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Abstract

A discrete time Susceptible - Asymptomatic - Infectious - Treated
- Recovered (SAITR) model is introduced in the context of influenza.
We evaluate the potential effect of control measures such as social dis-
tancing and antiviral treatment on the dynamics of a single outbreak.
Optimal control theory is applied to identify the best way of reducing
the number of infected and dead individuals, at a minimal cost. The
problem is solved by using a discrete version of Pontryagin’s maximum
principle. Numerical results show that dual strategies have stronger
impact in the reduction of the final epidemic size.
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1 Introduction

In April of 2009 the World Health Organization (WHO) announced the emer-
gence of a novel strain of A-H1N1 influenza. National and international pub-
lic health agencies quickly took (often drastic) emergencies measures and in
June of 2009, the World Health Organization (WHO) and US Centers for
Disease Control (CDC) declared the outbreak to be a pandemic. Mathe-
matical models are being used to evaluate the usefulness of the policies used
during this pandemic.

For the last decade, continuous time models have been used to study sin-
gle influenza outbreaks [Arino et al.(2003)Arino, Brauer, van den Driessche,
Watmough, and Wu, Nuno et al.(2007)Nuno, Chowell, Wang, and Castillo-
Chavez]. The identification of optimal control strategies involving antivi-
ral treatment and the isolation of infectious individuals have been studied
using continuous time models [Lee et al.(2010)Lee, Chowell, and Castillo-
Chavez]. We proceed to identify optimal control policies aimed at minimiz-
ing the number of infected and dead individuals via the use of the most
“cost-effective” policies involving “social distancing” and antiviral treatment
within a discrete time epidemic framework that it is not just a discretization
of a continuous-time model. Optimal control theory [Behncke(2000), Jung
et al.(2005)Jung, Lenhart, Protopopescu, and C.,S. and J.(2007)] is the main
approach used in our analysis.

The model’s basic reproductive number is computed as well as final epi-
demic size relations (with and without controls). Only the implementation of
intervention measures referred to as social distancing and antiviral treatment
are explored in this note. Numerical simulations highlight the differences that
result from the implementation of single versus dual intervention policies.

2 Discrete SAITR Model

The total population under consideration is divided into susceptible (S),
asymptomatic (A), infectious (I), treated (T ), recovered (R), and dead (D)
(from influenza) classes of individuals. Births and deaths from natural causes
are ignored since the focus is on single outbreaks. Treatment and social
distancing are the only control policies explored in this note. The fraction
of susceptible individuals at time t that remain susceptible at time t + 1 is
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modeled by the function

Gt = exp

(
−β(1− xt)

It +mAt + ρTt
Nt

)
,

where Nt denotes the total population, β the transmission rate, and m and
ρ (0 < m, q ≤ 1) the reductions in transmissibility for the asymptomatic and
treated classes, respectively. The function xt (control) models the reduction
in the number of contacts per unit of time (“generation”). The fraction of
individuals who get the disease but do not develop symptoms is given by q
while δ denotes the proportion of disease-induced deaths per generation; the
fraction of infected individuals who get treatment each generation is modeled
by the function τt. It is assumed that asymptomatic and infectious individ-
uals recover with probability σ1 (per generation) while treated individuals
recover with probability σ2 (per generation). The model (with two controls)
is given by the following system of nonlinear difference equations:

St+1 = StGt

At+1 = qSt(1−Gt) + (1− σ1)At
It+1 = (1− q)St (1−Gt) + (1− τt) (1− σ1) (1− δ)It
Tt+1 = (1− σ2)Tt + τt (1− σ1) (1− δ)It
Rt+1 = Rt + σ1At + σ1 (1− δ) It + σ2Tt
Dt+1 = Dt + δIt.

(1)

In the absence of controls (xt ≡ 0 and τt ≡ 0, for all t), the following final
size relationship is derived

ln

(
S0

S∞

)
= R0

(
1− S∞

N

)
(2)

following the approach in [Brauer et al.(2010)Brauer, Feng, and Castillo-
Chavez]. The basic reproductive number R0 in this case is

R0 = β

(
(1− q)

1− (1− σ1) (1− δ)
+m

q

σ1

)
. (3)

R0 is a dimensionless quantity that accounts for the number of (initial) sec-
ondary cases generated by two classes: the infected (I) and the asymptomatic
(A) in a population of primary susceptible individuals. The addition of con-
trols replaces the expression in (2) by the inequality

ln

(
S0

S∞

)
≤ R0

(
1− S∞

N

)
. (4)
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The following result is easily established.
Result 2.1: If S∞ is a solution of (2) and Swc∞ satisfy the inequality (4) then
Swc∞ ≥ S∞, that is, the use of controls reduces the final epidemic size. [An
outline of the proof is found in Appendix B].

We observe that the fraction of the population that becomes infected
during the course of a single epidemic outbreak in the absence of controls
is 1 − S∞

N
while the corresponding fraction with controls would be 1 − Swc

∞
N

.
The final epidemic size decreases as a result of the implementation of social
distancing measures or the application of alternative control measures. Nu-
merical simulations that compute the final epidemic sizes with and without
controls are used to corroborate Result (2.1).

3 Optimal control problem

Our goal is to minimize the number of infected and dead individuals via
the judicious (cost effective) use of social distancing and antiviral treatment
measures over the finite interval [0, Tf ]. The objective functional F used to
formulate the appropriate optimization problem is given by

F(x, τ ) =
1

2

Tf−1∑
t=0

F (yt, xt, τt, t) (5)

where
F (yt, xt, τt, t) = B0I

2
t +B1D

2
t +B2x

2
t +B3τ

2
t ; (6)

with x = (x0, x1, ..., xTf−1) and τ = (τ0, τ1, ..., τTf−1) the control variables.
Further y = (y0, y1, ..., yTf

) is the state variable with yt = (St, At, It, Tt, Rt, Dt)
T .

The weight constants Bi, (i = 0, 1, 2, 3) are a measure of the relative cost of
interventions over [0, Tf ]. The use of these definitions and notations lead to
the problem of finding control functions x and τ such that

F(x∗, τ ∗) = min
U
F(x, τ ), (7)

where U = {(xt, τt) : 0 ≤ xt ≤ xmax, 0 ≤ τt ≤ τmax, t = 0, 1, ..Tf − 1}, subject
to the state equations in Model (1) and appropriate initial condition. Three
different strategies are compared:

• Strategy 1: Social distancing (xt ≥ 0, τt ≡ 0),
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• Strategy 2: Antiviral treatment (τt ≥ 0, xt ≡ 0),

• Strategy 3: Antiviral treatment and social distancing.

The relative impact of these strategies is “evaluated” from their effect on the
final size relations under single or dual policies. The optimization problem is
solved by using a discrete version of Pontryagin’s maximum principle [Hwang
and Fan(1967), Jung et al.(2005)Jung, Lenhart, Protopopescu, and C., Pon-
tryagin et al.(1962)Pontryagin, Boltyanskii, Gamkrelidze, and Mishchenko]
(details are provided in Appendix C). The Hamiltonian associated with the
problem is given by

Ht = F (yt, xt, τt, t) + λT
t+1yt+1, for t = 0, 1, 2, .., Tf − 1, (8)

where xt, τt are the control variables, and yt and λt ∈ R6 are the state and
adjoint variables, respectively. The adjoint equations are

λit =
∂Ht

∂yit
for t = 0, 1, 2, .., Tf − 1, i = 1, 2, ..., 6, (9)

where λit and yit are the i-th component of λt and yt, respectively. The
problem is solved using the following forward-backward algorithm [S. and
J.(2007)]:

• Step 1. Initial guess for x0, τ 0 and condition y0 are selected,

• Step 2. Solve State Equation (1) forward in time,

• Step 3. Solve Adjoint Equation (9) backward in time subject to the
transversality conditions λTf

= 0,

• Step 4. Solve the optimality conditions ∂Ht

∂xt
= 0, ∂Ht

∂τt
= 0,

• Step 5. Check convergence. That is, if ‖u−uold‖
‖u‖ < 0.001 for u ∈ {x, τ}

stop. If ‖u−uold‖
‖u‖ ≥ 0.001 go to Step 2.
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4 Numerical results

The results of selected simulations generated by the numerical implemen-
tation of the strategies described in Section 3 are discussed in this section.
The numbers of infected individuals generated under low R0 (1.3 - 1.8) or
high R0 (2.4 - 3.2) in the absence of controls or in the presence of single
or dual optimal controls are compared. A sensitivity analysis is carried out
on the robustness of these simulations in relationship to the values of a pri-
ori selected constraints on the ranges of the bounds on the controls xt and
τt [xt ∈ (0, 0.2), τt ∈ (0, 0.05)]. The weight constants (B2 and B3) are the
relative costs associated with the implementation of social distancing and an-
tiviral treatment, respectively. The weight constants must be selected in part
to facilitate computational issues. We found out that the numerical approach
used to solve this discrete optimal control problem is sensitive to the weight
constants on the controls. The sensitivity arises in part from the fact that all
parameters in our discrete model represent daily rates, the time step being
one day (t → t + 1). Hence, we use small ranges for the weight constants
in order to guarantee convergence to the optimal solutions (B2 ∈ [0.002, 0.2]
and B3 ∈ [0.015, 1]). For most of our simulations, we choose B2 = 0.004
(social distancing as the base line value) and B3 (antiviral treatment) which
it is assumed to be approximately ten times larger than B2 (B3

∼= 10B2).

4.1 Implication of social distancing and antiviral treat-
ment

We compare the reduction in the final size and also the reduction in the
proportion of daily infected cases that result from the implementation of
Strategies 1, 2, and 3. For this simulation, the weight constants on the two
controls are B2 = 0.004 and B3

∼= 10B2. Results under two different values
for R0, a moderate value (R0 = 1.3) and a high value (R0 = 2.4) are displayed
in Figure 1 and Figure 2, respectively. Figure 1A and Figure 2A show the
optimal control solution for each strategy. Figures 1B, C and Figures 2B,
C help compare the impact of each strategy on the cumulative proportion
of infected individuals and the proportion of daily infected cases. Figure 1A
shows that the optimal control solutions under social distancing and antiviral
treatment use less than the maximum value permitted, within an outbreak
that lasts almost 200 days, when R0 is low (R0 = 1.3).

In Figure 1B, dual policies generate strong reductions of almost 33% in
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Figure 1: For a moderate value of R0 = 1.3, the optimal control solution does
not required the application of the permitted maximum values. However,
there is a strong impact in the reduction of the final epidemic size by the
application of each strategy. Strategy 3 has the most significant reduction,
almost 32%

the final epidemic size as well as 16% reduction under Strategy 1, and 25%
under Strategy 2. The epidemic peak is reduced also by almost 50% when
dual policies are applied (Figure 1C). Figure 2 plots optimal controls and
the resulting cumulative proportions of infected cases when R0 = 2.4. The
optimal control solution for each strategy requires the application of the
maximum effort during the first 50 days. The curves in Figure 2B show that
the epidemic ends within 100 days of the start of the outbreak. Strategy 3
yields the largest reduction in the final epidemic size, 22% but only an 8%
reduction under Strategy 1, and an 11% reduction under Strategy 2.

The impact of optimal strategies in terms of the final size as a function
of R0 is presented in Figure 3. Under a single policy, for small R0 (up
to ∼ 1.45), Strategy 2 is more effective in reducing the final epidemic size
when compared to Strategy 1. However, the effect is reversed when R0 ≥
1.45. A dual policy has the strongest impact in the reduction of the final
epidemic size for all ranges of R0 (R0 ∈ [1.3, 3.2] [Chowell et al.(2006)Chowell,
Ammon, Hengartner, and Hyman,Chowell et al.(2007)Chowell, Nishiura, and
Bettencourt, Mills et al.(2004)Mills, Robins, and Lipsitch]). Under higher
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values of R0 (R0 ≥ 3), no policy seems effective whenever the goal is to
reduce the final epidemic size.

Figure 2: For R0 = 2.4, the optimal solution requires the implementation
of the highest permitted values for each control strategy during the first 50
days of the epidemic. Strategy 3 produces a reduction of less than 22%. Even
when there is a maximum control implementation, the effort is not enough
and the reduction in the final epidemic size is less significant compared to
that for moderate values of R0

Figure 3: The comparison of fi-
nal epidemic size vs. R0 for the
three Strategies is obtained by
fixing the weights B2 and B3

of each control function. The
results show that Strategy 3
yields the highest reduction of
the final epidemic size.
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4.2 Effects of weight constants

The role of weight constants is explored by assessing their quantitative impact
in terms of the number of infected cases. The weight constants correspond
to the relative costs of the effort carried out in the implementation of the
algorithms leading to the identification of the optimal strategies. We study
the impact of B2 and B3 on Strategies 1(social distancing) and 2 (antiviral
treatment), respectively. We set R0 = 1.8, xmax = 0.2, and τmax = 0.02.
Figures 4 and 5 show the optimal control solutions computed under Strategies
1 and 2 as well as their impact on the cumulative proportion of infected
individuals and daily infected cases.

Figure 4: In Strategy 1, the value of the weight constant B2, which cor-
respond to the cost on social distancing is varied. For a small value of B2,
the optimal solution permits the implementation of high values of social dis-
tancing and we obtain a high reduction in the final epidemic size (20%). For
a large value of B2 we get an application of a moderate social distancing
in the optimal solution then the reduction in the final epidemic size is not
significant (7.5%).

The optimal control solution takes on the maximum value permitted for
social distancing within the first 50 days of the epidemic when the weight
constant is the smallest (B2 = 0.002), Figure 4A. This high value for the
social distancing control yields the highest reduction (20%) in the final epi-
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Figure 5: For strategy 2, by increasing the cost on antiviral treatment, B3,
the optimal solution permits the application of smaller value for treatment.
We obtain an increase in the cumulative proportion and the proportion of
daily infected cases. In contrast, when the cost is moderate the optimal
solution permits the implementation of high values of treatment and we get
a strong impact in the reduction of the final epidemic size (30%).

demic size (Figure 4B). However, as the weight constant (B2) is increased to
0.2 the reduction in the final epidemic size decreases to 7.5%. Figure 4C plots
the proportion of daily infected cases under each optimal control solution.
Figure 4C shows the possibility of a longer delay in the peak of the epidemic
as the value of the weight constant B2 decreases.

When Strategy 2 is put in place, similar findings are observed. As the
weight constant increases, reductions in the final epidemic size are observed.
For example, when B3 = 0.015, the reduction in the final epidemic size is
almost 30% but when B3 = 0.15 and B3 = 1 the reductions are only 15%
and 7.5%, respectively.

The cumulative proportion of infected cases without controls together
with those generated under Strategies 1 and 2, respectively are plotted in
Figures 6A and 6B. Figure 6A plots the results under Strategy 1 for three
different values of the weight constant B2. Small values of B2 = 0.002 result
in a higher reduction in the final epidemic size for all ranges of R0. Figure 6B
shows that for large values of R0, changes in the weight constant B3 do not
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affect the solution. When R0 ≥ 2.5 optimal control solutions are the same
for various values of B3, a consequence of the a priori limitations placed on
the controls’ upper bounds.

Figure 6: We plot the final epidemic size vs. R0 for Strategies 1 and 2 by
changing the weight constants for social distancing and antiviral treatment.
When we have a moderate cost of social distancing, there is a reduction in
the final epidemic size for every value of R0 (A); however, by changing B3

there is not a significant difference in the final epidemic size for R0 ≥ 2.5.

4.3 The effect of upper bounds on the optimal control

We study the implementation of Strategies 1 and 2 under limited resources
as a results of changes in the values of the controls upper bounds: xmax ∈
[0.07, 0.2] and τmax ∈ [0.007, 0.02], respectively. We fix a moderate value
of R0 = 1.8 and set the values of the weigh constants at B2 = 0.004 and
B3 = 0.5B2. Figures 7A and 8A show the optimal control solution under
Strategy 1 and 2, respectively. Figures 7B, C and Figures 8B, C show the
effect of controls on the reduction of the final epidemic size and proportion of
daily infected cases. Figure 7B shows that when the upper bound is relatively
small (xmax = 0.07), the reduction in the final epidemic size is less than 5%
but when the upper bound is large (xmax = 0.20) a reduction of 15% in the
final epidemic size can be achieved.
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Figure 7: When the resources are limited and the upper bound is smaller
(xmax = 0.07), the reduction of the final epidemic size is small (5%). However,
if the upper bound is high there is a stronger impact in the reduction of the
final epidemic size, (20%).

Figure 7C shows that a reduction of 50% or more in the epidemic peak
can be achieved when the upper bound increases to the maximum value
xmax = 0.2. A similar behavior is observed when the a priori upper bound in
the control linked to Strategy 2 is varied. Figure 8 shows that a maximum
upper bound of τmax = 0.02 gives 13% reduction in the final epidemic size.
In fact, when the upper bound is relatively small (τmax = 0.07), the final
epidemic size is reduced also but only by 5%.

5 Conclusions

A discrete model is introduced in order to study single epidemic outbreaks in
the context of influenza. The use of single and dual strategies (social distanc-
ing and antiviral treatment) results in reductions in the cumulative number
of infected individuals. Furthermore, we have seen that dual strategies are
more efficient at reducing the final epidemic size than single policies.
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Figure 8: The impact of the control in Strategy 2 is reduced when the re-
sources are limited. For a small upper bound, τmax = 0.007, we get a small re-
duction of the final epidemic size (5%). When the upper bound is τmax = 0.02,
the final epidemic size is reduced by 13%

Our results show that under the implementation of a single policy, the
social distancing strategy (Strategy 1) is more effective than the antiviral
treatment strategy (Strategy 2) whenR0 > 1.5. Dual policies are always most
effective and in this respect, our findings are consistent with those obtained
recently using continuous time models [Lee et al.(2010)Lee, Chowell, and
Castillo-Chavez]. In the application of every policy, we find that the intensity
of the control effort is higher at the beginning of the epidemic. Furthermore,
for extremely high values of R0, R0 ≥ 2.4, even under the implementation
of maximum effort, it is observed that the selected policies do not make a
significant difference.

Recent studies show that the 2009 influenza pandemic had stronger eco-
nomical impact in Mexico [Monterrubio(2010),stimson.org(2009),wisebread.com(2009)].
Unfortunately estimating the real costs associated with the selected policies
(interventions measures) is difficult even in the context of the simple model
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in this note. Therefore, we have focused on the use of relative costs. How-
ever, even after we have chosen the interventions strategies (policies) ranking
the relative costs is often a matter of debate. In addition we did not include
the impact of time delays which arise from a multitude of factors including
those tied in to the development or implementation of intervention (resource-
limited policies). The 2009 influenza pandemic has shown that such delays
could be critically important. Fortunately, the expected negative impact of
these delays never materialized due to the lack of disease severity associated
with this novel influenza A-H1N1 strain.

Appendix A: Final Epidemic Size

Let τt = 0. Then from the first equation in Model (1) we get that

Sk+1 = S0G0G1 . . . Gk

where

ln

(
Sk+1

S0

)
= − β

N
(lnG0 + lnG1 + . . .+ lnGk) .

However, since

lnGi = ln
(
e−β

It+mAt
N

)
= − β

N
(Ii +mAi)

the previous equation becomes

N

β
ln

(
S0

Sk+1

)
=

k∑
i=0

Ii +m
k∑
i=0

Ai. (10)

From the second equation in Model (1) we have that

Ak+1 = qSk(1−Gk) + (1− σ1)Ak,

and after some rearrangement of terms, we obtain that

Ak+1 − (1− σ1)Ak = qSk − qSkGk

= qSk − qSk+1.

Summing over k we get that

σ1

n∑
k=0

Ak − A0 = q (S0 − Sn) .
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But A0 = 0 and S0 ≈ N , and therefore

n∑
k=0

Ak =
q

σ1

(N − Sn) . (11)

By adding equation S, A and I in Model (1) we obtain

Sk+1 + Ak+1 + Ik+1 = Sk + (1− σ1)Ak + (1− σ1) (1− δ) Ik.

Rearrange the terms of the above equation to get

(Sk+1 − Sk) + (Ak+1 − (1− σ1)Ak) + (Ik+1 − (1− σ1) (1− δ) Ik) = 0,

and summing over k we get that

Sn − S0 + σ1

n∑
k=0

Ak − A0 + (1− (1− σ1) (1− δ))
n∑
k=0

Ik − I0 = 0,

hence
n∑
k=0

Ik =
1

1− (1− σ1) (1− δ)

[
N − Sn − σ1

n∑
k=0

Ak

]
. (12)

Substituting (11) into (12) yields

n∑
k=0

Ik =
1

1− (1− σ1) (1− δ)
[N − Sn − q (N − Sn)] .

Therefore,

n∑
k=0

Ik =
1

1− (1− σ1) (1− δ)
[(1− q) (N − Sn)] . (13)

Substituting (11) and (13) into (10) gives

N

β
ln

(
S0

Sn+1

)
=

[
1

1− (1− σ1) (1− δ)
(1− q) +m

q

σ1

]
(N − Sn) .

Taking the limit as n→∞ leads to the final size relation,

ln

(
S0

S∞

)
= β

[
1

1− (1− σ1) (1− δ)
(1− q) +m

q

σ1

](
1− S∞

N

)
,
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which can be written as

ln

(
S0

S∞

)
= R0

(
1− S∞

N

)
.

Thus, the basic reproductive number is given by

R0 = β

(
(1− q)

1− (1− σ1) (1− δ)
+m

q

σ1

)
.

Appendix B: Proof of Result 2.1

Let

f (x) = ln

(
S0

x

)
−R0

(
1− x

N

)
for 0 < x ≤ N. (14)

The result can be verified easily for R0 < 1. Let us consider R0 > 1; f is
a decreasing function for x < N

R0
and N

R0
is the unique critical point of f .

Since f(N) = 0 then S∞ < N
R0

< N and f ′(S∞) < 0. Hence, f < 0 if and
only if S∞ < x < N . By hypothesis f (Swc∞ ) < 0, then S∞ < Swc∞ .

Appendix C

We focus on Strategy 3, that is, when antiviral treatment and social distanc-
ing are implemented. The problem formulation is given in expressions (6)
and (7) from where we define the Hamiltonian,

H =
1

2

(
B0I

2
t +B2x

2
t +B3τ

2
t +B4D

2
t

)
+ λ1

t+1StGt (15)

+ λ2
t+1(qSt(1−Gt) + (1− σ0)At)

+ λ3
t+1((1− q)St (1−Gt) + (1− τ) (1− σ1) (1− δ)It)

+ λ4
t+1 ((1− σ2)Tt + τ (1− σ1) (1− δ)It)

+ λ5
t+1 (Rt + σ0At + σ1 (1− δ) It + σ2Tt) + λ6

t+1(Dt + δIt),
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where Gt = exp
(
−β(1− xt) It+mAt+ρTt

N

)
. The adjoint equations associated

with the problem are

λ1
t = Gtλ

1
t+1 +

(
(qλ2

t+1 + (1− q)λ3
t+1)
)

(1−Gt)

λ2
t = StGt

βm
N

(1− xt)Lt+1 + (1− σ1)λ
2
t+1 + σ1λ

5
t+1

λ3
t = B0It + StGt

β
N

(1− xt)Lt+1+

(1− δ)
[
(1− σ1)

(
(1− τ)λ3

t+1 + τλ4
t+1

)
+ σ1λ

5
t+1

]
+ δλ6

t+1

λ4
t = StGt

βρ
N

(1− xt)Lt+1 + (1− σ2)λ
4
t+1 + σ2λ

5
t+1

λ5
t = λ5

t+1

λ6
t = B1Dt + λ6

t+1,

(16)

for Lt+1 = −λ1
t+1 + qλ2

t+1 + (1− q)λ3
t+1. With transversality conditions

λi(Tf ) = 0, for i = 1, 2, ...6
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