurcation takes place, so that the
fixed point during the pulse duration becomes unstable while a stable limit
cycle is born.

3.2 Application II: Dynamics of extracellular pH reg-
ulation

3.2.1 Introduction

One of the most important functions of the cellular membrane is to regulate,
through channels and transporters, the concentration of the chemical species
it contains. Hydrogen, (H+), is one of the most important ions a cell embod-
ies because it is present in many cellular processes. Nevertheless, whenever
the concentration of hydrogen is outside the normal range in which a cell
can properly function, the cell autoregulates itself in a process called pH
regulation, a process operating in living organisms used to preserve a viable
acid-base state. The pH is an expression representing the concentration of
hydrogen ions and is mathematically defined by: pH = −log[H+]. Depend-
ing on the physiological functionality of a biological structure a cells is part
of, its internal pH values should be maintained within certain ranges [12].
Moreover, the values of pH in the extracellular environment must be kept
within certain ranges because small deviations from the normal pH could
disrupt the microenvironment.

Processes with major importance in pH regulation, in and outside the
cell, are the buffers, chemical reactions in which hydrogen is combined with
another chemical species and transform into other molecules in order to main-
tain certain levels of pH. When the pH is outside these ranges we say that
the environment is alkaline for large values of pH, and acidic for low values.

A very interesting and remarkable case showing the effect of pH on phys-
iology, is when cells presenting cancerous phenotypes start releasing large
quantities of hydrogen into its surroundings. The reason for this pH imbal-
ance could be a property found in most cancerous cells, that is, upregulation
of glycolysis [5]. Upregulated glycolysis has as a byproduct the ion hydrogen.
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This along with the fact that tumor cells have been shown to have intracel-
lular pH similar to those in normal cells, gives rise to a high pH gradient
across the cancerous cell membrane into the cellular surroundings, lowering
the pH and therefore raising the acidity. On the other hand, bicarbonate
is an alkaline which is a vital component of the pH buffering system of the
body. In this section we intend to study the dynamics of pH levels outside
the cell using a competitive-like dynamical system between the concentra-
tion of hydrogen and bicarbonate, emphasizing the role of temperature as an
externally controllable parameter that could eventually be used as a therapy.

The significance of this study comes from the fact that toxic environments
require the cells to evolve into phenotypes resistant to toxic environment [5].
This provokes that, eventually, cell populations with upregulated glycolysis
and acid resistance mechanisms have a considerable growth advantage, which
supports further proliferation and invasion of the cancerous phenotype. In
fact, tumor angiogenesis, a fundamental step in the transition of tumors from
a dormant to malignant state, may be regulated by pH, for it has been found
that tumor cells at a low pH increase the expression of positive angiogenic
factors. Moreover, it has been shown that the metastatic potential of tumor
cells depends directly on the degree of acidification [5].

In this section, our study of pH regulation dynamics in the extracellular
microenvironment is a first step towards a better understanding as to the
biological parameters that are more important when describing the state of
the system. Even though our motivation is to study the dynamics of pH
regulation in cancerous cell environments, we will not explicitly include in
our mathematical model any cancerous process, such as, glycolysis. In this
section we focus on the process taking place in the exchangers and extracel-
lular environment with the intention to better characterize the specificities
of it. Figure 12 depicts the simplified version of the cellular environment we
will model in this section.
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Figure 12: Description of the simplified cellular environment that will be
treated in this section. Hydrogen and sodium are transported in and outside
the cell through the Na+/H+ and Cl−/HCO−3 exchangers. Hydrogen ions
in the extracellular environment that are not transformed in the buffering
process, increase acidity.

Our approach to model pH regulation is based in part on the same ther-
modynamical assumptions and derivations used in the previous section. We
will model the role of the membrane in this process by assuming that the hy-
drogen and bicarbonate ions are only transported in and outside the cell by
membrane exchangers, in this case, the Na+/H+ and Cl−/HCO−3 exchang-
ers. The other aspect of our model is the buffering process taking place
outside the cell between hydrogen and bicarbonate. The rest of this section
will be staged as follows. First, we present a thermodynamical derivation of
the rate at which the two ions are being transported throughout the mem-
brane. Second, we present our assumptions in the buffering process and the
law we assume it is governed by. Third, we present a dynamical model for
extracellular pH regulation and its stability analysis. Lastly, we study the
influence of some biophysical and externally modifiable parameters in the
extracellular pH value.
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3.2.2 Na+/H+ exchanger

Of the pH regulators in the cell, the Na+/H+ exchanger is one of the most
important. In this section, an expression for the flux of H+ ions through this
Na+/H+ exchanger, will be derived from a thermodynamical point of view.
Contrary to the study done in the previous section, in which an electrogenic
current was flowing through the Na+/K+ channels, this ion exchange process
does not generate a net flux of charges to either side of the membrane, hence,
there is no electric current. This one-to-one translocation of ions, in which
one sodium ion is mechanically translocated with one hydrogen ion across
the membrane, can be represented by the following reaction:

Nao +Hi 

α
β Nai +Ho (27)

whereNai,Nao, Ho andHi are sodium and hydrogen molecules in and outside
of the cell,respectively, with forward and backward reaction rates α and β.

From the Boltzmann distribution it is found that,

α

β
= exp

(
−4G
kT

)
(28)

where 4G is the Gibbs free energy of the reaction ( 27) [8]. The sign of the
energy term determines whether or not the reaction is spontaneous. Specifi-
cally, 4G < 0 means that the reaction is spontaneous. The change in elec-
trical potential energy due to the redistribution of charge during the reaction
for a given ion σ is 4Gσ = q(v − Vσ), where q is a gating charge (q ≈ ±4e)
and v is the potential difference between the two sides of the membrane,
which is considered to be analogous to a two plate capacitor. For the model,
Vσ is the Nernst voltage potential for the ion. In this case we have

4G = 4GH +4GNa (29)

= −q(v − VH) + q(v − VNa) (30)

= q(VH − VNa) (31)

The VNa and VH are the Nernst potentials of sodium and hydrogen, re-
spectively. Taking into account the explicit expression for the Nernst poten-
tial and substituting it into (31), we have

4G = q(
kT

q
ln

[H]o
[H]i

− kT

q
ln

[Na]o
[Na]i

) (32)

= kT ln
[H]o[Na]i
[H]i[Na]o

(33)
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and substituting this result into expression (28) yields

α

β
=

[H]i[Na]o
[H]o[Na]i

(34)

The simplest choice for α and β are

α = λ[H]i[Na]o (35)

β = λ[H]o[Na]i, (36)

where λ is, in general, a function of parameters common to α and β. The net
flux of hydrogen is defined as the difference between the quantity of hydrogen
leaving the cell subtracting the quantity of hydrogen entering the cell, given
by

φH = α− β (37)

= λ([H]i[Na]o − [H]o[Na]i). (38)

To emphasize that the two applications treated in this paper are closely
related in their respective thermodynamical derivation and mathematical
functionality, it is proved in the appendix that Eqn. (38) is equivalent to

φH = λ
√

[H]0[Na]0[H]i[Na]i sinh[
q

2kT
(−VH + VNa)] (39)

A similar procedure can be followed to arrive to the flux equation for HCO−3
throughout the Cl−/HCO−3 exchanger.

3.2.3 Buffering process

One of the major ways in which large changes in hydrogen concentration are
prevented is by buffering. This work considers the acid-bicarbonate buffer,
which is chemically represented by the following chemical reaction [1].

HCO3
− +H+ 
1 H2CO3 


2 H20 + CO2 (40)

For the reaction shown above to occur, the bicarbonate ions have to come into
contact with the hydrogen ions. The hydrogen and bicarbonate ions must
collide at the right angle and with enough energy for the reaction to occur.
Before any changes take place during the collision, the colliding molecules
must have a minimum kinetic energy called the activation energy. This term
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is the amount of energy needed for the reactions to approach the transition
state in which bonds are broken and new bonds are formed. Heated molecules
have a greater average kinetic energy, and therefore at higher temperatures,
a greater number of them have the required activation energy to react. The
Arrhenius Equation relates the rate of reactions and temperature as follows:

P (T ) = a exp

(
− Ea
RT

)
, (41)

where Ea is the activation energy in Jmol−1, R is the ideal gas constant with
value 8.314Jmol−1K−1 and T is the temperature in K (Kelvin). P is the rate
constant that any given collision will result in a reaction per second. The
total number of collisions per second leading to a reaction or not is denoted
by a [1] and its units are Lmmol/sec. We can consider it a constant that
involves chemical properties of the reactants like their concentrations and
cross sectional area. The pre-exponential factor depends on temperature, but
for a sufficiently small range of temperatures, its dependence on temperature
is negligible compared to the effect that the temperature in the exponent
has on the overall behavior of P (T ). By the same token, it is reasonable to
approximate the activation energy Ea as being independent of temperature.
It is thus observed that increasing the temperature T will result in an increase
in the rate of reaction.

Although the reverse reaction (←) could also take place, in this work we
will not consider this case for the rate of the forward reaction (→) is almost
104 higher than the reverse reaction [1]. In order to find the values for Ea
and a it must be taken into account that the rate of reaction of the first step
(1) is faster than the second step (2), so we could approximate the rate of
the whole reaction as the rate of the second part, that is, the slower step.
For this slower step we have several experimental results for the P ′s and the
corresponding temperatures. Notice that the Arrhenius equation could be
also written as ln(P ) = −Ea

R
( 1
T

) + ln(a). So if we plot different values of
the pair (P, 1

T
), from the values of the slope and the “y” intercept we can

get the corresponding values of Ea and a. These values are given below in a
parameters table (Table 2).

3.2.4 Mathematical Model

Here we present a 2-dimensional competitive-like dynamical system that
models the diffusion through the cell membrane and the extracellular buffer-
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ing of hydrogen and bicarbonate. The system has as variables the hydrogen
and bicarbonate concentrations in the extracellular environment:

d[H+]0
dt

= NNa+H+λ1(T )
(
[H+]i[Na

+]o − [H+]o[Na
+]i
)
−

P (T )[H+]0[HCO−3 ]0 (42)

d[HCO−3 ]0
dt

= NCl−HCO−3
λ2(T )

(
[HCO−3 ]i[Cl

−]o − [HCO−3 ]o[Cl
−]i
)
−

P (T )[H+]0[HCO−3 ]0 (43)

In Eqns. (42)-(43) the subscript for i and o correspond to concentrations
of molecules inside and outside the cell’s membrane. Because of the remark-
able symmetry of the two equations, analysis of the properties of the first
equation applies to the second one. In Eqn. (42) the first term is composed
by a positive and negative contribution to membrane diffusion, in terms of
concentrations for Na+ and H+ in and out of the cell. The second term rep-
resents the competitive behavior of the dynamical system, that is, the term
related to the rate at which hydrogen is being transformed into H2O and CO2

when the buffering takes place outside the cell. It is assumed that hydro-
gen and bicarbonate react and “annihilate” one another at rate P (T ), given
by (41). It is considered that cells have several transporters contributing to
the total flux of ions. The N factor in both equations is the correspond-
ing number of each transporter in the membrane. The parameter λ(T ) is the
baseline of translocation rate and it takes the form λ(T ) = B/(1+eθ(−T+Th)).
Here B, θ and Th are constants related to the physiology of the protein that
mechanically transport ions. Their values are computed so that they reflect
the way we assume mammalian cell transporters behave under temperature
variation. This specific functionality with respect to temperature is based
on experimental facts that prove that within the range of allowed body tem-
perature, these transporters translocate ions faster with an increase in tem-
perature. Particularly, the values of θ and Th are selected to fit the plausible
conditions of almost no transport at 273K (freezing point), and maximum
translocation capacity at around 313K.

Another important consideration is that the cell autoregulates itself, hence
we assume that all concentrations inside the cell are held constant. Further-
more, we are also considering constant values for the concentrations of Na+

and Cl− inside and out the cell.
To make the previous system easier to the eye, consider [H+]o = x,

[HCO−3 ]o = y, [H+]i = φ, [HCO−3 ]i = β, [Na+]i,o = ηi,o, [Cl−]i,o = γi,o,
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NNaH = N1 and NClHCO3 = N2. With these redefinitions and substitut-
ing the corresponding explicit expressions for λ(T ) and P (T ), we obtain the
following system:

dx

dt
= (1/2)N1

B1

1 + eθ1(−T+Th)
(−xηi + φη0)− ae−

Ea
RT xy (44)

dy

dt
= (1/2)N2

B2

1 + eθ2(−T+Th)
(−yγi + βγ0)− ae−

Ea
RT xy (45)

Table 2. Parameters used in the system (44)-(45)as follows:

Parameters Description Value Reference
N1 Number of Na+ −H+ membrane transporters 500 [12]
N2 Number of Cl−HCO3 membrane transporters 500 [12]
B1 Physiological property 10−5 L/(mmol sec) [9]
B2 Physiological property 10−5 L/(mmol sec) [9]
Th Temperature parameter 290 K Estimated
Θ1 Physiological property 0.3 Estimated
Θ2 Physiological property 0.3 Estimated
ηi Na+ internal concentration 10 mmol/L [7]
ηo Na+ external concentration 145 mmol/L [7]
φ H+ internal concentration 6.3X10−5 mmol/L [9]
γi Cl− internal concentration 4 mmol/L [7]
γo Cl− external concentration 110 mmol/L [7]

β HCO−3 internal concentration 24 mmol/L [9]
a Total number of collision per second 5.73 X 1010 L/(mmolsec) [1]

Ea/R Activation energy/R 104K [1]

Rescaling of parameters
Parameter adjustments to the System (44)-(45) will be made for the sake
of better handling the algebra in the following sections. Since we know the
values of all the parameters, except temperature, whose manageability is
the purpose of this work, we will define new parameters as a function of
temperature, as follows:

Ax1(T ) =
N1ηi

2

(
B1

1 + eθ1(−T+Th)

)
(46)

Ax2(T ) =
N1ηoφ

2

(
B1

1 + eθ1(−T+Th)

)
(47)

Ay1(T ) =
N2γi

2

(
B2

1 + eθ2(−T+Th)

)
(48)

Ay2(T ) =
N2γoβ

2

(
B2

1 + eθ2(−T+Th)

)
(49)
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Notice that all these new parameters are positive. The biological signifi-
cance of these parameters is as follows:

• Ax1(T ) represents the rate at which H+ is entering the cell due to
the number of Na+H+ channels, rate of transport and Na+ internal
concentration.

• Ax2(T ) represents the rate at which H+ is being pumped out of the
cell due to the number of Na+H+ channels, rate of transport, Na+

concentration outside and inside H+ concentration.

• Ay1(T ) represents the rate at which HCO−3 is entering the cell due to
the number of Cl−HCO−3 channels, rate of transport and Cl− concen-
tration inside.

• Ay2(T ) represents the rate at which HCO−3 is pumped out of the cell
due to the number of Cl−HCO−3 channels, rate of transport, Cl− con-
centration inside and HCO−3 concentration inside.

With the changes done in (46)-(49) our new system is now

dx

dt
= −Ax1x+ Ax2 − Pxy (50)

dy

dt
= −Ay1y + Ay2 − Pxy. (51)

3.2.5 Stability analysis

Newtonian equivalent
In this section we propose a mechanistic approach to qualitatively de-

scribe the previous system [10]. If we substitute (51) into (50) we will obtain
the following equation for x(t)

d2x

dt2
=

(
−Ax2

x

)
dx

dt
− [(xAx1 − Ax2)Ay1 + Px(Ay2 + xAx1 − Ax2)] (52)

where the variable x(t) could be considered as the position of a particle under
the influence of a non-conservative force and a conservative force field whose
potential V (x) is given by

a(t) = Fnon−cons(x, dx/dt) + Fcons(x) (53)

Fcons(x) = −dV
dx

. (54)
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Integrating the conservative force we obtain for the potential the following
expression

V (x) =
PAx1

3
x3 + (Ay1Ax1 + PAy2 − PAx2)

x2

2
− Ay1Ax2x. (55)

Knowing the graphical properties of this potential we can perform a qualita-
tive analysis of the system in terms of the variable x, i.e., [H+]o. Depending
on the initial position xo, the motion of the particle over time will depend
on the shape of the potential within the vicinity of xo. This initial con-
dition is physically equivalent to the total energy the particle has, that is,
Et(0) = V (xo). If there are no driving forces and we trace a horizontal line
Et(0) = V , characterizing the total energy of the system Et, this line will
delimit the permissible ranges of motion of the particle. The role played
by the non-conservative force depends on the sign of the factor multiplying
the velocity term dx/dt. Inspecting Eqn. (55) it is clear that this term is
always negative, therefore this force will dampen the motion of the particle
at all times. However, it is interesting that the absolute value of this term
−Ax2/x is inversely proportional with x. This damping force becomes larger
the smaller the value of the variable. This could mean that when the hydro-
gen concentration declining, the corresponding Na+/H+ exchanger regulates
the incoming gradient of hydrogen by impeding it. For large values of x, the
force is still dampening the motion but the influence is less relevant. For
this later case, we could think that the only force acting on the system is the
conservative one, and the shape of the potential in that vicinity will almost
totally dictate the dynamics of the system.

For all positive values of the parameters defined in Eqs. (46)-(49), it can
be analytically proved that this potential will have three zeros, one at the
origin and the other two on opposite sides of the origin. It also has two
local extremes at different sides of the axes x = 0, a maximum to the left,
and a minimum to the right. Thus, for positive values of x, the potential
behaves as a concave up parabola with the minimum under the V (x) = 0
axes. For our purposes, only positive values of the variable x are of interest.
This minimum represents then, the only stable point of the system, and so
it is globally stable. The analytical prove of these characteristics of V (x) are
in the appendix.

Now that the shape of the potential is clear, let’s analyze again the role
of the dissipative force −Ax2/x, which is quite relevant in the system. Using
the potential analogy, it can be said that the body is moving under friction-
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like conditions, and given any initial conditions it will tend to approach the
minimum. Once it reaches it, the effect of an increasing slope to overcome,
plus a resistive “medium”, makes the particle stay near the minimum, until
it finally reaches it. This behavior is equivalent to a stable node in dynamical
systems theory. Biologically this means that, for fixed parameters’ values,
the [H+]o always reaches the same equilibrium value, and so does the pH.

Dynamical systems approach
If we find the general determinant and trace of the Jacobian of System

(50)-(51), we obtain

D(x, y) = Ax1Ay1 + P (xAx1 + yAy1) (56)

Tr(x, y) = −Ax1 − Ay1 − P (x+ y). (57)

From the expression in Eqn. (56) we notice that ∀(x>0,y>0) : D(x, y) > 0.
Notice that the variables are concentrations of molecules, hence negative val-
ues of these variables are not biologically significant. Therefore, the previous
condition will hold true for the interest of this work. For this reason we can
already predict that none of the equilibrium points will be characterized as
a saddle point. From the trace we can also tell that this fixed point will be
stable because this trace is negative ∀(x>0,y>0). To this point we know that if
the two fixed points of the system in Eqs. (50)-(51) belong to the first quad-
rant, then two of the possible stability description are: two stable equilibrium
points or a limit cycle. Next, we will prove that none of these possibilities are
allowable, leaving us with the case of only one locally asymptotically stable
point in the first quadrant, and the other fixed point will geometrically fall
in a range that makes it negligible for our purposes.

Dulac’s criterion
Dulac’s criterion [11] provides us with a formal proof to rule out the

possibility of closed orbits, considering that limit cycles are particular cases of
closed orbits. The criterion is stated as follows: let ẋ=f(x) be a continuously
differentiable vector field defined on a simply connected subset R of a plane.
If there exists a continuous differentiable, real-valued function g(x) such that
∇ · (gẋ) has one sign throughout R, then there are no closed orbits lying
entirely in R.

In our case ẋ = (dx/dt, dy/dt), our R subset is <2+ and we can select
g(x)=1. We have then
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∇ · (gẋ) = ∇ · (ẋ)

=
∂(−Ax1x+ Ax2 − Pxy)

∂x
+
∂(−Ay1y + Ay2 − Pxy)

∂y
(58)

= −Ax1 − Ay1 − P (x+ y) (59)

The last result is the trace found in Eqn. (57), which will always be
negative for all values of the <2+ subset. With this, it can be guaranteed
that no limit cycles will exist in the system.

To address the possibility of two stable points within the (<2)+ subset, it
is considered that each point is surrounded by a domain of attraction which
are open sets Γ1 and Γ2, which implies that the set ¬(Γ1

⋃
Γ2) = Ω 6= ∅.

Therefore, it could be encountered a contradictory situation in which if the
system is in a point (x, y) : (x, y) ∈ Ω, then the point has no attractor and
this is not possible, for the point will behave as a fixed point, and we already
know that the system only has two fixed points. In a more general case we
could have a whole set of points described by the curve ζ ∈ Ω that behaves
like if it has an attractor of its own, which is also contradictory because we
only have two attractors.

Considering that only one point is allowed on the <2+ subset, we will not
have the case of an initial condition outside the interesting range leading to
a solution curve that enters the the first quadrant, and viceversa. That is
assured because no point starting on the biologically plausible range will exit
this range. This can be proved by setting x = 0 and y = 0 in the system
(50)-(51):

dx

dt
= Ax2 > 0 (60)

dy

dt
= Ay2 > 0. (61)

These expressions mean that if the system is at any pair (x > 0, y > 0) near
any of the axes, the dynamics tends to “push” the system away from the
edges, hence the curve that describes any solution will never exit the first
quadrant.
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Ruling out spiral stability
We are left with two options to describe the stability of the system, i.e.,

stable spiral or stable node. In this section we will provide a condition that
rules out the possibility of spirals. The values of the eigenvalues of the system
(50)-(51) are given by:

ρ1,2 =
1

2
(Tr(x, y)±

√
Tr2(x, y)− 4D(x, y)) (62)

To prove that there are no spirals, we must have that the eigenvalues have
no imaginary part, and this is given by analyzing the sign of the expression
Tr2(x, y) − 4D(x, y). In fact, if Tr2(x, y) − 4D(x, y) > 0 it can be assured
that there will be no spirals. Algebraically working with Eqn. (56) and (57)
we obtain:

Tr2(x, y)−4D(x, y) = (Ax1−Ay1)2 +P 2(y+x)2 +2P (y−x)(Ax1−Ay1) (63)

Considering that biologically it is sound to say that y >> x at all times
(because [HCO3] ≈ 106[H] in the extracellular fluid [9]), we could say that
is a good approximation to propose that (y ± x) ≈ y. Using that result in
(63) we obtain:

Tr2(x, y)− 4D(x, y) = (Ax1 − Ay1)2 + P 2(y)2 + 2P (y)(Ax1 − Ay1) (64)

= ((Ax1 − Ay1) + Py)2 (65)

which will never be less than zero, and therefore we will not have imaginary
eigenvalues. Therefore, we will not have spirals and our stable point will
always be a locally asymptotically stable node in the <2+

subspace.
If the value of hydrogen concentration always tends to a stable node,

then the pH value should have the same behavior. In Fig. 13, we present the
graphs of numerical solutions of pH vs t for different initial conditions of pH.
It is clear how all the solutions tend to the same asymptotic value of pH, in
agreement with the analytical results found above.
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Figure 13: pH(t) for different values of [H]o in mmol/L. All initial conditions
tend to the same pH value.

3.2.6 Stable point variation with temperature and other parame-
ters.

Now that we know of the sole existence of a stable point on <2+
, we want to

explore its coordinate dependence with temperature and other parameters.
The idea is to explore how this stable point, which characterizes the steady
state of the biological system in the extracellular microenvironment, i.e., its
pHe, given the fact that pHe = − log([Ho]), moves around the phase plane
when the parameters of the system are modified. Special emphasis is made
on the role of the parameters θ1 and Th, for they describe the behavior of the
transporter as a function of temperature, i.e., the diffusion dependence with
temperature of the membrane flux of ions. Next, we present several graphs
which have been computed using the parameter values in Table 2.

Fig. 14 shows a plot of pH vs. T for various values of the computed
parameter Th. We took values of these parameters in a range around the
selected value 290K. Notice that the curves pH(T ) have a local minimum
that moves to the left as Th increases. Moreover, the T value of these mini-
mum are very close to the corresponding Th. Mathematically this means that
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depending of the value of Th, the slope of the curve will shift at that value
of temperature. This behavior is remarkably related to the shape of λ1(T )
which dictates the rate of flux of the transporter depending on temperature.
In terms of the biological matter, the dependence of pH with temperature
depends on what ranges of temperatures are being considered. If we assume
that the value of Th = 290K is biologically sound, and considering that a
human body temperatures are normally inside the range [303 − 315K], we
can say that for most human body purposes, pH is a crescent function of
temperature. This result has been shown experimentally in a study made of
pH dependence with temperature in guinea-pig ventricular myocytes [2]. In
one of their results they show how when varying the temperature from 310K
to 300K the pH drops from around 7.3 to 6.8. This is numerically reflected
on Fig. 14 for parameter values in the range Th 5 290. Another interesting
feature is that for T = Th ⇒ λ(T = Th) = B/2 which means that the level of
acidity is greater when the transporter is transporting at half its maximum
capacity.

Figure 14: pH(T) for different values of Th. The maximum acidity is reached
when T = Th.
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In Fig. 15 we again plot pH vs. T , this time varying the exponential factor
θ1. Here Th = 290K. Notice that the lower the value of this parameter, the
lower the slope of the graph for T < Th. The dependence does not change
significantly for values of pH(T > Th). Analyzing the mathematical definition
of λ1(T ) we notice that the effect of the exponent (−T +Th) is less important
as θ1 decreases. Actually, for sufficiently small values of θ1, the temperature
dependence of λ1(T ) vanishes and at the limit we have λ1(T ) = B1

2
, in which

case we have a flux of ions through this transporter that would only depend
on rates of concentrations of ions in and out of the cell. We will not consider
this perspective valid in this paper, but it is still interesting to see that pH(T )
is almost monotonously increasing when the transporter behavior does not
depend on temperature.

Figure 15: pH(T) for different values of θ1

Fig. 16 is a plot of pH(T ) vs. T for various values of the parameter
r = N1/N2. By inspection is clear that increasing the value of r will only
displace the graphs downward. This is an intuitive result considering if the
number of Na+/H+ transporters is increasing, then more hydrogen is being
pumped out of the cell, therefore, the lower the extracellular value of pH.
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Figure 16: pH(T) for different values of r. Increasing the value of N1 makes
the extracellular environment more acidic.

Another interesting feature to notice is that the difference in the pH values
for two successive values of r diminishes as r grows. For relatively large
values of r the graphs tend to superpose. Therefore, there is a certain value
of N1, given that N2 is kept constant, after which the net effect that has
on the extracellular pH is not as relevant as when N1 . N2. This could
be biologically interpreted as the situation when there is relatively a low
number of Na+/H+ transporters, all of the flux of hydrogen is ejected to
the extracellular space which increases the pH. However,as the number of
exchangers increase the concentration of hydrogen also increases which results
in having some of the ions re-entering the cell by diffusion. In the limit
case of N1 � N2, a self- attained, low pH equilibrium is reached by the
Na+/H+ transporter which now dictates most of the dynamics of the whole
pH regulation system.

Increasing the activation energy moves the graphs downward as well,
(see Fig. 17). This is another intuitive result that stems from considering
a Maxwell Boltzmann probability distribution [1] as a fair characterization
of the energy of the system of hydrogen ions that are possible reactants of
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Figure 17: pH(T) for different values of Ea. For higher values of Ea the levels
of acidity increase.

the buffering reaction. As the activation energy increases, ions decrease the
chance of surpassing this activation energy. Therefore, fewer hydrogen ions
will react and transform into other chemical species. The final outcome is
that a higher [H]o will result in a lower extracellular pH.

Aside from the displacement effect, increasing Ea has another remarkable
feature: the graph expands as Ea grows, making pH(T ) have a relatively
small positive slope. A biological interpretation for this is that when the
activation energy reaches a certain threshold value, the buffering process
will not take place and hydrogen ions will not have enough energy to react.
Therefore, the dynamical process is dictated by the transporters, and the
resulting uncoupled system will be

dx

dt
= −Ax1x+ Ax2 (66)

dy

dt
= −Ay1y + Ay2 (67)
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with trace and determinant given by

D′(x, y) = Ax1Ay1 (68)

Tr′(x, y) = −Ax1 − Ay1 (69)

and a stable point uniquely given by (Ax2

Ax1
, Ax2

Ay1
), which can be proved to be a

stable node from the values of D′ and Tr′. This means that each transporter
on its own will reach an equilibrium state for any given set of parameter
values. In this case, it would be plausible to introduce the temperature de-
pendence of the pre-exponential factor a of the Arrhenius equation. This
factor includes properties of the system regarding the spatial configuration,
and more importantly, the kinetic energy of the ions as a function of tem-
perature. More specifically, its dependence is a(T ) ∼

√
T . With this factor

included, the energy of the ions would raise with temperature and would have
a greater chance to overcome the reaction barrier imposed by a high value of
Ea. Under these considerations, the buffering process would still have to be
considered.

3.2.7 Sensitivity analysis of the pH(t) with respect to parameters

In this section we study the sensitivity of pH over time with respect to some
of the parameters of the system. In particular we selected temperature (T )
and the same parameters studied in the previous section, namely, Th, θ1, N1

and Ea. The reason why we make such an emphasis in studying the behavior
of our system in relation to these parameters is because their exact values
have not been experimentally found or they can vary from cell to cell. In the
case of T , N1 and Ea we also have the opportunity to modify them as an
exterior influence over the system. Before showing our results, we present the
numerical procedure followed to obtain them. From the sensitivity analysis
theory it is known that the definition of the sensitivity index S of a function
χ(t, p) of parameter p is given by

Sp(χ(t)) =

δχ
χ

δp
p

=
∂χ

∂p

p

χ
. (70)

This index gives us an idea of what percentage change will produce in the
function χ(t, p) a given percentage change in the parameter p. In this work, a
numerical approximation of this problem was made. Given a parameter pi we
wanted to study, a numerical solution of the system (50)-(51) was obtained
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for two close values of the parameter p1
i and p2

i , such that p2
i−p1

i = 0.01p1
i , i.e.,

we varied the parameter by 1%. Only the solutions xp1i (t) and xp2i (t) are taken
into consideration because the value of pH is given by pH(x) = −Log(x).
Then we define as our sensitivity index Spi

(x(t)) as

Spi
(x(t)) =

xp2i (t)− xp1i (t)

p2
i − p1

i

p1
i

xp1i (t)
(71)

and for the pH

Spi
(pH(t)) =

pHp2i
(t)− pHp1i

(t)

p2
i − p1

i

p1
i

pHp1i
(t)
. (72)

The graphs of the different sensitivity indexes for all the previously mentioned
parameters are plotted in Fig. 18 .

Figure 18: Sensitivity of pH(t) with respect to parameters

At this point, it is important to remark that the sensitivity analysis is
the study of the relative effect that has on the system perturbing the param-
eter value within a small vicinity of this value. We could then consider a
five-dimensional parameter space. The position of a point in this hyperspace
partially describes the physiology of the process of pH regulation outside the
cell. As long as this sensitivity analysis is a local study of the parameter-
dependence of the system, it is necessary to define a point that locates the
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position we suppose best describes our system. For that matter, it is as-
sumed that in standard conditions, this extracellular environment would be
described by a point Po given by

Po = (T, Th, θ1, N1,
Ea
R

) = (310K, 290K, 0.3, 500, 104K) (73)

Our analysis will discriminate which parameters have greater effect on the
system when perturbing these quantities by a small amount from Po.

A significant feature to notice in this figure is that the graphs of some
of the parameters have been rescaled to make them fit in the same plot.
Specifically, T and Ea were rescaled to 1/1000 of their original index values,
whereas N1 and Th were rescaled to 1/100 and 1/10, respectively. This means
that parameters like T and Ea have a great sensitivity index compared to
other ones because slightly varying their values would significantly change
the final pH value. From this graph is also clear the effect that augmenting
each parameter will have on the pH behavior. In this respect, the effect of
each parameter seen in Fig. 18 is correspondent to the conclusions arrived at
in the previous section. For instance, a small increment in temperature from
the value 310 K, will cause the pH to raise. Conversely, an increment in Ea
will cause the pH to drop. For the case of θ1 and Th we can say that their
impact on the system is not as crucial as the other three parameters. This
is a relevant result because these two parameters reflect the physiological
properties of the transporter. Hence, these low sensitivity indexes suggest
that perturbing the particular properties of each transporter from point Po
will not have a significant impact on the pH regulation process.

From a more general perspective, we could divide our graph into three
time regions that present different overall behaviors. We would then have
τ1 = (0,∼ 10sec), τ2 = (∼ 10,∼ 50sec) and τ3 = (∼ 50, 500sec). In τ1 we
have that all indexes functions are increasing in absolute value with respect
to time, so their influence in the system is greater with time. Around t ≈
10sec, Sθ1(pH(t)) and SN1(pH(t)) reach an asymptotically stable value, and
STh

(pH(t)) changes its rate of growth form positive to negative. Around
t ≈ 50sec we have that SEa(pH(t)) and ST (pH(t)) reach their maximum
and lower their indexes in absolute value until they reach a stable value,
whereas STh

(pH(t)) again switches its rate to positive and slowly increases its
sensitivity index values until it also reaches an asymptotically stable value.
If we consider that the system has been running for a long enough time
we could consider only the steady state value of the respective indexes and
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conclude that T and Ea have the greatest impact on the system. This result
confirms our initial assumption that temperature is a fundamental factor in
regulating pH.

4 Discussion

In Sec. 3.1 we presented a biophysical model of a neuron that, for some
combinations of parameters, displays sustained oscillations for a range of
temperatures. Our model is composed of two nonlinear equations, one for
describing the change of voltage through the membrane, and other for de-
scribing the dynamics of the potassium gate. Our primary purpose was to
see how temperature affects that system because this physical variable is
typically assumed to be constant in excitable cell studies. In order to do this
first we studied how were the variations of the system with respect to the
rate of recovery of the potassium variable r. Our results showed that we can
obtain oscillations for small values of r and excitability for big values of r.
After that we have studied how the system behaves with different values of
the temperature for fixed values of r. Our simulations show that transitions
between oscillatory and non-oscillatory behavior occur as a function of T
depending on the parameter r.

Using a thermodynamical approach we explored the dynamics of the pH
regulation process in the extracellular environment. We found that the dy-
namical system describing the process has only one equilibrium point and
its stability is always that of a globally stable point. This means that, for
all initial conditions of hydrogen concentrations, the system will always tend
to the same stable node, given that the biological parameters are kept fixed.
We took advantage of this rather simple dynamical behavior to thoroughly
investigate the sensitivity indexes of the system with respect to parameters
of interest, such as T , Th, θ1, N1 and Ea. It was determined that the pH
regulation process is greatly influenced by small changes in T and Ea, agree-
ing with our initial prediction that temperature played a significant role in
the system. Furthermore, assuming certain values of estimated physiological
parameters, we found that, in ranges of normal body, pH and temperature
are proportional. It was also concluded that the parameters describing the
Na+/H+ transporter, i.e., θ1 and Th, if selected in certain ranges, they could
drastically change the dependence of temperature with pH.

With the use of a simplified version of cellular environment, we gained
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a better understanding of the dynamics of pH regulation. With this knowl-
edge, we intended to manage the geometric position of the phase plane point
describing the biological state of the system, in particular [H]o, such that it
lies within a range of normal extracellular pH conditions that are favorable
for normal cells. In particular, we aim at keeping the system out of ranges
of low pH, where toxicity can be extremely dangerous for normal cells and
very advantageous for tumor cells to spread their domain and become large
enough to provoke angiogenesis and metastasis. With this objective, we ex-
plored the influences of temperature and other thermodynamic parameters
in the transport of ions across the cell membrane and the buffering of hydro-
gen in the extracellular environment. Starting from the initial condition of
a toxic environment, i.e., a low pH, we intended to change the stable point
position of the system by manipulating a set of modifiable parameters, that
is, r = N1/N2, Ea and T . For the case of r, if we started in a low pH
environment, we saw from the graphs in Fig. 16 that decreasing the value
of r will raise the pH value. This could be done by utilizing transport in-
hibitor proteins which decrease the transport capacity of the membrane, i.e.,
its ability to acidify the environment. There are many Na+/H+ exchangers
across the membrane that play important roles in intracellular pH regula-
tion. Under inhibition by enzymes, such as protein kinase A, the Na+/H+

exchanger could decrease the expelling of hydrogen which would increase the
pH extracellularly.

For the case of the activation energy, it is found that lowering its value
notably augments the pH values. This could be achieved with the help of
specific catalytic enzymes. In general, catalysts are substances that increase
the rate of chemical reactions by introducing alternative pathways for re-
actions to occur, thus decreasing activation energy. Carbonic anhydrase is
the enzyme that catalyzes the reversible reaction between carbon dioxide hy-
dration and bicarbonate dehydration, which includes the reaction between
hydrogen and bicarbonate. Under high pH, the active site for this enzyme
reacts on the hydration of carbon dioxide and under low pH, reacts on the
dehydration of bicarbonate. Thus, the pH can be better regulated by the
buffering between bicarbonate and hydrogen with the carbonic anhydrase
enzyme.
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4.1 Future work

In a subsequent job we are aiming to study the feasibility of using T as a
bursting parameter. In future work we will consider the explicit temperature
dependence of the pre-exponential factor on the Arrhenius equation, a. Also,
we shall consider removal of hydrogen by introducing a vascular parameter,
since we are assuming that all the hydrogen that leaves the cell, either returns
into the cell by diffusion or remains near the cell in a microenvironment. This
would open doors to an explicitly expressed glycolytic process inside the cell
as time dependent producer of hydrogen, to enhance the study of the cancer
cell and what parameters play the more significant role when preventing
further spread of this phenotype.
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A Appendix

A.1 Derivation of the Nernst-Planck equation

~φtotal = −ukT∇[S]− uzq[S]∇U (74)

= −ukT
(

exp

(
−zqU
kT

)
exp

(
zqU

kT

))
∇[S]

− ze[S]

(
ukT

kT

)(
exp

(
−zqU
kT

)
exp

(
zqU

kT

))
∇U (75)

= −ukT exp

(
−zeU
kT

)[
exp

(
zeU

kT

)
∇[S] + [S]∇

(
exp

(
zqU

kT

))]
(76)

= −ukT exp

(
−zqU
kT

)
∇
[
[S] exp

(
zqU

kT

)]
(77)

A.2 Phase plane plots

A.2.1 Software

The programs which generated our phase plane plots were written using freely
available software. The programming language used was Python (www.python.org),
with the following packages being employed: SciPy (www.scipy.org), PyLab
(www.scipy.org/PyLab), and SymPy (docs.sympy.org).
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A.2.2 Nullclines

Our system of equations for no input current is:

dv

dt
= F (v, w) = −aNa

cm
m3
∞(v) sinh

( q

2kT
(v − vNa)

)

− aK
cm
w4 sinh

( q

2kT
(v − vK)

)
(78)

dw

dt
= G(v, w) =

w∞(v)− w
τw(v)

(79)

where,

m∞(v) =
[
1 + exp

(zmq
kT

(vm − v)
)]−1

(80)

w∞(v) =
[
1 + exp

(zwq
kT

(vw − v)
)]−1

(81)

τw(v) =
[
2rw cosh

( zwq
2kT

(vw − v)
)]−1

. (82)

If we set the RHS of both (79) and (80) to zero, we obtain equations F (w, v) =
0 and G(w, v) = 0, respectively, for two curves in the w, v-phase plane - the
v and w nullclines of our system (79), (80). To plot these curves, we set
v in F (w, v) = 0 and G(w, v) = 0 to a value v0 in the physiological range
between the negative-valued Nernst potential vK of potassium and the Nernst
potential vNa of sodium (≈ −75 and ≈ 65, respectively, for the temperatures
of our simulation). This yields two equations F (w, v0) = 0 and G(w, v0) = 0
in w. These are solved for the w0 corresponding to v0 by using the function
scipy.optimize.fsolve() in the SciPy package. This process is continued
until all points (w, v) of each nullcline, where v is one of a discrete set of
values lying between vK and vNa, are determined. Note that w values are
computed for given v values, and not vice-versa, because the v nullcline is
single-valued as a function of v, but multi-valued as a function of w.

When the input current is switched on, a constant current term I0 is
added to the RHS of (79). This has the effect of altering the v nullcline
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(the w nullcline remains unchanged). Hence, our plots display the v nullcline
for no current as a dashed curve; the v nullcline while the input current is
switched on is displayed as a solid curve. The v nullclines differ visibly in
the lower left portion of the plots, where v is negative and w is less than 0.4.

A.2.3 Trajectories

The trajectories in the w, v-phase plane were obtained by solving our system
of equations using the function scipy.integrate.odeint() in the SciPy
package. (The parameter values used are those listed in Table 1 of Sec.
3.1.1.). The solution was found for the time interval 0 to 1000 ms. The
input current was simulated by adding a function of time I(t) to the RHS of
(79), which was 0 at all times except from 500 to 600 ms, when it held the
constant value 0.1 nA. The initial point was chosen close to the stable fixed
point (intersection of the nullclines) existing while the current is switched off.
We thereby modeled the behavior of the neuron’s membrane potential, which
remains close to a resting value until it is excited by a current of sufficient
strength and duration.

A.3 Proof of mathematical equivalence in (38)-(39)

Lets depart from equation (39) and get to (38).

λ(T )
√

[H]0[Na]0[H]i[Na]i sinh[(q/2kT )(−VH + VNa)] (83)

If we substitute the Nernst potential for H+ and Na+ into the previous ex-
pression we obtain the following

λ
√

[H]0[Na]0[H]i[Na]i
− [H]0[Na]i

[H]i[Na]0
+ 1

2( [H]0[Na]i
[H]i[Na]0

)1/2
(84)

Consider [H]o = x, [H]i = φ, [Na]i,o = ηi,o. With these redefinitions we
obtain

dx

dt
= λ(T )

√
xηoφηi

− xηi

φη0
+ 1

2( xηi

φη0
)1/2

. (85)

we finally obtain the desired expression with the new variable x, as follows

λ(T )(−xηi + φη0) (86)
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A.4 Proof of the graphical properties of V(x)

To analytically prove all these we made a few aesthetical changes to expres-
sion 55, as follows

V (x) = mx3 + nx2 − qx (87)

where m = PAx1

3
> 0, n = 1

2
(Ay1Ax1 + PAy2 − PAx2) and q = Ay1Ax2 > 0.

Setting V (x) = 0 in (88), we obtain the following results for x:

xo = 0 (88)

x1,2 = − n

2m
±
√

(
n

2m
)2 +

q

m
(89)

where q
m
> 0 implies that n

2m
<
√

( n
2m

)2 + q
m

, and so we have one positive
solution and one negative for each selection of sign in (90). We now find the

extremes of the potential, so taking the derivative of (90) we find dV (x)
dx

= 0,
obtaining:

dV (x)

dx
= 3mx2 + 2nx− q = 0⇒ x1,2 = − 2n

6m
±
√

(
2n

6m
)2 +

q

3m
. (90)

In order to find what type of extreme each of these previous solutions are,

we plug it into d2V (x)
dx2 and find the sign for each entry.

d2V (x)

dx2
= 6mx+ 2n (91)

d2V (x1,2)

dx2
= 6m

(
− 2n

6m
±
√

(
2n

6m
)2 +

q

3m

)
+ 2n (92)

= ±6m

√
(

2n

6m
)2 +

q

3m
(93)

From this last result is clear that for the positive entry we will have a mini-
mum and for the negative a maximum. With this is proved all the proposed
above.

45


