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Abstract. There is an extensive literature on the modifications of classi-

cal Susceptible-Infected-Recovered (SIR) models, the bread and butter in the

study of disease dynamics, that support the concept of recurrent (periodic)

outbreaks. In this note we provide an extension motivated by our desire to

understand the role of asymptomatics on the dynamics of influenza.

1. Introduction. Mathematical models of disease transmission have been widely

used and developed for well over a century [13, 14]. They have become standard

“tools” in the study of the spread and control of communicable diseases such as

measles, tuberculosis, rubella, chicken pox and, one of the most common diseases

affecting humans, influenza [1, 3, 10, 20, 2, 5, 15, 21]. Modifications to the SIR

(Susceptible-Infectious-Recovered) epidemiological model have been used to model

the dynamics of viral infections that provide permanent immunity after recovery.

The inclusion of a class of individuals that are isolated after infection has gained

increasing mathematical attention [4, 8, 12]. The inclusion of a quarantine class, Q,

has been shown to grant the so-called SIQR epidemiological model the “ability” to

support recurrent outbreaks [7, 17, 18].
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In this note, we introduce an extension (motivated from the ongoing work on

influenza) of the SIQR model through the addition of a class, A, of asymptomatic

individuals [9]. The corresponding epidemiological model is referred as an SAIQR

model. It is assumed that individuals in the A class may be less infectious than

those in the I class. The mathematical properties of this model are then studied

with the intent to qualify well posedness, illustrate the existence of equilibria and

in some special cases derive the conditions for the existence of periodic solutions

due to Hopf bifurcations.

2. The SAIQR model. For this model the total population of individuals is di-

vided between five compartments: S(t), susceptible individuals; A(t), asymptomatic

infectious individuals; I(t), symptomatic infectious individuals; Q(t), isolated (quar-

antined) individuals and R(t), recovered (immune) individuals. The population

recruits new members, into S(t), at a constant rate Λ, and each class removes in-

dividuals from the system at a rate of µ. The transmission coefficient, the average

number of effective contacts that lead to a new infection of a susceptible, due to a

contact with a symptomatically infectious individual, is denoted by β. We assume

that individuals from the A-class are infectious but with reduced per-capita infec-

tion rate, βσ, σ ∈ [0, 1]. The transferred proportion of individuals from the S to

the I class is denoted by p while the proportion transferred from S- to the A-classes

is given by 1 − p. The per-capita isolation quarantine rate of symptomatically in-

fectious individuals is θ. Further, isolated (quarantined) individuals are assumed to

have negligible contacts with member of the overall population. Denoting the per-

capita recovery rates for asymptomatic, symptomatic and isolated individuals as γ1,

γ2 and γ3, respectively then the above leads to the following system of non-linear

ordinary differential equations:
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S′ = Λ− βS (I + σA)
N −Q

− µS

A′ = (1− p)βS (I + σA)
N −Q

− (γ1 + µ)A

I ′ = pβS
(I + σA)
N −Q

− (γ2 + θ + µ)I

Q′ = θI − (γ3 + µ)Q

R′ = γ1A+ γ2I + γ3Q− µR,

(1)

with initial conditions

S(0) = S0, A(0) = A0, I(0) = I0, Q(0) = 0, R(0) = 0.

Defining N := S +A+ I +Q+R we may conclude that

dN

dt
= Λ− µN,

and, therefore, that N(t) → Λ/µ as t → ∞. That is the total population is

asymptotically constant. The well-posedness of the model follows from a straight

forward application of the classical theory [19].

Result 2.1: Let S0, A0, I0, Q0, R0 ≥ 0, S0 +A0 +I0 +Q0 +R0 = N0. Then there

exits solutions S(t), A(t), I(t), Q(t), R(t) for the dynamical system (1), with initial

data S0, A0, I0, Q0, R0 at time t = 0, that are defined for all time t ≥ 0. In fact,

S(t), A(t), I(t), Q(t), R(t) are nonnegative and S(t) +A(t) + I(t) +Q(t) +R(t) = N

for all t. If A0 = 0, I0 = 0, Q0 = 0 then A(t) ≡ 0 and I(t) ≡ 0. If I0 > 0 and A0 > 0,

then S(t), A(t), I(t), Q(t), R(t) are strictly positive for all t > 0 and Q is bounded

by Q̂ = max

{
Q0,

θ

γ3 + µ

}
. An outline of the proof is provided in the Appendix.

Since the total population is asymptomatically constant the results in [2], guar-

antee that the following system

S′ = Λ− βS (I + σA)
N −Q

− µS

A′ = (1− p)βS (I + σA)
N −Q

− (γ1 + µ)A

I ′ = pβS
(I + σA)
N −Q

− (γ2 + θ + µ)I

Q′ = θI − (γ3 + µ)Q,

(2)
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with N =
Λ
µ

, has the same asymptotic qualitative dynamics as those of System

(1). Model (2) has two equilibria, the disease free equilibria E0 = (Λ/µ, 0, 0, 0) and,

whenever the disease’s basic reproduction number is greater than one, a unique

endemic equilibria E∗(S∞(<0), A∞(<0), I∞(<0), Q∞(<0)).

3. Basic reproduction number and endemic equilibria. Linearizing System

(2) around E0, yields the following Jacobian matrix

J(E0) =



−µ −βσ −β 0

0 σ(1− p)β − (γ1 + µ) β(1− p) 0

0 σpβ pβ − (γ2 + θ + µ) 0

0 0 θ −(γ3 + µ)


.

The stability of E0 is determined by the real parts of the eigenvalues of the matrix

J1(E0) =


σ(1− p)β − (γ1 + µ) β(1− p)

σpβ pβ − (γ2 + θ + µ)

 .

From the eigenvalues of the above matrix we conclude that

<0 ≡
pβ

γ2 + θ + µ
+

(1− p)βσ
γ1 + µ

(3)

and note that the disease-free state is locally asymptotically stable as long as <0 < 1.

The basic reproduction number (<0) is the sum of the additive contributions of

the A- and I-classes to the generation of secondary infections of “influenza” when

S(0) ≈ Λ/µ.

The SAIQR model can be thought of as a family of models parameterized by

σ and p, that is M(σ, p). The asymptomatic class is not present when p = 1 and

σ = 0. M(0, 1) corresponds to the classical SIQR model with
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<0 =
β

γ2 + θ + µ
.

The importance of <0 in the control of disease dynamics is evident from the

extensive efforts to estimate its value for various diseases [6] and its role in the

study of the long-term dynamics of infections diseases [10].

The simulation of the solutions of System (1), for different <0 values, shows for

example, that at the beginning of an outbreak, the population from the infections

class actually decreases (Figure 1) before it takes off. This last simulation highlights

the effect of the inclusion of an asymptomatic class.
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Figure 1. Infections and asymptomatic individuals for p = 0.3.
When <0 = 2.6 and <0 = 3.5 we can observe that the number
of asymptomatic individuals has a peak around the 30 day of the
spread of the disease. If <0 = 1.3 and <0 = 2.6 the number of
infectious is decreasing at the beginning of the spread of the disease.

We collect the conditions for stability below (outlines of proofs for each are

provided in the Appendix):

Result 3.1: If <0 < 1 the disease free equilibrium point E0 = (Λ/µ, 0, 0, 0) for

System (2) is locally asymptotically stable. If <0 > 1 then E0 is unstable.

Result 3.2: If <0 ≤ 1, the disease free equilibrium point E0 = (Λ/µ, 0, 0, 0) is

globally asymptotically stable.
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The endemic equilibrium point E∗(S∞(<0), A∞(<0), I∞(<0), Q∞(<0)) for Sys-

tem (2) is given by

S∞(<0) =
Λ(1− ab

c )
µ(1− ab

c <0)

A∞(<0) = (1− p)µab
cd

Λ(1−<0)
µ(1− ab

c <0)
(4)

I∞(<0) =
b

θ

Λ(1−<0)
µ(1− ab

c <0)

Q∞(<0) =
Λ(1−<0)
µ(1− ab

c <0)

where a = γ2 + θ + µ, b = γ3 + µ, c = pµθ and d = γ1 + µ.

i) S∞(<0), A∞(<0), I∞(<0) and Q∞(<0) are positive iff <0 > 1.

ii) S∞(<0) +A∞(<0) + I∞(<0) +Q∞(<0) < Λ/µ.

The Jacobian matrix for System (2) at E∗(S∞(<0), A∞(<0), I∞(<0), Q∞(<0))

is

J(E∗) =



−A− µ −σβ −B D

(1− p)C σ(1− p)B − E (1− p)B −(1− p)D

pA σpB pB − F −pD

0 0 θ −G


where

A = β
I∞(<0) + σA∞(<0)

N −Q∞(<0)

B = β
S∞(<0)

N −Q∞(<0)

C = β
S∞(<0)(I∞(<0) + σA∞(<0))

N −Q∞(<0)

D = β
S∞(<0)(I∞(<0) + σA∞(<0))

(N −Q∞(<0))2
,

and

E = γ1 + µ, F = γ2 + θ + µ, G = γ3 + µ.
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Result 3.3: If <0 > 1 System (2) has an uniquely determined nonnegative en-

demic equilibrium point given by (4). This endemic equilibrium E∗ is “usually”

locally asymptotically stable. The generation of periodic solutions via a Hopf bi-

furcation is possible as parameters are varied. An outline of the proof is in the

Appendix.

The characteristic polynomial, associated with the local stability of E∗, is

P (λ; ξ) = p0(ξ) + p1(ξ)λ+ p2(ξ)λ2 + p3(ξ)λ3 + p4(ξ)λ4, (5)

where ξ denotes the model’s parameter vector.

The stability of the endemic equilibrium is tied to the roots of (5). It is at this

point that we make the decision to explore the region of parameter space that is

relevant in the study of the dynamics of influenza. Specifically we observe that

the average life-expectancy (1/µ) is in the order of decades while 1/γ1, 1/γ2 1/γ3

and 1/θ are in order of days. Hence, we can safely assume that µ is much smaller

than γ1, γ2, γ3 and θ. Taking into account these differences in time scales (longevity

versus the infectious period) plus the fact that the functions pi(ξ) for (i = 0, ...4) are

analytic functions in ξ, we proceed to generate series expansion for the coefficients

of the characteristic polynomial near µ = 0. In the limiting case, µ = 0, Polynomial

(5) becomes

P (λ; ξ) = γ1γ3(γ2 + θ)λ+ γ3(γ2 + θ)λ2 + (γ1 + γ2 + γ3 + θ)λ3 + λ4. (6)

4. An example. We set γ = γ1 = γ2 = γ3 and θ = kγ where k ≥ 3.

The exact algebraic expressions for the roots are extremely complex and therefore

we proceed to postulate specific relations between the recovery and the isolation

rates. Specifically, we let γ = γ1 = γ2 = γ3 and let the isolation rate be proportional

to the recovery rate, θ = kγ. Since 1/θ ∈ [1, 7] then k ≥ 3. Under these assumptions

Polynomial (6) becomes

p(λ, γ, k) = γ3(1 + k) + γ2(1 + k)λ+ γ(3 + k)λ2 + λ3,
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which has an interesting structure, a cubic in both λ and γ. When k = 3, it reduces

to the simple cubic polynomial

p(λ, γ) = 4γ3 + 4γ2λ+ 6γλ2 + λ3,

from where we see that the eigenvalues depend on the parameter γ. The real parts

of the eigenvalues λi(ξ) determine the stability of the endemic equilibrium and

as parameters are varied, we will show the real part of the complex eigenvalues

changes sign. Computer calculations allows us to conclude that there is a negative

real eigenvalue λ1(ξ) and two complex conjugate eigenvalues λ2(ξ), λ̄2(ξ). Figure

2, provides the graphs for Re(λ2) that include the possibility of a change in sign

(for small values of γ). We conclude that a Hopf bifurcation is possible. In fact, we

see that Re(λ2) is very small for some γ values and negative for γ ≥ 0.047. Hence,

the existence of lightly damped oscillations approaching the endemic equilibrium

naturally emerge. This qualitative behavior (slowly damped oscillations) captures

“biologically” recurring epidemics. Figure 3, provides the graph for infectious and

asymptomatic classes where this behavior is observed.
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Figure 2. Real part of λ2(γ), where λ2 is a complex eigenvalue of
the Jacobian matrix. A change of sign from positive to negative is
observed for a small value of the parameter γ ≈ 0.047.
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Figure 3. Lightly damped oscillations approaching the endemic
equilibrium, γ1 = γ2 = γ3 ≈ 0.045.

5. Discussion. Over the past few decades there has been several mathematical

studies aimed at identifying key mechanism responsible for disease recurrent out-

breaks. Hethcote and Levin [11] reviewed the role of non-linear incidence rates,

cross-immunity and delays as mechanism capable of supporting periodic outbreaks.

The review paper of Hethcote [10], provides a comprehensive mathematical work

carried out over the 80’s and 90’s. In his review, the impact of quarantine or isola-

tion as a mechanism capable of generating mathematically sustained oscillations is

also addressed.

In this note, we look at the simplest epidemiological model that incorporates the

dynamics of an asymptomatic class. Further, as it was done in Castillo-Chavez et all

[2], we considered the differences in demographic and epidemiological scales that are

typical of influenza dynamics in our study of the possibility that an epidemiological

model that includes A and Q classes can support sustained oscillations.

We have carried out the standard local analysis of a SAIQR model and shown

that when <0 > 1, its unique endemic state can become de-stabilized as parameters

are varied. We have observed that the real part of the pair of complex conjugate

eigenvalues crosses zero as the mean incubation period distribution in the asymp-

tomatic infectious and quarantined classes (all assumed to be the same) changes.

The upshot of this model is that critical neglected epidemiological classes and in-

tervention measures can indeed be capable of supporting (mathematically speaking)

recurrent periodic outbreaks.
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Appendix. Proof of Result 2.1:

The right hand side of System (1) is continuously differentiable and hence it is lo-

cally Lipschitz, and therefore there exits a unique solution S(t), A(t), I(t), Q(t), R(t)

to System (1) with the initial data S0, A0, I0, Q0, R0 that is defined on a maximal

forward interval of existence [19]. Consider the set Ω ⊂ R5 defined by

Ω = {(S,A, I,R,Q) : 0 ≤ S +A+ I +Q+R ≤ Λ
µ
},

we show that

i) Since I(0) ≥ 0 and A(0) ≥ 0 from System (1) we have that

I(t) ≥ I0 exp
∫∞
0

[
pβS

1
N −Q

− (γ2 + θ + µ)
]
dt

A(t) ≥ A0 exp
∫∞
0

[
(1− p)βσ S

N −Q
− (γ1 + µ)

]
dt

Q(t) =
[
Q0 +

∫ t
0
θI(ζ)e(γ3+µ)(ζ−t0)dζ

]
e(γ3+µ)(t0−t)

R(t) =
[
R0 +

∫ t
0
(γ1A(ζ) + γ2I(ζ) + γ3Q(ζ))eµ(ζ−t0)dζ

]
eµ(t0−t),

then S(t) ≥ 0, A(t) ≥ 0, I(t) ≥ 0, Q(t) ≥ 0, R(t) ≥ 0 for all t > 0.

ii) Q is bounded by Q̂ = max

{
Q0,

θ

γ3 + µ

}
. The last statement will be estab-

lished if we show that Q(t) ≤ κ for all t ≥ 0 and that κ ≥ θ
γ3+µ

if Q0 ≤ κ.

Suppose that the above inequalities do not hold then there exists a time t1

with Q′(t1) > 0 and Q(t1) > κ. From the Q-equation in System (1) we have

dQ(t1)
dt

= θI(t1)− (γ3 + µ)Q(t1) ≤ θ(I(t1)− 1) ≤ 0,

since (I(t1) − 1) < 0 and θ > 0. This contradiction implies that Q(t) < κ

for all t ≥ 0. Suppose now that Q(0) > κ ≥ θ
γ3+µ

. In order to show that

Q(t) ≤ Q(0) for all t ≥ 0 we assume that the last inequality does not hold.

Hence there exists a time t2 > 0 such that Q(t2) ≥ Q(0) and Q′(t2) > 0.
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However since Q(t2) > θ
γ3+µ

, then

Q′(t2) = θI(t2)− (γ3 + µ)Q(t2) ≤ θ(I(t2)− 1) ≤ 0,

but Q′(t2) > 0. Hence we have reach a contradiction and Q(t) is bounded

from above by Q̂ , where Q̂ = max

{
Q0,

θ

γ3 + µ

}
.

Proof of Result 3.1: The stability of the disease free equilibrium point depends

on the signs of the real parts of the eigenvalues of the Jacobian matrix J(E0). −µ

and −(γ3 + µ) are two eigenvalues of J(E0). Conditions trace(J1(E0)) < 0 and

det(J1(E0)) > 0 is equivalent to <0 < 1, hence this guarantee the asymptotic

stability of the disease-free equilibrium. If <0 > 1 implies that E0 is unstable. see

[19] for more mathematical details.

Proof of Result 3.2: Define a Liapunov function L over Ω0 ∈ Ω as follows,

L(x) = σ(γ2 + θ + µ)A+ (γ1 + µ)I, for x ∈ Ω0. Hence L satisfies

i) L ∈ C1(Ω0), L(Λ/µ, 0, 0, 0) = 0 and L(x) > 0 if x 6= E0.

ii)
dL

dt
< (γ1 + µ)(γ2 + θ + µ)(I + σA) [<0 − 1] < 0 if <0 < 1, for all x ∈ Ω0,

x 6= E0,

then E0 is globally asymptotically stable if <0 < 1.

Proof of Result 3.3: To determine if a Hopf bifurcations occurs, we use a

Lemma in which Hurwitz determinants are included. In our case (n = 4), Hurwitz

determinants depend on the following matrix

L4(ξ) =



p1(ξ) p2(ξ) 0 0

p3(ξ) p2(ξ) p1(ξ) p0(ξ)

0 p4(ξ) p3(ξ) p2(ξ)

0 0 0 p4(ξ)


and are defined as follows

D1(ξ) = det(L1(ξ)), D2(ξ) = det(L2(ξ)), D3(ξ) = det(L3(ξ)), D4(ξ) = det(L4(ξ)),
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where

L1(ξ) = p1(ξ),

L2(ξ) =

 p1(ξ) p0(ξ)

p3(ξ) p2(ξ)

 ,

L3(ξ) =


p1(ξ) p0(ξ) 0

p3(ξ) p2(ξ) p1(ξ)

0 p4(ξ) p3(ξ)

 ,

The Routh-Hurwitz criteria can be stated in terms of their polynomials. Specifically,

when p0(ξ) > 0 the polynomial p(λ, ξ) has all roots with negative real parts if and

only if

D1(ξ) > 0, D2(ξ) > 0, D3(ξ) > 0, D4(ξ) > 0.

Since D4(ξ) = p4(ξ)D3(ξ) and in our case p4(ξ) = 1, the Routh-Hurwitz conditions

can be rewritten in this case as

p0(ξ) > 0, D1(ξ) > 0, D2(ξ) > 0, D3(ξ) > 0.

We use the following lemma, as a criteria for the possibility of a Hopf bifurcations

[16].

Lemma: Assume that there is a smooth curve of equilibria (x(ξ), ξ) with x(ξ0) =

x0. For system (2), there is a simple Hopf bifurcation if

(i): p0(ξ0) > 0, D1(ξ0) > 0, D2(ξ0) > 0, D3(ξ) = 0.

(ii): dD3(ξ0)/dξ 6= 0.

Condition D3(ξ) = 0 is equivalent to

p1(ξ)p2(ξ)p3(ξ)− p2
1(ξ)− p0(ξ)p2

3(ξ) = 0

and in the limited case (µ = 0), since p0(ξ) = 0 then

p2(ξ)P3(ξ)− p1(ξ) = 0.
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The last equation represents the surface where a Hopf bifurcation can occurs. Con-

dition dD3(ξ0)/dξ 6= 0 is equivalent to

dD3(ξ0)/dξ = [(γ2 + θ)(γ1 + γ3) + γ1γ3][γ3(γ2 + θ)][(γ1 + γ2 + γ3 + θ)]+

γ1γ3(γ2 + θ) + [γ1 + γ2 + γ3 + θ)2] + [γ1γ3(γ2 + θ)][(γ2 + θ)]

− 2[γ1γ3(γ2 + θ)][(γ2 + θ)(γ1 + γ3) + γ1γ3]

6= 0,

which is certainly true for the set of parameters ξ and therefore a Hopf bifurcation

occurs.
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