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Abstract

Neuronal function relies on electrical signaling which, in turn, depends greatly on the
morphology of neurons. Local changes in the diameter of neurites caused by deformations
such as tumors or enlarged cerebral aneurysms may significantly affect electrical conduc-
tion. Morphologically accurate models are typically constructed by representing neurons
as branched cables, where a system of coupled cable equations represents small neuronal
segments as cylinders. Two extensions of the linear cable equation that allow the radius to
change continuously in space are constructed here by assuming that the radius of a neuronal
segment changes to form a section of a cone or a hyperbolic volume. The cable equation
on a cone has an analytical solution involving modified Bessel functions. A more realistic
representation of radial deformation is realized by writing the radius as a hyperbolic func-
tion of distance along the neurite. The steady state version of the hyperbolic equation is an
adapted form of Ince’s equation. The cable equation with a hyperbolic radius has an ana-
lytical solution only in special conditions, and its numerical solutions can be qualitatively
compared to the steady state solutions of the cable equation on a series of cylinders. Unlike
the cases for the cylindrical and frustum shapes, the steady state solution of the equation
on the hyperbolic cable describes a decay followed by an amplification of voltage along the
cable. This counter-intuitive result suggests that non-uniformities in the diameter of neu-
rites have local amplifying effects that may have a non-negligible impact on the propagation
of signals in neurons. This research shows how different geometrical representations used
to derive cable equations have varying impacts on the calculation of solutions.
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1 Introduction

Neurons depend on electrical and chemical signals to transmit information. Abrupt
changes in neuronal morphology caused by abnormal growth of neighboring structures
might alter its ability to function properly. For example, these structural changes may
cause excitations and/or delays in signal transmission that could potentially impact com-
munication at the network level.

The structure and branching of a dendritic tree can strongly influence how synaptic
inputs merge to communicate with nearby neurons [6]. Many of the current morpho-
logically accurate models of neurons are constructed by coupling cable equations that
represent small neuronal segments as cylinders. The resulting branched cable resembles
the original morphology of a neuron, which is used to study the propagation of electrical
signals in space and time.

Linear cable equations are typically derived by assuming the membrane acts as an
electrical circuit in which resistance and capacitance are arranged in a parallel circuit.
The cable equation on a cylinder is derived assuming that charge is conserved using
Kirchoff’s law and that current flow across the membrane is described by electrical drift
(Ohm’s law) [10]. The resulting equation is coupled with other equations that represent
adjacent portions of a neuron, forming a series of volumetric shapes with varying radii
that together may represent whole neurons.

A more geometrically realistic way to model the shape of the neuronal membrane
would be to consider radii that are continuous functions of space. The models presented
here implement two forms of deformation by assuming different functional forms of the
radius in a neuronal segment, respectively, a linear and a hyperbolic function of the
distance along a neurite. The cable equation is modified first to incorporate a linear
function of the radius, producing a frustum-shaped section of neurite. For the steady-
state solution of the frustum, this modification yields a differential equation resembling
Lommel’s equation and consists of solutions with modified Bessel functions. In the other
case, radius is considered to be a hyperbolic function of space, resulting in a steady-state
cable equation which takes a form similar to Ince’s equation. Comparison of the original
cable equation with the modified cable equations that consider space-dependent radii
offers insight into voltage propagation through a damaged dendrite.

Modeling possible dendrite deformations as a result of abnormalities is the main in-
terest of this research. This paper proposes three model representations of dendritic
branch geometry and investigates the resulting voltage propagation. Studying the effects
of a forced dendritic compression indicated that voltage propagation is dependent on the
physical properties of dendrites.

2 Methodology

2.1 Mathematical Model

There are several assumptions that must be made prior to investigating the behavior of
the voltage and current as they pass through the dendrite. The first assumption is that
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any finite part of the dendrite can be represented as a passive, uniform cable with uniform
material and electrical properties.

(a)

(b)

Figure 1: (a) Schematic for the dendrite as a cable. Current comes in from the left, and travels
a distamce x+∆x, losing current through the membrane as it travels, but adhering to Kirchoff’s
current Law. (b) A cross-section of a dendritic cable showing the separation between inner and
outer parts of the cell.

As shown in Figure 1 (a) current ii (A) flows through the horizontal axis of the cable and
meets a resistance ri (Ω/cm), calculated by

ri =
Ri

π
(
d2

4

) ,
where Ri (Ωcm) is the specific resistance of the inside of the cable and d (µm) is the cable
diameter.

The dendrite membrane separates the inner and outer parts of the cable as shown
in Figure 1 (b). The membrane is composed of two regions: sections of resistance and
sections of capacitance. Due to the existence of membrane resistance, rm (Ω/cm), and
membrane capacitance, cm (F/cm), the membrane can be treated as an RC circuit. Here,

rm =
Rm

πd
and cm = Cmπd

where Rm (Ω cm2) and Cm (F/cm2) are the specific resistance and specific capacitance of
the membrane, respectively. The capacitance of the membrane causes part of the axial
current to flow toward the membrane and out of the dendrite. This membrane current, im,
“leaks” through the membrane and meets resistance rm as it leaves the dendrite. Currents
ii and im are related through Kirchoff’s law of conservation of current,

inet = ii + im.
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The membrane current has a conductive property resulting from rm and the membrane
capacitance. Considering these properties in conjunction with Ohm’s law, im can be
written as

im = cm
∂V

∂t
+
V

rm
, (1)

where V (mV) is the voltage propagated through the cable. Equation (1) and the afore-
mentioned assumptions allow for the derivation of the cable equation,1

λ2∂
2V

∂x2
= τ

∂V

∂t
+ V, (2)

where λ2 = rm
rl

is the length constant in centimeters, and τ = rmcm = RmCm is the time

constant in seconds [10]. General steady state solutions for a cable of finite length (when
∂V
∂t
≡ 0) are of the form,

V (X) = V0
cosh(L−X) +BL sinh(L−X)

cosh(L) +BL sinh(L)
, (3)

where X = x
λ

and L = l
λ

are dimensionless coefficients, and BL is a constant taken to
be a ratio of input conductances [3]. This equation can be modified to describe infinite,
semi-infinite, or sealed cables. For the cylindrical segment of dendrite studied in this
research, a finite cable is considered. A numerical solution for the finite cable is discussed
in the Appendices A, B, and C.

2.2 Cable Equation for a Dendrite of Varying Radius2

This section involves spatially dependent radii. Consequently, the cable equation discussed
in the previous section is modified so that the radius of the dendrite, r, is now a function
of x.

1For derivation of the cable equation, see section A in Appendix.
2This section is adapted from Electric Current Flow in Excitable Cells by JBB Jack, et. al.
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(a) (b)

Figure 2: (a) This diagram shows the modified cylinder to allow for changing radius. (b) A
cross-section of the cylinder with a change in surface area, dA.

From Figure 2 (b), ds (cm) is the change in arc length and dx (cm) is the distance between
centers of successive cross-sections of the frustum, Figure 2 (a). The surface area along
the cross-section is given by

dA = 2πrds, (4)

where dA is in units of square centimeters and r is in units of centimeters. The leakage
of the interior current over a particular cross-section is given by

Im = − dii
dA

, (5)

where Im (A/cm2) is the membrane current density3 and ii is the axial current. From
Figure 2 (b), a right triangle with sides ds, dr, and dx is extracted, and applying the
Pythagorean theorem, yields,

dx2 + dr2 = ds2

which is equivalent to

1 +

(
dr

dx

)2

=

(
ds

dx

)2

⇒ ds

dx
=

√
1 +

(
dr

dx

)2

. (6)

Taking the derivative of Equation (4) with respect to x yields an equation for the change
in area over the spatial change,

dA

dx
= 2πr

ds

dx
. (7)

3The membrane current density is used rather than the membrane current, im, since our system no
longer has a uniform radius and is thus no longer a homogeneous system [8].
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Taking the derivative of Equation (6) with respect to x and rearranging the terms yields.

Im
dA

dx
= −∂ii

∂x
, (8)

where the partial derivative of ii is due to the fact that ii is a spatial and time dependent
function. After applying the assumptions from the original cable equation concerning
leakage through the membrane and substituting, dA

dx
in Equation (7) into Equation (8),

the following series of equations are derived,

Im

(
2πr

ds

dx

)
= −∂ii

∂x
, (9)

Im =
V

Rm

+ Cm
∂V

∂t
, (10)

ii = −πr
2

Ri

∂V

∂x
. (11)

The derivative of Equation (11) with respect to x gives

∂ii
∂x

= −2πr

Ri

∂V

∂x

dr

dx
− πr2

Ri

∂2V

∂x2
. (12)

Substituting the preceding equation for ∂ii
∂x

into Equation (9),

Im2πr
ds

dx
=

2πr

Ri

∂V

∂x

dr

dx
+
πr2

Ri

∂2V

∂x2
⇒ Im

ds

dx
=

1

Ri

∂V

∂x

dr

dx
+

r

2Ri

∂2V

∂x2
. (13)

Applying Equation (10) to Equation (13) yields,(
V

Rm

+ Cm
∂V

∂t

)
ds

dx
=

1

Ri

∂V

∂x

dr

dx
+

r

2Ri

∂2V

∂x2
. (14)

Equation (14) is multiplied by Rm leading to(
V + CmRm

∂V

∂t

)
ds

dx
=

Rm

Ri

∂V

∂x

dr

dx
+
rRm

2Ri

∂2V

∂x2
(15)

⇒
(
V + τ

∂V

∂t

)
ds

dx
=

Rm

Ri

∂V

∂x

dr

dx
+
rRm

2Ri

∂2V

∂x2
. (16)

The left-hand side of Equation (16) becomes the time dependent component of the original
cable equation multiplied by a rate of change in arc length along the frustum, ds

dx
; the

right-hand side of Equation (16) represents the voltage’s dependency on space. Thus,
the modified cable equation is obtained, allowing different functions for the radius to
be inserted and the results of voltage propagation to be examined through a deformed
dendrite.

6



2.3 Using Lommel’s Equation for Conical Cable Equation

In this section, the case of a linearly changing radius is investigated, that is, a slice of the
frustum is isolated as shown below.

Figure 3: A cross-section of the frustum.

From the diagram, the equation of the line connecting the points (0, r0) and (L, r1) is

r = r0 +
r1 − r0

L
x, r(0) = r0, r(L) = r1, (17)

and therefore the slope of the equation satisfies

dr

dx
=
r1 − r0

L
, (18)

which is then substituted into equation (6) to obtain

ds

dx
=

√
1 +

(
r1 − r0

L

)2

, (19)

which is a constant.
The original cable equation is used to find an expression for ∂2V

∂x2 with respect to the linear
radius. The derivative of the voltage with respect to x is

∂V

∂x
=

r1 − r0

L

∂V

∂r
. (20)

Using Equation (20), and assuming voltage is a well-behaved function implies that

∂2V

∂x2
=

(
r1 − r0

L

)2
∂2V

∂r2
. (21)

Combining Equations (20) and (21) gives

(
V + τ

∂V

∂t

)√
1 +

(
dr

dx

)2

=
Rm

Ri

(
r1 − r0

L

)2
∂V

∂r
+
rRm

2Ri

(
r1 − r0

L

)2
∂2V

∂r2
. (22)
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By setting ∂V
∂t

= 0 and multiplying the above equation by 2ri
rRm

(
L

r1−r0

)2

, rearrangement

of terms yields

d2V

dr2
+

2

r

dV

dr
− 1

r

2Ri

Rm

√
1 +

(
r1−r0
L

)2(
r1−r0
L

)2 V = 0, (23)

which is a special form of a Lommel’s equation,

V
′′

+
1− 2α

ξ
V

′
+

[(
βγξγ−1

)2
+
α2 − ν2γ2

ξ2

]
V = 0, (24)

with solution

V (ξ) = ξ2uν(βξ
γ) (25)

Equation (23) is a special case of Lommel’s Equation (24) where,

ξ = r, α = −1

2
, γ =

1

2
, ν = ±1, β2 = −8Ri

Rm

√
1 +

(
r1−r0
L

)2(
r1−r0
L

)2 .

Lommel’s equation has solutions with modified Bessel functions since β has imaginary
parts. The linearly independent solutions are

V1 =
1√
r
I1


√√√√8rRi

√
1 + ( r1−r0

L
)2

Rm( r1−r0
L

)2

 , (26)

V2 =
1√
r
K1


√√√√8rRi

√
1 + ( r1−r0

L
)2

Rm( r1−r0
L

)2

 , (27)

where I1 and K1 are modified Bessel functions. The general solution of Equation (23) is
therefore

V = C1V1 + C2V2. (28)

Coefficients of the general solution are determined by the boundary conditions, which are
discussed in the following section.
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2.4 Boundary Conditions for Linearly Defined Radius

For the case of a cone, the conical steady state solution is given by

r
d2V

dr2
+ 2

dV

dr
=

2Ri

Rm


√

1 +
(
r1−r0
L

)2(
r1−r0
L

)2

V, (29)

with radius:

r = r(x),

r(x) = r0 +
r1 − r0

L
x, 0 ≤ x ≤ L.

A steady state solution in the form of modified Bessel functions is

V (x) = V0

(
C1(L−X) +BLS1(L−X)

C1(L) +BLS1(L)

)
, (30)

with the boundary conditions:

V (0) = V0, BLV (L) +
dV

dx
(L) = 0.

This is obtained by applying initial conditions:

S1 = 0, S ′1(0) = 1, C1(0) = 1, C ′1(0) = 0.

C1 and S1 are composed of V1, V2, and constants involving modified Bessel functions:

S1(x) =
2Lr

3/2
0

(r1 − r0)
√
r

(
K1(β

√
r0)I1(β

√
r)− I1(β

√
r0)K1(β

√
r)
)
, (31)

C1(x) = (β
√
r0K0(β

√
r0) + 2K1(β

√
r0)))

√
r0

r
I1(β
√
r)

+ (C
√
r0I0(β

√
r0)− 2I1(β

√
r0)− 2I1(β

√
r0))

√
r0

r
K1(β

√
r), (32)

where

β =

√
8Ri

Rm

(
(1 + ( r1−r0

L
)2)1/4

r1−r0
L

)
.

Thus, the final steady state equation is obtained,

r
d2V

dr2
+ 2

dV

dr
=

β2

4
V (33)
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These boundary conditions yield a steady state solution, allowing for analysis of voltage
propagation through a sealed frustum.

2.5 Hyperbolic Functions

An alternate formulation of how the aneurysm or tumor constricts the dendrite employs
a hyperbolic function to represent how the radius depends on x:

r(x) = a cosh
(x
a

)
+ b, (34)

where a (cm) represents the shape of the abnormality and b represents how much the
dendrite is compressed in units of centimeters. In order to find an expression for b, the
two known points r(0) = a+ d and r(a) = d

2
are used:

r(a) = a cosh(1) + b

=
d

2
,

r(0) = a cosh(0) + b

= a+ b.

Thus,
b = r(0)− a.

Substituting this value of b into r(a) leads to

r(a) =
d

2
= acosh(1) + r(0)− a ⇒ d

2
= a(cosh(1)− 1) + r(0)

which can be solved for r(0) to obtain b,

r(0) =
d

2
− a(cosh(1)− 1) ⇒ b =

d

2
− a cosh(1). (35)

Since a cosh
(
x
a

)
≥ 1 and the shift in hyperbolic cosine cannot be greater than the

radius itself, it is clear that −1 ≤ b ≤ d
2
− 1.

After taking the derivative of r in Equation (34) with respect to x and substituting it
into Equation (6) gives the following results,

ds

dx
=

√
1 + sinh

(x
a

)
=

√
cosh2

(x
a

)
⇒ ds

dx
= cosh

(x
a

)
.

Applying Equation (15) yields,(
V + CmRm

∂V

∂t

)
cosh

(x
a

)
=

Rm

Ri

sinh
(x
a

) ∂V
∂x

+
Rm

2Ri

r
∂2V

∂x2
(36)
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For the steady state solution of the hyperbolic, the following is obtained,

V
(

cosh
(x
a

))
=

Rm

2Ri

(
2 sinh

(x
a

) dV
dx

+
(
a cosh

(x
a

)
+ b
) d2V

dx2

)
⇒ V

2Ri

Rm

(
cosh

(x
a

))
= 2 sinh

(x
a

) dV
dx

+
(
a cosh

(x
a

)
+ b
) d2V

dx2
.

(
b+ a cosh

(x
a

)) d2V

dx2
+ 2 sinh

(x
a

) dV
dx
− 2Ri

Rm

(
cosh

(x
a

))
V = 0

⇒
(

1 +
a

b
cosh

(x
a

)) d2V

dx2
+

2

b
sinh

(x
a

) dV
dx
− 2Ri

bRm

(
cosh

(x
a

))
V = 0, (37)

where b 6= 0. Here, the equation takes a form similar to that of Ince’s equation, which is

(1 + a0 cos(2s))y′′ + b0 sin(2s)y′ + (c0 + d0 cos(2s))y = 0, (38)

where a0, b0, c0, and d0 are arbitrary constants. Ince’s equation is used to study the
existence of periodic solutions, in several applications in mathematical physics To study
the modified cable equation with a hyperbolic radius, Equation (38) is taken to have
imaginary arguments, since β is complex, and becomes

(1 + a0 cosh(2s))y′′ + b0 sinh(2s)y′ + (c0 + d0 cosh(2s))y = 0. (39)

The presented modified form of Ince’s equation is not known to have been studied prior to
this research. To study a space-dependent radius, a change of variables is used to rewrite
Equation (39) as,(

1 + a0 cosh
(x
a

))
y′′ + b0 sinh

(x
a

)
y′ +

(
c0 + d0 cosh

(x
a

))
y = 0. (40)

To put Equation (37) in the form of Equation (40), coefficients of Equation (40) are
defined as

a0 =
a

b

b0 =
2

b
c0 = 0

d0 = − 2Ri

bRm

.

Equation (40) will be studied numerically and compared with the numerical solutions of
the other equations for the deformed dendrite.
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3 Results: Steady State Solutions

In order to investigate the voltage propagation through a series of dendritic segments, the
cylinder, hyperbolic, and frustum shapes are combined as shown in Figure 4.

Figure 4: Series of different dendrite radius types

Each shape is first studied individually before the system is examined as a whole.
Recall the steady state solution for the cylindrical cable given Equation (3). For the
purposes of this project, only one specific set of parameters is considered: Ri = 50 cm,
Rm = 103 Ωcm2 , V0 = −50 mV, d = 5 µm, BL = 0.5, and l = 20 µm. In all graphs, the
vertical axis is shifted such that the membrane resting potential of -65 mV is represented
at y = 0. Thus, 15 mV on the vertical axis is actually -50 mV. Figure 5 displays the
voltage through a cylinder.
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Figure 5: Steady State Voltage for Cylinder with Respect to Space: V0 = 15 mV, d = 5 µm,
BL = 0.5, and l = 20 µm.

Though the change in voltage seems to be linear in Figure 5, it is important to note
that the solution involves functions of L and X, where L = l/λ and X = x/λ - two small,
dimensionless numbers. The graph appears linear because it is a small segment of the
hyperbolic curve that results from the solution for a finite cylindrical cable. The shown
decay in voltage is expected due to the fact that voltages typically tend toward resting
membrane potential. Note that the voltage drop is in the scale of microvolts.

For convenience in combining the segments, the next case considered is a radius that
is a hyperbolic function of x; the initial voltage and initial dV

dx
are taken to be the same

as the final voltage of the cylindrical case: V0 ≈ 14.9994 and dV
dx
≈ −2.9999 · 10−5 V

µm
.

The initial diameter, Ri, and Rm are also taken to be the same values given for a uniform
radius, and a = 1µm. Because there are no known analytical solutions for the modified
Ince’s equation, the results for this case rest almost entirely on numerical solutions of the
system.
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Figure 6: Steady state voltage for hyperbolic with respect to space: d = 5µm, V0 ≈ 14.9994
dV
dx ≈ −2.9999 · 10−5 V

µm , and a = 1.

As shown in Figure 6, the voltage first decreases as a result of the initial dV
dx

and then
increases in an exponential manner. The reason for this apparent amplification in voltage,
though quite small, is unclear and calls for further study.

To verify that the result for the hyperbolic radius is mathematically sound, consider
the case where b = 0. In this instance, the modified cable equation strays from Ince’s
equation and can be written as:(

0 + a cosh
(x
a

)) d2V

dx2
+ 2 sinh

(x
a

) dV
dx
− 2Ri

Rm

(
cosh

(x
a

))
V = 0

⇒
(
a cosh

(x
a

)) d2V

dx2
+ 2 sinh

(x
a

) dV
dx

=
2Ri

Rm

(
cosh

(x
a

))
V

⇒ d2V

dx2
+ 2

sinh
(
x
a

)
a cosh

(
x
a

dV dx =
2Ri

Rm

cosh
(
x
a

)
cosh

(
x
a

)V
⇒ d2V

dx2
+

2

a
tanh

(x
a

)
dV dx =

2Ri

Rma
V

This equation can be compared to

d2y

dx2
+ 2λ tanh (λx)

dy

dx
= µ2

0y,
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which has the known solution:

y =
C1 sinh (µx) + C2 cosh (µx)

cosh (λx)
,

where µ =
√

(µ2
0 + λ2) and C1 and C2 are arbitrary constants. Letting λ = 1

a
and

µ0 = 2Ri

aRm
, the solution to the hyperbolic case when b = 0 is

V =

C1 sinh

(
x
a

√(
2Ri

Rm

)2

+ 1

)
+ C2 cosh

(
x
a

√(
2Ri

Rm

)2

+ 1

)
cosh

(
x
a

)
Comparison between the analytical and numerical solutions when b = 0 is shows that the
numerical solution qualitatively agrees with the analytical solution.

Figure 7: Left: Analytical Solution. Right: Numerical Solution. Comparing these two graphs
shows that the two solutions take the same qualitative form. Differences in scale and slope are
most likely due to the arbitrary constants and derivatives chosen.

The last situation considered is the case for a radius that is a linear function of x.
Again, the parameters are the same as previously defined for the cylinder aside from the
initial voltage. This initial voltage for the frustum is the final voltage of the hyperbolic
case and thus, V0 ≈ 14.9995 mV. Using the general solution for a finite cylinder, setting
BL = 0 in equation (3) gives the solution

V (X) = V0
C1(L−X)

C1(L)
,

for the function C1 given in Section 2.4. In this case, the values of L and X are simply
taken to be x and l. From the numerics used to reach this solution involving Bessel
functions, Figure 8 shows that voltage decreases in a seemingly exponential manner as
the radius of the frustum decreases.

This voltage drop is relatively large in comparison to the voltage changes of the other
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two cases, but it is still a drop of less than 0.1 mV. Not only does voltage usually decrease
along a uniform dendrite, but the initial value conditions for this problem also allow for
decreasing voltage in frustums of both increasing and decreasing diameters. Thus, this
graphical result seems reasonable.

Figure 8: Steady State Voltage for Cone with Respect to Space: V0 ≈ 14.9995 mV, r0 = 2.5µm,
r1 = 0.5µm, and l = 20 µm.

The results for the three cases discussed above allow for the investigation of a system
in which the cylinder, hyperbolic radius, and frustum are combined in series. This is
due to the fact that the voltage anddV

dt
are assumed to be maintained at each junction.

Because this condition is met for the circumstance presented throughout the section,
the parameters previously stated are applicable. Thus, the structural situation shown
in Figure 4 is considered: the system containing a uniform radius, a radius that is a
hyperbolic function of x, and a radius that is a linear function of x.
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Figure 9: Each respective plot represents the voltage behavior in each of the three regions as
shown in Figure 4 (Note: The horizontal axis is not set to the same scale for each graph)

By arranging the graphs in the shape of a possible dendrite deformation, the voltage
propagation throughout the dendrite segment as a whole becomes more clear (see Figure
5). The solution for a cylinder of the same length as the combined segments is presented
for the sake of comparison between a non-deformed dendrite and one of varying diameters.
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Figure 10: Steady state of a cylinder without deformation.

3.1 Discussion

In studying the changes in voltage throughout neurites, the overall decrease in voltage
over x were expected. The results for the cylinder were consistent with biological and
mathematical findings. Though the drop in voltage from the cone was expected, the
rate of decrease was higher than predicted and requires further investigation. In the case
of the hyperbolic radius, the solutions were inconsistent with widely accepted biological
models using series of cylinders. Typically, as spatially-dependent diameter decreases
and increases in a manner similar to the hyperbolic curve, the voltage drops toward the
membrane resting potential. As seen in Figure (6), the use of a radius that is a hyperbolic
function of x does not accurately produce this same result of decreasing voltage. Though
Figure 7 shows that the numerical method used is in fact mathematically correct, the
biological aspects are not realistic. Thus, the hyperbolic radius offers an interesting
mathematical approach to modelling dendritic deformation but does not appear to have
any biological relevance.

4 Conclusions and Future Work

Structures exerting abnormal pressure on neurons, such as a tumor or aneurysm, in-
fluence dendritic morphology of a single nerve cell. Cerebral aneurysms are present in
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almost 5% of Americans, and more than 600,000 Americans have been diagnosed with
brain tumors [1]. Results from this research could have applications in determining how
aneurysms or tumors could affect voltage propagation, which could lead to greater insight
into neuronal function in adverse environments. It can be inferred through examining
change in voltage as consequence

In this project, the neuronal model considered three cases where the radius behaved
differently, either held constant or was spatially dependent. Assuming a formation al-
ready exists, the cable equation was modified to represent two additional geometric forms
of deformation. Although, the model presented offers insight into dendritic deformation
and how it could affect voltage propagation, limitations prevent a comprehensive under-
standing of neuronal function in adverse conditions.

One way to improve the model would be to consider the presence of ion channels
along the dendritic membrane and see how the transfer of potassium, sodium, calcium,
and chloride is affected by the impeding growth. These ions contribute to the regulation
of voltage, and examining them may result in a deeper understanding of biological impli-
cations. Since the model focused on a single dendritic branch, another possible expansion
could include the entire dendritic tree. This would allow for generalizations about how the
entire neuron functions in the presence of abnormal growths. Though only one hyperbolic
function was used in this model, other hyperbolic functions may be explored in future
work especially since they may not be in the form of a modified Ince’s equation. Due to
the time constraints of this summer project, we only considered one set of parameters.
In the future, changing these parameters to account for variation in size or shape of the
anomaly would give greater insight into how growths in the brain affect neuronal function.
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Appendix

A Derivation of the Cable Equation

Starting with Ohm’s law, consider a change in potential as the current Iin moves from
x to x+ ∆x, where

Vi(x+ ∆x)− Vi(x) = −ii(x)ri∆x, (41)

for a specific time, since Vi is in terms of space and time. The right-hand side is negative
because as the current moves form the left to right sides of the cable, there is some leakage
through the membrane that cause the axial current to be less than it was coming in. Then
divide by ∆x and take the limit of both sides. Since ri is only dependent on the diameter
of the cable (ri = Ri

π( d2

4
)
), it can be considered a constant.

∂Vi
∂x

= −iiri. (42)

A relationship between the interior current and the current that is being leaked through
the membrane is made since there is a drop in the interior current over space as the
membrane current increases. Therefore,

im = −∆i

∆x
,

im = −∂ii
∂x
. (43)

Since there exists a relationship between the membrane current and the current through
the neurite. Equation (2) is used to find a relationship between the voltage and the
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membrane current through the second derivative with respect to x.

∂2V

∂x2
= −ri

∂ii
∂x
,

∂2V

∂x2
= ri(−

∂ii
∂x

),

∂2V

∂x2
= riim,

1

ri

∂2V

∂x2
= im. (44)

Then it is stated that V = Vi − Ve − Er and also the extracellular voltage, Ve, is not
dependent on x or t. Further, it is also said that the battery, Er, is independent of
x and t. Thus, Vi is changed to V in equation (4). So far, only the voltage of the
intracellular region was considered and now the inner and outer voltages are combined
into one equation. Then rm (Rm

πd
), the actual membrane resistance, is multiplied and the

right-hand side is the membrane voltage, Vm.

rm
ri

∂2Vi
∂x2

= imrm.

One assumption is that the membrane acts as a capacitor that holds charge, and this
relationship between charge, voltage and capacitance is used to find an expression for im
in terms of the capacitance, cm (constant = Cmπd),

Q = cmV,
∂Q

∂t
= cm

∂V

∂t
,

(45)

and also in terms of the current that actually comes across the membrane from the
intercellular current. This is done by applying Kirchoff’s current law.

im = cm
∂V

∂t
+
V

rm
,

By multiplying rm to the previous equation the following is obtained,

rmim = cmrm
∂V

∂t
+ V,

(46)

then the value cmrm is the time constant τ ,which reduces to the material properties of
the membrane, and is therefore independent of the diameter.

τ = rmcm =
Rm

πd
Cmπd = RmCm.
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Afterwards, substituting im from equation (4) yields the cable equation.

rmim = τ
∂V

∂t
+ V,

rm
ri

∂2V

∂x2
= τ

∂V

∂t
+ V,

λ2∂
2V

∂x2
= τ

∂V

∂t
+ V. (47)

The term λ =
√

rm
ri

is defined as the length constant, which depends on the diameter of

the cylinder.

B Units Table

Notation Definition Units
ii Intracellular current A
im Membrane current A
Im Membrane current density A

cm2

ri Intracellular resistance Ω
cm

rm Membrane resistance Ω · cm
Ri Specific intracellular resistance Ω · cm
Rm Specific intracellular resistance Ω · cm2

cm Membrane capacitance F
cm

Cm Specific membrane capacitance F
cm2

τ Time constant s
λ Length constant cm
dA Change in area of the cross-section cm2

ds Change in arc length cm
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