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Abstract

The United States has observed a steady decline in the number of reported Tuber-
culosis (TB) cases in the past fifty years, but many states, such as Arizona, have had
rates consistently above the US average. TB has been regarded as a disease of the
disadvantaged, where poverty, overcrowding and malnourishment are responsible for
much of the continued spread. Accordingly, the majority of TB cases in Arizona occur
in the foreign-born population, whose households usually fall below the poverty line
and have less access to adequate health care. Within this population, undocumented
immigrants are the most socially and economically disadvantaged. Therefore, immi-
gration laws, including some of the provisions in SB 1070, are likely to cause further
marginalization as the increased fear of deportation will discourage undocumented in-
dividuals from seeking work and healthcare. Such laws could potentially exacerbate
the spread of TB among undocumented immigrants and the low-income communities
in which they reside, eventually extending to all socioeconomic classes. To observe the
spread of TB in Arizona we employ a TB epidemic model that considers low and high
income groups and accounts for different degrees of interaction within and between
these socioeconomic classes. We also adjust the model parameters to simulate changes
in behavior of undocumented immigrants before and after the implementation of an
immigration law such as SB 1070.
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1 Introduction

Over six million people die from Tuberculosis (TB), Malaria and HIV/AIDS each year,
where about two million of these deaths are caused by TB [26]. Traditionally, TB is consid-
ered a disease of impoverished countries where overcrowding, unsanitary living conditions
and malnourishment are still responsible for much of the continued spread. Therefore, it
often afflicts developing nations. The United States has one of the lowest TB rates with only
4.6 reported cases per 100,000 people in 2007 [28], but this low number of TB cases masks
the large differences between states and ethnicities. In fact, in 2007 the TB rate for US-born
individuals was 2.3 per 100,000 people while the TB rate for foreign-born individuals was
21.9 per 100,000 people, and this ratio has been consistently increasing since cases started
being recorded in 1953 [28]. Furthermore, in 2006, for the third consecutive year, more TB
cases were reported among Hispanics than any other racial/ethnic population, with Mexico
accounting for most cases [28]. Consequently, states with large Hispanic populations hold
disproportionate TB rates. In fact, Mexico border states comprise a majority of all TB cases
in the United States.

Border states are particulary most affected by foreign-born TB cases since approximately
one million persons cross the U.S.-Mexico border daily [27]. With that large volume of
influx there are three ways TB can be transmitted into the United States: 1) people with
active TB disease move northward across the border, 2) people with latent TB infection
experience active disease after arrival in the United States and 3) U.S. residents touring
Mexico, including immigrants, acquire TB disease after returning to the United States [15].
After a person with TB enters the United States, further transmission might occur, which,
in turn, contributes to TB morbidity in the United States directly from source patients
and indirectly from their contacts. As a result of these scenarios, California, Texas, New
Mexico and Arizona, and six Mexican states actively collaborate to address health issues at
the border. Despite these efforts, illegal immigration prevents millions of people from being
tested for TB upon entering the United States.

In 1998 the number of TB cases among Mexican-born individuals as a proportion of
the total population was 43% for Arizona, 41% for New Mexico and 42% for Texas [17].
About ten years later, as seen in Figure 1, Mexican-born persons account for 57% of TB
cases. This is coupled with a steady TB case rate between 4.6 and 5.5 per 100,000, which
is consistently higher than the US rate for the past decade [30]. Arizona is also one of the
states most afflicted by illegal immigration, and to address this issue, Governor Jan Brewer
signed Senate Bill SB 1070. Which would legally allows law enforcement officials to question
a suspect’s immigration status if there is “reasonable suspicion” they entered the country
illegally [1]. Arizona is not the only state to consider such polemic laws and immigration
reform in general is continually receiving increased political attention.
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Figure 1: Country of Origin for Foreign-Born TB Cases, Arizona, 2007. Source: AZDHS Surveillance
Report 2007

Some individuals in the medical community are in an uproar because of the health con-
sequences of immigration laws such as SB 1070. Doctor Lucas Restrepo of the Barrows
Neurological Institute in Phoenix wrote in the New England Journal of Medicine that “[the
law] specifies that those who conceal, harbor or shield or attempt to conceal, harbor or shield
a foreign person who came to the United States illicitly are guilty of a class 1 misdemeanor
punishable by a fine of at least $1,000 (Sec. 5, Section 13-2929). It can be argued that health
care providers who neglect to report illegal immigrants under their care will violate the law
and be considered criminals.” Yet the greatest fear physicians have is with the behavioral
changes among undocumented immigrants. For example, after the law “Why would illegal
immigrants, or legal immigrants without their papers handy, go to the emergency room or
a healthcare center that can be policed?” posed Valerie Arkoosh, President of the National
Physicians Alliance.

Therefore, immigration laws have the potential to completely isolate healthcare access to
undocumented immigrants, who are already the least likely demographic to utilize healthcare.
At least before a law, undocumented immigrants would utilize emergency health services
when necessary and have access to free clinics [22, 34]. After a law, despite no definite
denial of care, the fear of deportation as well as lack of clarity on free clinic access could
cause a complete removal of all healthcare usage. Additionally, after a severe immigration
law, undocumented immigrants will be changing their day-to-day lives to avoid conflict
with police. Such measures include using more public transportation and staying near their
communities, thus furthering their social isolation in the state. This combination of decreased
health and increased social isolation does not bode well for the spread of communicable
diseases such as TB, and will also affect those with pre-existing conditions.

TB treatment is very costly and requires up to six months of taking multiple drugs
and patients often fail to follow the full regimen, only temporarily halting the disease [27].
Moreover, individuals with type 2 diabetes and HIV/AIDS are more susceptible to TB
infection [13]. This is a problem for Hispanic immigrants in particular, whose change in
eating patterns upon entering the United States results in an increased risk and prevalence
of type 2 diabetes [9]. In fact, 33.4% of Arizona’s hispanic population is obese, making it
one of the six most obese states among Hispanics [10].
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Consequently, immigration laws such as SB 1070 could foster the spread of TB within
low-income communities where the majority of undocumented immigrants reside. Yet, other
socioeconomic groups will also be at risk, since the social isolation created by the law will
not completely limit contact. In fact, as undocumented immigrants lose work in restaurants,
schools, and corporations, they will most likely turn to odd jobs, such as gardening and house
cleaning, thus remaining in contact with individuals of all income levels though potentially
at a reduced level. TB is a specific worry because the TB vaccine is rarely administered in
the United States and even those vaccinated are still susceptible to multiple strains of TB
especially after childhood [35]. Also, it is a highly contagious airborne disease, passed along
through sneezing, coughing and breathing in contaminated droplets from the air. As a result,
immigrations laws have the potential to foster the growth of TB among all socioeconomic
groups.

This paper models the spread of TB in Arizona before and after the implementation
of an immigration law. As outlined previously, Arizona will soon be in a unique situation
because of it’s large undocumented immigrant population, relatively high number of TB
cases and the potential side effects of SB 1070 on immigrant health. Our prediction is that
the prevalence of TB will grow among undocumented immigrants, creating a domino effect
from this population to the general low-income populations in the communities in which
they reside. Then, despite the reduced contact with more elite socioeconomic groups, there
will still be mixing between all groups, actually increasing the probability of infection for
high-income communities. To analyze this scenario we employ a TB epidemic model of
susceptible, exposed and infected individuals, where infected individuals continuously return
to the latent stage in which they have the disease but can not infect others. This is a
modification of the TB model originally proposed by Waaler [31] and later developed by
Feng, Castillo-Chavez and Capurro [11]. We then partition the population into two groups,
low and high income, where parameters are adjusted to account for different levels of social
contact between these two groups. Ultimately, this model captures the spread of TB within
income groups and between income groups.

This paper is organized as follows: Section 2 explains the basic TB model in detail.
Section 3 analyzes the basic control number and the case of a backward bifurcation. Section
4 establishes our parameters and presents before and after simulations of an immigration law
on the spread of TB. Section 5 discusses a sensitivity analysis of our basic control number
with respect to selected parameters as well as single-effort and multi-effort control methods
to reduce the basic control number. Section 6 provides results and conclusions.

2 The TB Epidemic Model

Infection with Tuberculosis leads to active TB by one of three possible routes: primary
progression after a recent infection, activation of a latent infection, or exogenous reinfection
of a previously infected individual. Traditional mathematical models for exogenous rein-
fection, such as the TB model proposed by Feng, Castillo-Chavez and Capurro, use four
epidemiological classes with susceptible, exposed and infectious stages as well as a treatment
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stage. We simplify this model by removing the treatment stage and instead assume that
all those infected with TB in our population never fully recover from TB, thus returning to
the latent or exposed stage upon treatment. Upon entering the exposed stage, individuals
can continually progress from exposed to infectious and back to exposed. Furthermore, we
divide our population into two groups: a low-income class and a high-income class. Then,
each group is divided into three epidemiological classes described in the table below:

Symbol, i = L,H Name Definition
Si Susceptible Not infected but susceptible to TB infection
Ei Exposed Infected but unable to infect others
Ii Infected Active TB infection (individual is able to infect others)

Table 1: Symbols and Definitions of Populations for TB Model

Si(t) denotes the susceptible population at time t, Ei(t) is the latently infected (assumed
not infectious) class at time t, and Ii(t) denotes the actively infected (assumed infectious)
class at time. In order to determine the population size of the income groups in Arizona, we
take the total number of individuals living in poverty (earning less than $30,000) in a year
as our low-income population. By assumption, undocumented immigrants are captured by
these low-income communities. The high-income class captures all people earning more than
$30,000 a year and are by assumption the part of society least susceptible to TB and more
removed from undocumented immigrants though they still have some degree of mixing. The
system of ordinary differential equations for the spread of TB within the low-income group
is given by

dSL
dt

= ΛL − βLλLSL − µSL, (1a)

dEL
dt

= βLλLSL − µEL − qβLELλL − kEL + rLIL, (1b)

dIL
dt

= qβLELλL + kEL − rLIL − dIL − µIL, (1c)

NL = SL + EL + IL.

While the system for the high-income group is given by

dSH
dt

= ΛH − βHλHSH − µSH , (2a)

dEH
dt

= βHλHSH − µEH − qβHEHλH − kEH + rHIH , (2b)

dIH
dt

= qβHEHλH + kEH − rHIH − dIH − µIH , (2c)

NH = SH + EH + IH .
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Symbol, i = L,H Explanation Units
Λi Recruitment rate 1

year

βi Infection rate for susceptible individuals by an infectious TB indi-
vidual per contact per unit time

1
year

k Per capita natural progression rate of latent TB to active TB 1
year

µ Per capita natural death rate 1
year

d Per capita excess death rate due to TB 1
year

q Reduction in susceptibility of a latently-infected individual Unitless
ri Per capita TB treatment rate (returns infected to exposed) 1

year

Table 2: Symbols and Definitions of Parameters for TB Model

We set βi = pCi, where p is the probability that a contact is effective for TB transmission
given that a susceptible has contact with an actively infected individual and Ci is the average
number of contacts of group i per person per unit time. Therefore, βi is interpreted as the
average number of effective contacts a susceptible has per unit of time. An important term
for our model is λi, the force of transmission, since it captures the probability of mixing
between groups and thus connects the six equations. It is given by

λi =

[
PiL

(
IL
NL

)
+ PiH

(
IH
NH

)]
,

where

Pij = fiδij + (1− fi)
(1− fj)CjNj

(1− fL)CLNL + (1− fH)CHNH

(3)

and

δij =
1, i = j
0, i 6= j

.

Above, Pij represents the probability that an individual in group i contacts an individual
in group j given group i had a contact, where fi is an individuals preference for their own
income group and (1 − fi) is an individuals preference for the other income group [4, 16].
When δ is equal to one, there exists preferred mixing only for one’s own group. This means
that, for example, the probability that a low-income individual interacts with another low-
income individual (PLL) is equal to the preference that the low-income individual has for low-
income individuals (fi), plus the preference that a low-income individual has for the rest of
the population (1−fi) multiplied by the random mixing that will occur with the remainder of
low-income individuals as a proportion of the entire population. Furthermore, when fi=fj=0
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the preference term is removed from the equation and there is simply proportional mixing
between income classes. Therefore, by multiplying these probabilities with those infected as
a proportion of each population, we see that λi captures how likely an individual is to come
in contact with an infectious individual given their mixing preferences. Thus, the product of
λi with βi captures how likely an individual is to be infected given their mixing preference.
The dynamics of the interactions between groups is best seen in the compartment model
in Figure 2, where the dashed lines represent inter-group contact between susceptibles and
infected.

Figure 2: Flowchart of 2-Group TB Model

3 Mathematical Analysis

3.1 Disease-Free Equilibrium Point

The disease-free equilibrium is a steady-state solution by which there is no disease. No-
tice that in the absence of disease, SL = NL, SH = NH , EL = 0, EH = 0, IL = 0,and
IH = 0. Thus, we have a disease-free equilibrium: DFE= (S∗L, S

∗
H , E

∗
L, E

∗
H , I

∗
L, I

∗
H) =

(ΛL

µ
, ΛH

µ
, 0, 0, 0, 0). The disease-free equilibrium will be used when computing the basic con-

trol number.

3.2 Basic Control Number

We use the next generation operator method to compute the basic control number where
the basic control number, Rc, is a measure of the number of primary infections caused by
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a “typical” infectious individual in a fully susceptible population during entire infectious
period. If Rc < 1, the disease-free equilibrium point is locally asymptotically stable and the
disease will die out in the population. While Rc > 1, the disease-free equilibrium is unstable
and the disease will invade the population. Let F be a vector containing all new infections.
That is, F will contain all rates from uninfected compartments into infected compartments.
V will be a vector containing all other rates of transfer to all compartments. Thus,

F =


βLSL(PLL

IL
NL

+ PLH
IH
NH

)

βHSH(PHL
IL
NL

+ PHH
IH
NH

)

0
0
0

 ,

and

V =



qβLEL(PLL
IL
NL

+ PLH
IH
NH

) + EL(µ+ k)− rLIL
qβHEH(PHL

IL
NL

+ PHH
IH
NH

) + EH(µ+ k)− rHIH
IL(rL + d+ µ)− kEL − qβLEL(PLL

IL
NL

+ PLH
IH
NH

)

IH(rH + d+ µ)− kEH − qβHEH(PHL
IL
NL

+ PHH
IH
NH

)

βLSL(PLL
IL
NL

+ PLH
IH
NH

) + µSL − ΛL

βHSH(PHL
IL
NL

+ PHH
IH
NH

) + µSH − ΛH


.

We then compute the Jacobian of each at the disease-free equilibrium. This gives us

D(F) =



0 0 βLpLL βLpLH
N∗

L

N∗
H

0 0

0 0 βHpHL
N∗

H

N∗
L

βHpHH 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,

and

D(V) =



µ+ k 0 −rL 0 0 0
0 µ+ k 0 −rH 0 0
−k 0 rL + d+ µ 0 0 0
0 −k 0 rH + d+ µ 0 0

0 0 βLpLL βLpLH
N∗

L

N∗
H

µ 0

0 0 βHpHL
N∗

H

N∗
L

βHpHH 0 µ


.

Where N∗L = ΛL

µ
and N∗H = ΛH

µ
. Additionally, pij is Pij evaluated at the disease-free

equilibrium.
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Therefore,

pij = fiδij + (1− fi)
(1− fj)Cj Λi

µ

(1− fL)CL
ΛL

µ
+ (1− fH)CH

ΛH

µ

.

Our reproductive number, Rc, is the dominant eigenvalue of matrix FV −1 where F and
V are equal to

F =


0 0 βLpLL βLpLH

N∗
L

N∗
H

0 0 βHpHL
N∗

H

N∗
L

βHpHH

0 0 0 0
0 0 0 0


and

V =


µ+ k 0 −rL 0

0 µ+ k 0 −rH
−k 0 rL + d+ µ 0
0 −k 0 rH + d+ µ

 .

Thus,

FV −1 =


βLpLLk

ΘL

βLpLHk
ΘH

(
N∗

L

N∗
H

)
βLpLL(µ+k)

ΘL

βLpLH(µ+k)
ΘH

(
N∗

L

N∗
H

)
βHpHLk

ΘL

(
N∗

H

N∗
L

)
βHpHHk

ΘH

βHpHL(µ+k)
ΘL

(
N∗

H

N∗
L

)
βHpHH(µ+k)

ΘH

0 0 0 0
0 0 0 0


where ΘL = (µ+ k)(µ+ d+ rL)− krL and ΘH = (µ+ k)(µ+ d+ rH)− krH .
Notice that two of the eigenvalues of our matrix FV −1−λI are zero. Therefore, we need

only consider the matrix GZ−1 when determining our largest eigenvalue

GZ−1 =

 pLL
βLk
ΘL

pLH
βLk
ΘH

(
N∗

L

N∗
H

)
pHL

βHk
ΘL

(
N∗

H

N∗
L

)
pHH

βHk
ΘH

 . (4)

The above matrix can be expressed as:

GZ−1 =

(
RLL RLH

RHL RHH

)
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where each entry in our matrix is a reproductive number in and of itself. Rij is the expected
number of primary infections in a fully susceptible population of group i produced by an
infected individual in group j.

λ1,2 =
(RLL +RHH)±

√
(RLL −RHH)2 + 4(RHLRLH)

2
.

It follows that the largest eigenvalue, our basic control number, is equal to

Rc =
(RLL +RHH) +

√
(RLL −RHH)2 + 4(RHLRLH)

2
.

We can also consider an alternate form of our model where there is only proportionate
mixing between groups. That is, all individuals in the population mix randomly, without
reserved contact preference for certain individuals from their own group. If we recall from
equation (3), this means that fi = 0 and thus, the new mixing probabilities, which we will
call p∗ij, are now of the form:

p∗iL =
CLNL

CLNL + CHNH

and

p∗iH =
CHNH

CLNL + CHNH

.

Under this condition and using the next generation operator method (which we outlined in
this section), we were able to obtain a basic control number, which we will call Ra

c . That is,

Ra
c =

CLNL

CLNL + CHNH

(
kβL
ΘL

)
+

C2N2

C1N1 + C2N2

(
kβH
ΘH

)
(5)

where, once again, ΘL = (µ+ k)(µ+ d+ rL)− krL and ΘH = (µ+ k)(µ+ d+ rH)− krH .

3.3 Interpretation of Basic Control Number

Recalling matrix (4), we can now look more closely at the biological interpretation of our
basic control number Rc. If we examine the individual entries of matrix (4), we see that for
an expression

βipijk

(µ+ k)(µ+ d+ ri)− kri
we can rewrite the expression as

pij

(
βi

µ+ k

)(
k

µ+ d+ ri

)(
1

1− kri
(k+µ)(µ+d+ri)

)
.

The term βi

µ+k
represents the average amount of time an individual spends in the latent class

multiplied by the infection rate, βi. Likewise, the term k
µ+d+ri

represents the average amount
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of time an individual spends in the infectious class multiplied by the natural progression rate
to the infectious class, k. The remaining term, 1

1−x with x = kri
(k+µ)(µ+d+ri)

, can be rewritten

in the form of a geometric series: 1 + x + x2 + x3 + ... . This series, along with the prior
two expressions, represents the proportion of people moving through a cycle of entering the
infectious class, returning to the latent class via treatment, and then once again returning
to the infectious class. When multiplied by pij, which is the conditional probability that an
individual in i contacts an infectious individual in j, the result is our basic control number,
Rc. Notice that if i 6= j, we now need to take into account the ratio of individuals in
population i with respect to population j. This ratio is accounted for by the factor Ni

Nj
.

We can also look more closely at Ra
c for a biological interpretation. We can rewrite

equation (5) as

Ra
c =

CLNL

CLNL + CHNH

(
βL

µ+ k

)(
k

µ+ d+ rL

)(
1

1− xL

)
+

CHNH

CLNL + CHNH

(
βH

µ+ k

)(
k

µ+ d+ rH

)(
1

1− xH

)
where xL = krL

(k+µ)(µ+d+rL)
and xH = krH

(k+µ)(µ+d+rH)
.

The terms βi

µ+k
, k
µ+d+ri

, and 1
1−xi

can be interpreted in the same way as illustrated above.
The difference lies in the p∗ij terms. Notice that the p∗ij terms for this alternate model are no
longer dependent upon contact mixing preferences.

3.4 Existence of Endemic Equilibrium

A possible state for our model is one in which TB exists within our population in an
endemic state. Through a numerical approach, we can show that such a state exists for our
model. To solve for the endemic equilibrium where Rc > 1, ṠL, ṠH , ĖL, ĖH , İL,and ˙IH are
set equal to zero and we solve for SL, SH , EL, EH , IL, and IH . Notice that

dSL
dt

+
dEL
dt

+
dIL
dt

= ΛL − µNL − dIL

and
dSH
dt

+
dEH
dt

+
dIH
dt

= ΛH − µNH − dIH .

If we assume that death due to TB is very uncommon, d ≈ 0. Thus, we can assume
constant populations where NL = ΛL

µ
and NH = ΛH

µ
.

From here, using a computer algebra system, we were able to reduce the systems to two
equations FL(IL, IH) and FH(IL, IH), by expressing the equilibrium values for EL, EH , SL,
and SH in terms of IL and IH . These equations are of the form

Fi(IL, IH) = qβiE
∗
i piL

IL
NL

+ qβiE
∗
i piH

IH
NH

+ kE∗i − Ii(ri + d+ µ)

where

S∗i =
Λi

βipiL
IL
NL

+ βipiH
IH
NH

+ µ
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and

E∗i =
1

µ

(
βiS

∗
i piL

IL
NL

)
+
Ii
µ

(
βipiH

SH
NH

− µ− di
)
.

From here, we are able to reduce the system (1,2) yet again to one biologically relevant
equation, f(IL), of the form

f(IL) = A7I
7
L + A6I

6
L + A5I

5
L + A4I

4
L + A3I

3
L + A2I

2
L + A1IL + A0.

To show the existence of the endemic equilibrium, we now consider f(0) and f(NL). However,
because of the size of these expressions, we are unable to determine the behavior. Therefore,
using parameters from Table 4, we will use a numerical approach to determine the behavior
of our system for our particular parameter values. From here, we were able to show that
f(0) < 0 and f(NL) > 0. Thus, by the Intermediate Value Theorem, f(IL) must have a root
and in turn, the endemic equilibrium must exist for our particular model.

We can now consider a sub-model of our model where each income group is indepen-
dent of one another, having no interactions outside of their own group. That is, fi = 1 and
consequently, λi = Ii

Ni
. From here, we can find an expression for the endemic equilibrium.

To solve for the endemic equilibrium where Rc > 1, the equations for Ṡi, Ėi, and İi are all
set equal to zero and we find the values of Si, Ei, and Ii where i = L or H. Notice that the
equation for the total population is given by:

dSi
dt

+
dEi
dt

+
dIi
dt

= Λi − µNi − dIi.

Therefore,

Ni =
Λi − dIi

µ
.

and notice that

Ii ≤
Λi

d
.

This condition must hold since we are assuming our population is positive. Solving the
system in terms of Ii, we obtain

S∗i =
ΛiNi

βiI∗i + µNi

and

E∗i =
I∗i
µ

(
βi
S∗i
Ni

− µ− d
)
.

We can now reduce the system to one equation,

f(Ii) = (qβiµIi+kΛi−kdIi)(βiΛi−(µ+d)(Λi+βiIi−dIi))−µ(µ+d+ri)(Λi−dIi)(βiIi−dIi+Λi)

which can be expressed as:
f(Ii) = A2I

2
i + A1Ii + A0Ii
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.

The coefficients of this quadratic expression are

A0 = −Λ2
i ((k + µ)(µ+ d+ ri)− kri − kβi),

A1 = Λi(2d(k+µ)(µ+d+ri)−2krid−βi(k+µ)(µ+d+ri)−βikri−qβiµd−qβiµ2+qβ2
i +qβ

2
i µ−kdβi),

and
A2 = (βi − d)(d(k + µ)(µ+ d+ ri)− dkri − qβiµd− qβiµ2).

To show the existence of the endemic equilibrium, we now consider f(0) and f
(

Λi

d

)
, respec-

tively. That is,
f(0) = Λ2

i (kβi − k(µ+ d)− µ(µ+ ri + d))

and

f

(
Λi

d

)
=

(
qβiµ

Λi

d

)(
−µβi

Λi

d

)
.

Notice that since all parameters are positive, f
(

Λi

d

)
< 0. While rewritting f(0) in terms of

R∗c we obtain
f(0) = Λ2

i ((k + µ)(µ+ d+ ri)− kri)(R∗c − 1)

where

R∗c =
kβi

(k + µ)(µ+ d+ ri)− kri
.

Since the endemic equilibrium exists when R∗c > 1, f(0) > 0. Thus, by the Intermediate
Value Theorem, f(Ii) has a root and, in turn, the endemic equilibrium must exist for this
model.

3.5 Backward Bifurcation

In models with only two steady states, a disease free and endemic equilibrium, that
exhibit a transcritical bifurcation, R0 ≤ 1 implies that the disease free state is stable, and
thus the disease dies out, while R0 > 1 implies that the endemic state is stable. Bifurcation
theory has shown that TB models with exogenous reinfection, much like the one shown here,
may exhibit a so-called backward bifurcation, rather than a forward transcritical one [7].
When Rc < 1 for a model which exhibits a backward bifurcation, there are three biologically
feasible equilibria: a stable disease free equilibrium, a small unstable positive equilibrium
and a larger stable endemic equilibrium. If backward bifurcation occurs, a small increase in
the transmission rate βi causes a large increase in the number of infected individuals but a
subsequent small decrease in the transmission rate does not lead to the sudden disappearance
of an endemic disease. Consequently, the occurrence of a backward bifurcation has important
implications for the design of epidemiological control measures. Therefore, an epidemic may
persist at steady state even if Rc < 1. Attention needs to be put toward the initial infection
levels in order to guarantee being in the basin of attraction for the disease free equilibrium
[7,11].
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Figure 3 illustrates that a biologically relevant backward bifurcation exists for the
TB model, provided that fi is equal to 1. Under this condition, the populations have no
interactions and the model for each income group has a backward bifurcation. For this, we
can show that

Theorem 1. Existence of Backward Bifurcation

Under the condition that fi = 1, it is necessary that in order for a backward bifurcation
to exist,

qβ∗i µ

qµd+ qµ2 + kd
> 1

and q, β∗i , and µ must be greater than 0.

Proof. We chose βi as the bifurcation parameter. Recall that our system of equations in
terms of Ii is of the form

A2I
2
i + A1Ii + A0 = 0

where our coefficients A2, A1, and A0 are expressions in terms of βi. That is,

A2(βi)I
2
i + A1(βi)Ii + A0(βi) = 0.

The characteristic which distinguishes backward bifurcations from other types of bifurcations
is the behavior of the system at Rc = 1. The disease-free equilibrium is asymptotically stable
when Rc < 1. However, at Rc = 1 the system undergoes a backward bifurcation. As opposed
to a forward bifurcation, where the system would then assume a positive slope and travel
along a stable endemic equilibrium, a system with a backward bifurcation assumes a negative
slope and travels along an endemic equilibrium at Rc < 1. Therefore, we want to look at
how Ii(βi) changes with βi, especially at Ii(β

∗
i ) where β∗i corresponds to R∗c = 1. Through

implicit differentiation, we can examine this behavior.

A′2(βi)I
2
i + 2IiI

′
iA2(βi) + A′1(βi)Ii + I ′iA1(βi) + A′0(βi) = 0

We evaluate this function at βi = β∗i where β∗i is the value of βi by which R∗c = 1 and,
noticing Ii(β

∗
i ) = 0 because we are in a disease-free state, the above equation becomes

I ′iA1(βi) + A′0(βi) = 0

or

I ′i =
−A′0(β∗i )

A1(β∗i )
.

Notice that if
−A′0(β∗i )

A1(β∗i )
< 0

a backward bifurcation exists. In turn,

A′0(β∗i )

A1(β∗i )
> 0.
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For our model,

A′0(β∗i )
A1(β∗i )

=
kΛi

2d(k + µ)(µ+ d+ ri)− β∗i (k + µ)(µ+ d+ ri)− 2dkri + β∗i kri + q(β∗i )2µ− β∗i qµd− qβ∗i µ2 − kdβ∗i
.

Clearly, kΛi > 0. Thus, we need only examine

2d(k+µ)(µ+d+ri)−β∗i (k+µ)(µ+d+ri)−2dkri+β
∗
i kri+q(β

∗
i )

2µ−β)i∗qµd−qβ∗i µ2−kdβ∗i > 0.

This can be rewritten in terms of our R∗c . That is,

2d(k+µ)(µ+d+ri)(1−R∗c)+q(β∗i )
2µ > β∗i (k+µ)(µ+d+ri)(1−R∗c)+β∗i qµd+β∗i qµ

2 +β∗i kd.

Recall that at βi = β∗i , R
∗
c = 1. Thus,

qβ∗i µ

qµd+ qµ2 + kd
> 1.

Notice that without q (q = 0), the parameter associated with exogenous reinfection, the
condition is then

0 > 1

which is false. Consequently, this means that a backward bifurcation does not occur.

Notice that when in an environment where death due to tuberculosis is very uncommon(di ≈
0), the condition for backward bifurcation reduces to

β∗i
µ
> 1 or β∗i > µ.
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Figure 3: Backwards Bifurcation Diagram

In Figure 3, the x-axis corresponds to values for β and the y-axis are solutions to Ii, for
specific parameter values (listed in Table 3) for the model. It can be shown that for the
values of Ii in the diagram, there exists corresponding positive solutions for Si and Ei. By
further examining the backward bifurcation diagram, we observe that at the parameter value
β = 1.11, Rc = 1.

Parameter Value
Λi 1.0
µ 0.001
d 0.0001
k 0.00001
ri 0.01
q 0.1

Table 3: Parameter Values Used for Backward Bifurcation

4 TB Model Parameter Estimation

Most parameter values were obtained from census data and previous TB model manuscripts
as seen in Table 4.

16



Symbol, i = L,H Explanation Value Reference
Ni Total population NL = 955, 521, NH = 5, 544, 964 [2]
βi Infection rate for susceptible individuals βL = 0.4, βH = 0.2 Estimated
Ci Contact rate CL = 5475, CH = 3650 Estimated
fi Reserved contacts fL = 0.6, fH = 0.6 Estimated
ri Treatment rate rL = 0.13, rH = 0.7 Estimated
k Natural progression rate 0.005 [7]
µ Natural death rate 0.00694 [36]
d Death rate due to TB 0.00000002 ≈ 0 [36]
q Reduction in susceptibility of latently-infected 0.4 [7]

Table 4: Initial Conditions for Parameters

To establish the low-income and high-income populations, we used census data for 2007 to
find the proportion of people living in poverty, or those making less than $30,000 a year.
All persons under this level are in the low-income class (NL), and all others are in the
high-income class (NH). To determine contacts made per year, we assume that the low-
income class comes in contact with more people on a daily basis because they tend to live in
larger households, more densely populated communities and are more likely to utilize public
transportation. Therefore, we assume a low-income individual, on average, comes into close
contact with 15 people per day while a high-income person makes 10 close contacts per day.
Respectively, this results in 5475 and 3650 close contacts per year. In order to determine the
birth rates, we plotted the population growth of our low-income group against time and fit
an exponential curve, estimating a 0.041 per capita birth rate. Using the same method, the
high-income group per capita birth rate was found to be 0.035. With both of these values,
Figure 4 illustrates our model fit against the total population growth data for Arizona.

17



1990 2000 2010 2020 2030 2040
2

4

6

8

10

12

14

16 x 106

Time (Years)

Po
pu

la
tio

n

 

 

Model
Data

Figure 4: Exponential curve fitting total population of Arizona.

Before an immigration law such as SB 1070 passes, we assume that both low-income
and high-income groups have some preference for their own groups, meaning they reserve
contacts for people in their same socioeconomic class. Therefore, probabilities of 0.6 are
assigned to fi for each group. For our other varying parameters, βi and ri, we used TB
cases for the past ten years to estimate the most appropriate values. As seen in Figure 5, the
actual TB data is sporadic and difficult to fit (most likely because the data is incomplete due
to unknown cases of TB), but our model does follow the general trend, suggesting plausible
parameters. Furthermore, in this case, our basic control number,Rc is 1.55, confirming that
TB is prevalent before a law such as SB 1070 even passes. This follows the general trend of
the actual data, which has slightly increasing number of infectious TB cases.

Our parameter values are also realistic in context because we assume βi is lower for
low-income communities who are more likely to come in contact with infectious individuals.
This is because this population has lower healthcare access, higher rates of diabetes and
HIV/AIDS, making them more susceptible to TB. As a result, it makes sense to have a
before law value of 0.4 for the low-income group and 0.2 for the high-income group. The
treatment rate, ri, also varies. Even though some counties in Arizona provide free treatment
to citizens, often times low-income patients are unaware they are infected and do not know
of the resources available for treatment. Therefore, we assume a low use of treatment with
rL = 0.13, meaning 13% of actively infected low-income individuals seek treatment in a year
and rH = 0.7, meaning 70% of actively infected high-income individuals seek treatment in
a year. Lastly, our values for k and q mimic results of previous papers modeling TB in the
United States.
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Figure 5: Fitting TB Model to Actual TB Prevalence in Arizona by Year

4.1 Simulations for Post Immigration Law Scenarios

The simulations presented below model two before and after scenarios for the effects of
the spread of TB in Arizona. All the simulations measure time in years from 2010 (the year
of law enactment) to 2050, to best capture the long-term effect of an immigration law on
TB dynamics. The parameter values used are provided in Table 5.

Simulation βi fi ri Rc

Pre Post Pre Post Pre Post Pre Post

Scenario 1
βL = 0.4 βL= 0.8 fL = 0.6 fL = 0.8 rL = 0.13 rL = 0.08

1.55 5.75
βH = 0.2 βH = 0.4 fH = 0.6 fH = 0.6 rH = 0.7 rH = 0.7

Scenario 2
βL = 0.4 βL = 0.6 fL = 0.6 fL = 0.8 rL = 0.13 rL = 0.10

1.55 3.54
βH = 0.2 βH = 0.3 fH = 0.6 fH = 0.6 rH = 0.7 rH = 0.7

Table 5: Parameter Values for Scenario 1 and 2

Scenario 1 simulates a worst-case scenario after the implementation of an immigration law.
We double βL to represent a large increase in susceptibility for the low-income community
given the decrease in health access of the undocumented immigrant population. The treat-
ment rate rL also decreases so that only 8% of the population receives treatment after a
year. Lastly, the reserved contact rate fL increases because undocumented immigrants will
most likely become more reclusive and remain within their communities due to fear of de-
portation. As seen in Figure 6, immigration laws such as SB 1070 have a drastic effect in
the increase of TB among the low-income population, increasing from 200 cases to 700 cases
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in 40 years. Furthermore, despite the decreased contact with high-income groups, there is
a slight increase in TB cases for this socioeconomic group as well. However, the cases only
increase from 50 cases to 70 cases, which is not a dramatic increase given the large changes
in parameter values.
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Figure 6: Scenario 1 (Extreme) for Pre and Post Immigration Law Simulation

Scenario 2 simulates a more plausible scenario after an immigration law. Both infection
rates are increased modestly and rL only decreases from 0.12 to 0.10. Despite these small
changes, there is still a substantial increase in the number of infectious individuals among
the low-income population, more than doubling from 200 to 450 TB cases. Though contrary
to our initial prediction, there is virtually no effect on high-income individuals.
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Figure 7: Scenario 2 (Moderate) for Pre and Post Immigration Law Simulation

However, a limitation to our previous scenarios is that our mixing preferences may be too
strict. This is because our low-income cut off at $30,000 dollars does not necessarily capture
the separation between low and high income groups and so individuals for a whole range of
income levels would be mixing. Therefore, preferences may not be as pronounced as initially
assumed and both classes can be treated as interacting at a more random level. To account
for this, we introduce two more scenarios where the initial conditions for each fi change from
from 0.6 to 0.3. Table 6 provides the new parameter values for these new scenarios.

Simulation βi fi ri Rc

Pre Post Pre Post Pre Post Pre Post

Scenario 3
βL = 0.4 βL = 0.8 fL = 0.3 fL = 0.5 rL = 0.13 rL = 0.08

1.05 4.07
βH = 0.2 βH = 0.4 fH = 0.3 fH = 0.3 rH = 0.7 rH = 0.7

Scenario 4
βL = 0.4 βL = 0.6 fL = 0.3 fL = 0.5 rL = 0.13 rL = 0.10

1.05 2.52
βH = 0.2 βH = 0.3 fH = 0.3 fH = 0.3 rH = 0.7 rH = 0.7

Table 6: Parameter Values for Scenario 3 and 4

In Scenario 3, we model a worst case scenario under the assumption of more inter-group
mixing (lower fi). Under these assumptions, the increase in infected individuals in the high-
income group is larger than Scenario 1, doubling from 50 infected individuals to 100 over 40
years. This is because our high-income group is interacting more with potentially susceptible
members of the low-income group. Additionally, the number of our low-income cases triples
from 200 to 600. This is less than in Scenario 1 because a disease is more likely to spread
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in a contained population. Therefore, decreasing fi will reduce the number of infections for
the low-income group but increase the number of infections for the high-income group.
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Figure 8: Scenario 3 (Extreme) for Pre and Post Immigration Law Simulation

In Scenario 4, we mimic Scenario 2 except under the assumption of a lower fi. The
results follow a similar relationship to Scenario 1 and 3, where our high-income population
experiences more infections over time and our low-income population less infections. As
one of our more plausible scenarios, it is important to notice the increase in the number of
infectious TB cases for both income groups.
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Figure 9: Scenario 4 (Moderate) for Pre and Post Immigration Law Simulation

5 Sensitivity Analysis of Rc

Sensitivity analysis provides us with important insight into what effect the parameters
in our model have on our control reproductive number. By making small perturbations to
certain parameters, our sensitivity analysis unveils to us which of these parameters are most
sensitive. The parameters of particular interest to us are βL, βH , rL, rH , fL, and fH .

It should be noted that our control reproductive number is in terms of RLL, RLH ,
RHL, and RHH . Therefore, when evaluating ∂Rc

∂pk
for some parameter pk, we must use the

chain rule. This gives us

∂Rc

∂pk
=

∂Rc

∂RLL

∂RLL

∂pk
+

∂Rc

∂RLH

∂RLH

∂pk
+

∂Rc

∂RHL

∂RHL

∂pk
+

∂Rc

∂RHH

∂RHH

∂pk
.

Thus, our normalized sensitivity index for a given parameter pk will be defined as

Spk
=
pk
Rc

∂Rc

∂pk
.

Table 1 shows the sensitivity indeces and the associated percent needed to affect a 1%
decrease in Rc. Notice that 1

Spk
will provide us with the percent of change needed to change

the Rc by roughly 1%.
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Sensitivity Index Value
SβL

0.9998
SβH

0.0065
SrL −0.9118
SrH −0.1208
SfL

0.5472
SfH

0.1414

Table 7: Sensitivity Analysis of Rc

We found that the most sensitive parameters to Rc were βL and rL, respectively. The
sensitivity index SβL

= 0.9998 means that a 1.0002% decrease in βL results in roughly a
1% decrease in Rc. The sensitivity index SβH

= 0.0065 means that a 153.846% decrease
in βH results in roughly a 1% decrease in Rc. The sensitivity index SrL = −0.9118 means
that a 1.097% increase in rL results in roughly a 1% decrease in Rc. The sensitivity index
SrH = −0.1208 means that a 8.278% increase in rH results in roughly a 1% decrease in
Rc. Similarly, sensitivity index SfL

= 0.5472 means that a 1.828% decrease in fL results in
roughly a 1% decrease in Rc. Lastly, the sensitivity index SfH

= 0.1414 means that a 7.072%
decrease in fH results in roughly a 1% decrease in Rc.

5.1 Reducing Rc through Single-Effort and Multi-Effort Control Methods

Though single-effort control methods we can determine the minimum change that should
be made to an individual parameter in order to decrease Rc to less than 1. Recall that the
value of Rc prior to the enactment of a law such as SB 1070 is 1.555. This means that
Rc must decrease by roughly 35.756% to fall just below 1. Through single effort control
methods, the only feasible options for this to occur are to increase rL to 0.211 or to decrease
f1 to 0.06. That translates to a 61.6% increase in treatment rates for low-income individuals
or a 90% decrease in low-income individuals contact preference, the latter condition being
more difficult to realistically meet. By plotting the effect of rL and rH on our Rc, we are able
to visually witness the influence of increased treatment in each income group. Notice that
even with an increase in treatment rate to 1.0 in the high-income group, our Rc still remains
above 1, most likely contributed to the relatively small number of infectious individuals.
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Figure 10: Low-Income Treatment Rate versus Basic Control Number

Figure 11: High-Income Treatment Rate versus Basic Control Number
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If we consider single-effort control methods in Scenario 1, the only feasible option to
reduce our Rc to less than 1 is by increasing our value of rL to 0.53. This translates to
a 562.5% increase in the treatment rates for low-income individuals. Likewise, if we look
at Scenario 2, the only feasible option to reduce our Rc to less than 1 is by increasing our
value of rL to 0.39. That is, by increasing treatment rates for low-income individuals by
290%. This tells us that, given our model, the control of the spread of tuberculosis through
single-effort control methods is easier prior to the enactment of a law.

Recall that when considering a population with less prefered mixing (fL = 0.30 and
fH = 0.30), Rc was 1.05. In this situation, there are three feasible single-effort control
methods: 1) increasing rL to 0.14, 2) decreasing fL to 0.25, or 3) decreasing fH to 0.09. This
translates to a 7.69% increase in treatment rates for low-income individuals, a 16.7% decrease
in contact preferrence for low-income individuals, or a 70% decrease in contact prefference
for high-income individuals, respectively. Interestingly, increasing rH ,the treatment rate for
high-income individuals, to the maximum value of 1.0 is not sufficient to reduce our Rc to
less than 1.

If we consider single-effort control methods in Scenario 3, the only feasible option to
reduce our Rc to less than 1 is by increasing our value of rL to 0.39. This translates to
increasing treatment rates for low-income individuals by 387%. Looking at a less extreme
scenario, Scenario 4, we see that the only feasible option to reduce our Rc to less than 1 is
to increase the value of rL to 0.28, a 180% increase in the treatment rates for low-income
individuals.

Relatively minor changes of multiple parameters may be more practical than an extreme
single-effort control method, resulting in what is called multi-effort control methods. Con-
sider the model with less preferred mixing (lower fi) before the enactment of a immigration
law, where the value of Rc is 1.05. Altering the parameters βL from 0.40 to 0.36, rL from
0.13 to 0.143, fL from 0.30 to 0.27, and fH from 0.3 to 0.27 which are only 10% changes.
These small adjustments result in Rc = 0.841 which is approximately a 20% decrease.

For Scenario 3, the parameters are adjusted as follows: βL from 0.8 to .44, rL from
0.08 to .124, fL from 0.5 to 0.225, and fH from 0.3 to 0.135 which are 55% changes. These
modifications vary Rc from 4.071 to 0.96 which is approximately a 76% changes. For Scenario
4, the parameters are feasibly adjusted as follows: βL from 0.6 to 0.36, rL from 0.1 to 0.14,
fL from 0.5 to 0.3, and fH from 0.3 to 0.18 which are 40% changes. These modifications
vary Rc from 2.517 to 0.902 which is approximately a 64% change.

It should be noted that if a backward bifurcation exists within these specific models,
reducing Rc to just below 1 is not sufficient to control the spread of tuberculosis in our
population. More extreme control methods would then be needed in order to return the
population to a disease-free state.
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6 Results and Conclusion

The premise of our paper was to model to what extent an immigration law such as SB
1070 would effect the spread of TB in the low-income population, and its subsequent spread
to other socioeconomic groups. Under the assumption that the undocumented immigrant
population resides primarily in low-income communities, we altered parameters for our low-
income group to reflect behavioral changes among undocumented immigrants after the law.

Through simulations, we notice that these changes, whether modest or extreme, reflected
a substantial increase in the number of TB cases among our low-income group forty years
after the law. However, we do not account for changes in immigration, where our immigrant
population could either substantially reduce as a result of the law, or illegal immigration
could continue to occur at a constant rate. Despite this limitation, our scenarios show a TB
public health concern for low-income individuals in Arizona. Additionally, under extreme
parameter changes, as well as with less strict mixing preferences, there is a notable effect
on the increase of infectious TB cases among our high-income group. In reality, our high-
income group is the rest of our population, or those not living below the poverty line, and
so realistically we expect more mixing between those at the lower end of the high-income
spectrum with the low-income population. Therefore, we believe that the actual prediction of
the spread of TB lies somewhere between scenario 3 and scenario 4, where both socioeconomic
groups experience an increase in TB infections.

Using sensitivity analysis, we were able to show that the most feasible and effective
single-effort control method in all scenarios was through increased treatment rate in the low-
income community. A surprising result from examining these single-effort control methods
was that even an increase in the treatment rate to 1.0 (meaning 100% of individuals in the
high-income community receive treatment) would not reduce our basic control number to
below 1. On the other hand, even a small increase in the treatment rate in the low-income
community largely reduces our basic control number. We also found that the easiest scenarios
to reduce the basic control number to below 1 through single-effort control methods were the
before immigration law scenarios. Similar results follow from multi-effort control methods.
Additionally, we found that our basic control number for a scenario in which individuals hold
less preference for their own income group was much lower (32.26% lower) than a scenario
with more preferential mixing. Despite this decrease, the amount of TB cases in our high-
income group increases as seen in Scenario 3 and 4, because TB is not strictly contained in
one income group.

Ultimately, our paper investigates just one of the many repercussions of an immigration
law such as SB 1070. Though TB is of interest because of the direct increase of foreign-born
TB cases, TB is not the necessarily the largest health threat. The logic behind our model
applies to other communicable diseases from measles to the common flu.
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