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Abstract

Tuberculosis (TB) is a disease found in about one third of the world popula-
tion. There is some controversy on the role of exogenous reinfection; with some
epidemiologists supporting it while others consider it irrelevant. However, even at
a minimal level, the presence of exogenous reinfection is capable of generating hys-
teresis and supporting multiple endemic states when the basic reproduction number
(R0) is less than one. In this manuscript, we study the use of control in areas where
TB is prevalent (R0 > 1) as well as in areas where some additional effort (R0 < 1)
may be able to eliminate the disease. In this model, controls on social distancing,
disease relapse, and treatment are incorporated to reduce the latently infected and
actively infected populations, via the application of optimal control theory.
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1 Introduction

Tuberculosis (TB) is an infectious disease caused by various strains of Mycobacteria.

Specifically, Mycobacterium tuberculosis attacks the lungs and is spread through the air.

Unique from other infectious diseases (e.g. influenza, measles, etc), only a small portion of

individuals develop active TB after primary infection. In fact, most individuals infected

with TB remain in the latent stage and never become infectious or show symptoms of

TB. In perspective, 30% of individuals in contact with active TB patients are infected

(latent and active) while 10% of this infected group will become infectious (active). TB

is the leading cause of death among infectious diseases with 2 billion infections and 3

million deaths in the world each year. Factors like age of infection and chronological

age are important in TB progression because it is less likely for the development of

active TB when the individual has carried the bacteria for a long time. Unfortunately,

progression towards active TB may accelerate from repeated contact with active TB

individuals [1]. Consequently, the source for TB progression is not only primary infection

but also the possibility of exogenous reinfection. Exogenous reinfection has occurred, in

the past, on public transportation systems such as airplanes, buses, and subways in

crowded cities. There is a high possibility for individuals with latent TB to be exposed

to exogenous reinfection through infectious surroundings due to mass-transportation.

Therefore, exogenous reinfection plays a key role in the progression from latent to active

TB for individuals living in regions with a high incidence rate.

In this paper, we consider optimal control strategies based on an exogenous rein-

fection TB model. The theory of optimal control has been applied to many areas such

as economics [2, 3, 4], engineering [5, 6, 7], biology [8, 9, 10, 11, 12, 13] and medicine

[14, 15]. The development of the mathematical theory for optimal control began in the

early 1950’s, partially in response to problems in various branches of engineering and eco-

nomics. Despite its modern origins, optimal control theory, from a mathematical point

of view, is a variant of one of the oldest and most important subfields in mathematics-the
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calculus of variations. Optimal control is the standard method for solving dynamic opti-

mization problems, which deal with finding a control law for a given system such that a

certain optimality criterion is achieved. Playing an increasingly important role in mod-

ern system design, the main purpose of optimal control theory is to maximize the return

from or minimize the cost of the operation of physical, social, economical, and biological

processes. It was developed by a group of Russian mathematicians; with Pontryagin as

the central character. A basic optimal control problem consists of finding a piecewise

continuous control and the associated state variable to maximize or minimize an objec-

tive functional. This maximizing or minimizing process is accomplished by adjusting the

control variable until the maximum or minimum is achieved. The optimal control can

be derived using Pontryagin’s maximum principle (a necessary condition) [18]. Details

of the derivation is provided in Appendix A.

A TB model with exogenous reinfection assumes that individuals in the latent stage

of TB progress into the active stage at some given exogenous reinfection rate. The

model further assumes there is an amount of individuals with active TB that fail to

complete treatment. With these assumptions, we introduce the three control mechanisms

to represent distancing, relapse and treatment efforts. The goal is to minimize the number

of infectious individuals while reducing the cost to implement the control treatments. The

optimal treatment strategies for different R0 scenarios (R0 > 1 or R0 < 1) are illustrated

through numerical simulation.

This paper is organized as follows: The introduction is given in Section 1. Section 2

describes a mathematical TB model with exogenous reinfection and a TB model with con-

trols. The objective functional and characteristics of optimal controls are also presented

in this section. Section 3 includes numerical studies of optimal controls and discusses our

results based on the optimal treatment strategy. Conclusions are presented in the final

section.
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2 Mathematical Model

2.1 Tuberculosis with exogenous reinfection

We consider a tuberculosis model with exogenous reinfection that was developed by

Feng and Castillo-Chavez [16]. The host population is divided into four epidemiological

classes: susceptibles (S), exposed (infected but not infectious) (E), infectious (I), and

treated (removed) (T ). N denotes the total population size. We assume that an individual

can be infected only through contacts with infectious individuals. The state system is

governed by a system of ordinary differential equations (ODEs) as follows:

dS

dt
= Λ− βcS I

N
− µS,

dE

dt
= βcS

I

N
− pβcE I

N
− (µ+ k)E + σβcT

I

N
,

dI

dt
= pβcE

I

N
+ kE − (µ+ r + d)I, (1)

dT

dt
= rI − σβcT I

N
− µT,

dN

dt
= Λ− µN − dI.

Λ is the constant recruitment rate; β and σβ are the average numbers of susceptible

and treated individuals infected by one infectious individual per contact per unit of time,

0 < σ < 1; c is the per-capita contact rate; µ is the per-capita natural death rate; k is the

rate at which an individual leaves the latent class and becomes infectious; d is the per-

capita disease-induced death rate; r is the per-capita treatment rate. The term pβcE I
N

models the exogenous reinfection rates with p representing the level of reinfection.

The basic reproduction number, R0, is the expected number of secondary cases pro-

duced from a completely susceptible population by a typical infectious individual [17]. In

the typical case, if R0 < 1 then, on average, an infected individual produces less than one

new infected individual over the course of his/her infectious period, thus the infection
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cannot spread. Conversely, if R0 > 1, then each infected individual produces, on average,

more than one new infection, which may lead to outbreak of the disease. In other words,

if R0 < 1 then the disease free equilibrium is locally asymptotically stable; whereas if

R0 > 1 then it is unstable. Thus, R0 is a threshold parameter for the model. This is

not the case in the context of this TB model if the proportion of exogenous reinfection

(p) and the initial number of infectious (I0) are large enough. In the TB model with

exogenous reinfection, the basic reproductive number can be written as follows [16]:

R0 =

(
βc

µ+ r + d

)(
k

µ+ k

)

The incorporation of exogenous reinfection into our basic TB model shows the pos-

sibilitiy of a subcritical bifurcation, that is, a “backwards” bifurcation. This bifurcation

implies that our system can sustain multiple endemic equilibria even when R0 <1, if

the proportion of exogenous reinfection (p) and the initial number of infectious individ-

ual (I0) are large enough. Due to exogenous reinfection, the “ends” (at an endemic or

at the infection-free state) of system (1) depend not just on the parameters, but also

on the initial conditions of the system. Figure 1 shows the backwards bifurcation and

its dependence. In Figure 1, the top frame shows a bifurcation diagram of endemic

steady states. The blue solid curve represents the stable steady state and the red dashed

curve represents the unstable steady state. In the bottom frame, the numbers of infec-

tious individuals are displayed as functions of time for various I0’s; (50, 300, 750, 900,

1100). The following parameter values were considered: µ = 0.016, d = 0.1, p = 0.4,

σ = 0.9, Λ = 417 (Λ
µ

=25000), k = 0.005, r = 2, R0 = 0.87. The cases with large

values of I0 (750, 900, 1100) have solutions that approach the endemic equilibrium point;

note that R0 = 0.87. This result suggests that a sudden influx of infectious individuals

(immigrants, for example) may give rise to epidemic outbreaks that could stabilize at
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an endemic level, which would have been unstable (or non-existent) in the absence of

exogenous reinfections.
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Figure 1: The top frame is a bifurcation diagram of endemic steady states and the bottom
frame shows the numbers of infectious individuals as functions of time with various I0.
In the bottom frame, the basic reproductive number R0 = 0.87 is considered.

2.2 The exogenous TB model with controls

In this subsection, three controls are introduced into system (1). The first control,

u1(t), is incorporated into the term that represents the progression from susceptible

to latent and latent to active TB due to contact with infectious individuals. Because

susceptible and exposed individuals cannot be distinguished in real life, the same control
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u1(t) is assumed to be incorporated into both S and E terms. The second control, u2(t), is

incorporated into the term that represents the treated individuals infected by contacting

infectious individuals. The third control, u3(t), is associated into the term that represents

the individuals that received successful treatments.

dS

dt
= Λ− (1− u1(t))βcS

I

N
− µS,

dE

dt
= (1− u1(t))βcS

I

N
− (1− u1(t))pβcE

I

N
− (µ+ k)E + (1− u2(t))σβcT

I

N
,

dI

dt
= (1− u1(t))pβcE

I

N
+ kE − (µ+ u3(t)r + d)I, (2)

dT

dt
= u3(t)rI − (1− u2(t))σβcT

I

N
− µT,

dN

dt
= Λ− µN − dI.

The control fuctions, u1(t), u2(t) and u3(t) are bounded, Lebesgue integrable func-

tions. The first control, u1(t), is a distancing control, which is the effort that prevents

infection of susceptible individuals and exogenous reinfection of exposed individuals.

This reduces the number of individuals that could develop active TB. The second con-

trol, u2(t), is a relapse control, which is the effort to prevent the reinfection of treated

individuals in the typical TB infection. The third control, u3(t), is a treatment control,

which is the effort on treatment of actively infected individuals to increase the number of

treated individuals. Note that the efforts are fully effective when ui(t) = 1 for i = 1, 2, 3

whereas no effort is effective when ui(t) = 0

We first consider minimizing the number of infectious individuals and the cost of

implementing such a control. The objective functional is defined as follows:

J(u1, u2, u3) =

∫ tf

0

[I(t) +
B1

2
u1

2(t) +
B2

2
u2

2(t) +
B3

2
u3

2(t)]dt
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In the numerical results, the optimal control strategy showed that the infectious

individuals, I(t), are dramatically reduced, but not the exposed individuals, E(t). A large

E(t) implies that I(t) is not truly eliminated because some of the exposed individuals can

still become infectious (see Figure 2 in Appendix B).

As a result, we now consider the following objective functional, in order to minimize

the numbers of exposed and infectious class with exogenous reinfection of TB, while

keeping the effort low.

J(u1, u2, u3) =

∫ tf

0

[E(t) + I(t) +
B1

2
u1

2(t) +
B2

2
u2

2(t) +
B3

2
u3

2(t)]dt (3)

where tf is the final time and the coefficients B1, B2, B3 are the weighting parameters,

balancing the relative importance and the size of the terms in the objective functional.

We assume that the costs of using the controls are nonlinear and take a quadratic form.

We seek to find an optimal control, u∗1, u∗2 and u∗3, such that

J(u∗1, u
∗
2, u

∗
3) = min

Ω
J(u1, u2, u3) (4)

where Ω = {(u1, u2, u3) ∈ L1(0, tf )|ai ≤ ui ≤ bi, i = 1, 2, 3} and ai, bi, i = 1, 2, 3 are

positive constants. Pontryagin’s maximum principle [18] is used to solve the optimality

system, which is derived in Appendix A.

3 Numerical Results and Discussion

In this section, we study, numerically, the optimal treatment strategies of our TB

model with exogenous reinfection. The optimal treatment strategy is obtained by solving

the optimality system; consisting of the state and adjoint systems with transversality and
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optimality equations. The optimality system is solved using an iterative method. The

state system with an initial guess is solved forward in time and then the adjoint system

with transversality conditions is solved backward in time. The controls are updated

at the end of each iteration using the optimal equations. The iterations continue until

convergence is achieved. The parameters are given in Table 1 and 2.

Table 1: Computational parameters

Computational parameters Symbol

Final time tf 5 years
Timestep duration dt 0.01 years
Upper bound for controls 1
Lower bound for controls 0
weight factor associated with u1(t) B1 1, 10, 100
weight factor associated with u2(t) B2 1, 10, 100
weight factor associated with u3(t) B3 1, 10, 100

Table 2: Epidemical parameters

Parameters Values

β 80
µ 0.0167
σ 0.9
c 0.1, 0.3
d 0.1
k 0.005
p 0.4
r 2
Λ 417
N 25000 (Λ/µ)
S(0) 13250
E(0) 10500
I(0) 1000
T (0) 250

Note that the simulated period is 5 years, which is determined from Figure 1. The

curves in Figure 1 illustrate two behaviors, one approaching zero and another approaching
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a steady state (endemic). Without utilizing the entire simulation of 400 years, a 5 year

period is enough time to show if the solution approaches zero or an endemic equilibrium.

We consider the two cases of epidemic outbreaks: R0 < 1 with large enough p and I0,

and R0 > 1.

In order to find more meaningful and efficient controls, we consider various scenarios

using the following cases.

•R0 < 1



Strategy 1 distancing, relapse, and treatment controls (u1(t), u2(t) and u3(t))

Strategy 2 distancing and relapse controls (u1(t) and u2(t))

Strategy 3 distancing and treatment controls (u1(t) and u3(t))

Strategy 4 relapse and treatment controls (u2(t) and u3(t))

Strategy 5 distancing control (u1(t))

•R0 > 1



Strategy 6 distancing, relapse, and treatment controls (u1(t), u2(t) and u3(t))

Strategy 7 distancing and relapse controls (u1(t) and u2(t))

Strategy 8 distancing control (u1(t))

Strategy 9 relapse control (u2(t))

Strategies 1− 5 correspond to the cases when R0 is less than 1, while Strategies 6− 9

correspond to the cases when R0 is greater than 1.

3.1 R0 < 1 with large enough p and I0

In this subsection, the optimal treatment strategies are investigated using Strategies

1 through 5 and note that R0 = 0.8070 < 1. We considered the three cases, using three

controls in Strategy 1. Since the cost of using controls may differ depending on country

and/or government, we consider three different sets of cost coefficients: (B1 = B2 =

B3 = 10), (B1 = 100, B2 = 10, B3 = 100) and (B1 = 100, B2 = 100, B3 = 10). In
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Figure 3, the top three frames illustrate the optimal controls. The blue dotted curves

represent the controls with weight parameters (B1 = B2 = B3 = 10), the red dashed

curves represent the controls with weight parameters (B1 = 100, B2 = 10, B3 = 100)

and the green dot-dashed curves represent the controls with weight parameters (B1 =

100, B2 = 100, B3 = 10) In the bottom five frames, the black solid curve represents

the state variables without control while the blue dotted, red dashed and green dot-

dashed curves represent the state variables with controls for (B1 = B2 = B3 = 10),

(B1 = 100, B2 = 10, B3 = 100) and (B1 = 100, B2 = 100, B3 = 10), respectively. The

main results from Figure 3 are as follows: for the first case, when the costs of u1(t), u2(t)

and u3(t) (B1, B2, and B3 respectively) are equal to 10, all three controls are used to

near full force with u1(t) being used frequently within the five year period. In the second

case, when the costs of u1(t) and u3(t) are increased by a factor of 10 while maintaining

the same cost for u2(t), the effort of using u1(t) remains the largest. For the third case

(B1 = 100, B2 = 100, B3 = 10), u3(t) is seemingly used the most because of its cheap

cost, the difference among the costs of all three controls reveal that u1(t) is actually the

most effective control. Further, this control strategy seems to work well because the

number of both exposed E(t) and infectious I(t) individuals are noticeably reduced with

I(t) approaching zero. However, if the cost of using u3(t) is too high, then I(t) increases

again at the end of simulation (See red dotted curve of I(t) in Figure 3). Note that

I(t) seems to decrease without control within the given time of 5 years, but it actually

increases and stays at an endemic steady-state (see Figure 1). Next we consider the use

of two controls.

In Strategies 2 − 4, all cost coefficients are assumed to be of the same order (B1 =

B2 = B3 = 10 or 100). Notice that E(t) is not shown for the remaining figures in this

section because E(t) has the same behavior as that of Figure 2 (i.e. E(t) behaves similarly

to the curves with controls when the control is working). In Strategy 2, the distancing

and relapse controls (u1(t) and u2(t)) are introduced. Figure 4 illustrates the distancing
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control u1(t), relapse control u2(t) and infectious individuals I(t). The control strategy

is effective; the distancing control, u1(t), requires near full effort for the whole simulated

time, but the relapse control, u2(t), requires less effort. In Strategy 3, the distancing

and treatment controls (u1(t) and u3(t)) are considered. Figure 5 shows two controls and

infectious individuals as functions of time. The results illustrate that when the cost of

both u1(t) and u3(t) are equal to 10, the controls are used at near full effort. However,

when the cost of the controls increase to 100, only u1(t) requires near full effort for almost

the entire simulated time period while the required effort for u3(t) starts to decrease after

2 years. In Strategy 4, the relapse and treatment control (u2(t) and u3(t)) are applied.

It is interesting to note that the optimal control strategy dose not work in this case. The

number of infectious individuals I(t) with controls (dotted curve) and without controls

(solid curve) are almost the same (see bottom frame in Figure 6). Even though near full

effort for u2(t) and u3(t) are applied for the whole period, the control program does not

work. This finding indicates that the controls u2(t) and u3(t) alone are not enough to

reduce the exposed and infectious individuals in this TB model.

Overall, the distancing control u1(t) is the most effective control if the costs are of the

same order. For this reason, we consider only one control program with the distancing

control, u1(t), associated with the exogenous rate (Strategy 5). Figure 7 displays the

control u1(t) and I(t) as functions of time in the top and bottom frames, respectively.

The two weight constants, B1 = 10 and 100, are considered. As expected, a larger B1

leads to less effort from u1(t) This optimal treatment strategy shows the reduction of

E(t) and I(t).

Note that the basic reproductive number R0 =
(

βc
µ+r+d

)(
k

µ+k

)
and the level of ex-

ogenous reinfection p is not involved in R0. This resulting optimal treatment strategy

changes the endemic outbreak state with R0 < 1 to the disease free state by applying the

effort to reduce the exogenous reinfection rate, pβcE I
N

. However, if R0 < 1 with p and

I0 large enough, then the most effective control is the distancing control for exogenous

12



reinfection.

3.2 R0 > 1

This subsection discusses the optimal control treatment strategies for R0 = 2.6125.

We first consider the three controls with three sets of the weight constants, (B1 = 10, B2 =

100, B3 = 10), (B1 = 100, B2 = 100, B3 = 10) and (B1 = 100, B2 = 100, B3 = 100) in

Strategy 6. Figure 8 displays the controls u1(t), u2(t) and u3(t) and the state variables

as functions of time in the top three and bottom five frames, respectively. In each frame,

the red dashed curve represents the case with (B1 = 10, B2 = 100, and B3 = 10),

the blue dotted curve represents the case with (B1 = 100, B2 = 100, and B3 = 10)

and the green dot-dashed curve represents the case with (B1 = 100, B2 = 100, and

B3 = 100). The black solid curves represent the state variables without controls in the

bottom five frames. The main results are as follows: first, the distancing control, u1(t),

is less effective than the relapse and treatment controls because a small amount of u1(t)

is used even though the costs of using u1(t), u2(t) and u3(t) are the same. Second, in

all three cases, (B1 = 10, B2 = 100, B3 = 10), (B1 = 100, B2 = 100, B3 = 10) and

(B1 = 100, B2 = 100, B3 = 100), almost full effort of u2(t) is needed during the whole

simulation. This implies that the most effective control mechanism is to prevent the

reinfection of treated individuals. Third, while the number of exposed E(t) and infectious

I(t) individuals initially increase, both ultimately approach zero, which suggests that

these control strategies are effective. Fourth, only u2(t) is used at near full effort for the

entire simulation while the usage u1(t) and u3(t) begins at 2 and 0.5 years respectively.

Next, we consider two control strategies; u1(t) and u2(t).

In Figure 9, the controls u1(t) and u2(t) and I(t) as functions of time are shown in the

top, middle and bottom frames, respectively. Considering cost coefficients of the same

order, B1 = B2 = 100 (blue dotted curves), almost full control u2(t) is used while u1(t)

is not used until approximately 2.5 years. So, we increase the cost of using u2(t) and
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maintaining the same cost for using u1(t), (B1 = 100, B2 = 1000). Although the cost

of using u2(t) increased significantly, u2(t) is still used much more than u1(t). In both

cases, the optimal treatment strategies are effective; with the number of E(t) and I(t)

approaching to zero (E(t) behaves similarly to the results displayed in Figure 9). These

results show that the most important control is, again, relapse control, u2(t). One of the

most important results from Figure 8 and Figure 9 is that the control u2(t) is the most

effective.

Now we consider the mitigation strategies with only one control. Figure 10 displays

the control u1(t), E(t) and I(t) as functions of time, respectively. Even though the opti-

mal treatment program with only u1(t) effectively reduces I(t), the control has less effect

on E(t). This suggests that I(t) is not truly reduced because some exposed individuals

may become infected. Let’s consider the optimal treatment program with only the re-

lapse control, u2(t). Figure 11 displays the control u2(t), E(t) and I(t) as functions of

time. The cost constant B2 is considered as 100 and 1000. Unlike u1(t) from Figure 10,

u2(t) alone can effectively reduce both E(t) and I(t).

Overall, under the implementation of u1(t) solely, infectious individuals are reduced

effectively, but exposed individuals are still maintained at a high level. The implemen-

tation of only u2(t) manages to reduce exposed individuals and infectious individuals

effectively. Under two controls (u1(t) and u2(t)), it is observed that u1(t) is delayed (zero

up to 2 years) until exposed individuals are reduced significantly enough while u2(t) is

applied from the beginning. This result suggests that u2(t) is the most effective control

strategy when R0 > 1.

4 Conclusions

The purpose of this work is to introduce the optimal control strategies for a model

of TB with exogenous reinfection. Since the TB model with exogenous reinfection has
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multiple endemic equilibria even when R0 < 1, we considered the optimal strategies for

both cases when R0 > 1 and R0 < 1 . In our work, three controls have been introduced

in our state system to minimize the number of exposed and infectious individuals. The

distancing control, u1(t), associated with the transmission rate(βc), represents the effort

to reduce the susceptible and exposed individuals from being in contact with infectious

individuals (e.g. an isolation policy or a vaccination policy for infection). The relapse

control, u2(t), represents the effort to prevent reinfection of the treated individuals. An

example of this control is a vaccination policy for reinfection during treatment. The

treatment control, u3(t), represents the effort to treat actively infected individuals, which

increases the number of treated individuals. Different combination of these controls were

evaluated through two cases. For the case when R0 < 1, 5 strategies were evaluated: (1)

combination of u1(t), u2(t), and u3(t); (2) combination of u1(t) and u2(t); (3) combination

of u1(t) and u3(t); (4) combination of u2(t) and u3(t); (5) u1(t) alone. In contrast,

when R0 > 1, 4 strategies were evaluated: (1)combination of u1(t), u2(t), and u3(t); (2)

combination of u1(t) and u2(t); (3) u1(t) alone; (4) u2(t) alone.

Overall, we have identified optimal control strategies for both cases when R0 > 1 and

R0 < 1. The distancing control, u1(t), is the most effective control when R0 < 1 while

the relapse control, u2(t), is the most effective control when R0 > 1. Further, the results

suggest that when R0 < 1, the control strategy is not effrective without the presence

of u1(t). Similarly, when R0 > 1, u2(t) must be present. With the presence of u1(t)

when R0 < 1 and the presence of u2(t) when R0 > 1, the optimal control programs will

effectively reduce the number of exposed and infectious individuals
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A Characteristics of optimal controls

Pontryagin’s Maximum Principle converts (2) - (4) into a problem of minimizing a point-

wise Hamiltonian, H, with respect to u1, u2 and u3:

H = E + I +
B1

2
u1

2(t) +
B2

2
u2

2(t) +
B3

2
u3

2(t) +
5∑
i=1

λigi

where gi is the right hand side of the differential equation of the ith state variable.

To find the optimal solutions, we apply the Pontryagin’s maximum principle, which

gives the necessary conditions that the adjoint equations must satisfy. We obtain the

following theorem.

Theorem A.1 Given optimal controls u1
∗, u2

∗, u3
∗ and solutions S∗, E∗, I∗, T ∗, N∗ of the

corresponding state system (1), there exists adjoint variables λ1, ..., λ5 satisfying

λ̇1 = λ1((1− u1(t))βc
I

N
+ µ)− λ2(1− u1(t))βc

I

N
,

λ̇2 = −1 + λ2((1− u1(t))pβc
I

N
+ µ+ k)− λ3((1− u1(t))pβc

I

N
+ k),

λ̇3 = −1 + λ1(1− u1(t))βc
S

N
− λ2((1− u1(t))βc

S

N
− (1− u1(t))pβc

E

N
+ (1− u2(t))σβc

T

N
)

− λ3((1− u1(t))pβc
E

N
− (µ+ u3(t)r + d))− λ4(u3(t)r − (1− u2(t))σβc

T

N
)

+ λ5d, (5)

λ̇4 = −λ2(1− u2(t))σβc
I

N
+ λ4((1− u2(t))σβc

I

N
+ µ),

λ̇5 = −λ1(1− u1(t))βcS
I

N2
+ λ2((1− u1(t))βcS

I

N2
− (1− u1(t))pβcE

I

N2
+ (1− u2(t))σβcT

I

N2
)

+ λ3(1− u1(t))pβcE
I

N2
− λ4(1− u2(t))σβcT

I

N2
+ λ5µ

and λ1(tf ) = ... = λ5(tf ) = 0, the transversality conditions. Furthermore
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u∗1 = min
{
max

{
a,

1

B1N∗ (βcS∗I∗(λ2 − λ1) + pβcE∗I∗(λ3 − λ2))
}
, b
}
,

u∗2 = min
{
max

{
a,

1

B2N∗ (σβcT ∗I∗(λ2 − λ4))
}
, b
}
, (6)

u∗3 = min
{
max

{
a,

1

B3

(rI∗(λ3 − λ4))
}
, b
}
.

Proof : Corollary 4.1 of [19] gives the existence of an optimal control pair due to

the convexity of integrand of J with respect to u1, u2, u3, a priori boundedness of the

state solutions, and the Lipschitz property of the state system with respect to the state

variables. The form of the adjoint equations and transversality conditions are standard

results from the Pontryagin’s Maximum Principle [18]. We differentiate the Hamiltonian

with respect to states, S,E, I, T and N respectively.

dλ1

dt
= −∂H

∂S

· · ·
dλ5

dt
= −∂H

∂N
,

and then the adjoint system can be written as (5). By considering the optimality

conditions,

∂H

∂u1

= 0,
∂H

∂u2

= 0,
∂H

∂u3

= 0 at u∗1, u
∗
2, u

∗
3,

which can then be solved for our optimal u∗1, u
∗
2, u

∗
3, giving us:

20



dH

du1

= B1u1 + λ1βcS
I

N
− λ2βcS

I

N
+ λ2pβcE

I

N
− λ3pβcE

I

N
= 0,

dH

du2

= B2u2 − λ2σβcT
I

N
+ λ4σβcT

I

N
= 0,

dH

du3

= B3u3 − λ3rI + λ4rI = 0,

at u1
∗ on the set {t|a < ui

∗(t) for i = 1, 2, 3}. On this set,

u∗1 =
1

B1N∗ (βcS∗I∗(λ2 − λ1) + pβcE∗I∗(λ3 − λ2)),

u∗2 =
1

B2N∗ (σβcT ∗I∗(λ2 − λ4)),

u∗3 =
1

B3

(rI∗(λ3 − λ4)).

Taking into account the bounds on controls, we obtain the characterization of u∗1, u
∗
2

and u∗3 in (6).
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B Simulation Figures
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Figure 2: The optimal controls (u1(t), u2(t) and u3(t)) and state variables are dis-
played as functions of time when objective functional is minimize J(u1, u2, u3) =∫ tf

0
[I(t) + B1

2
u1

2(t) + B2

2
u2

2(t) + B3

2
u3

2(t)]dt . The black solid , blue dotted, red dashed
curves represent the cases of without controls, (B1 = 10, B2 = 1, B3 = 100) and
(B1 = 100, B2 = 1, B3 = 100) with controls, respectively.
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Figure 3: The optimal controls (u1(t), u2(t) and u3(t)) and state variables of Strategy
1 are displayed as functions of time. The black solid, blue dotted, red dashed, green
dot-dashed curves represent the cases without controls, (B1 = 10, B2 = 10, B3 = 10),
(B1 = 100, B2 = 10, B3 = 100) and (B1 = 100, B2 = 100, B3 = 10) with controls,
respectively.
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Figure 4: The optimal controls u1(t), u2(t) and the infectious individuals of Strategy 2
as functions of time are displayed. The black solid and blue dotted curves represent the
cases without controls and with controls (B1 = 10, B2 = 10) respectively.
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Figure 5: The optimal controls u1(t), u3(t) and the infectious individuals of Strategy 3
as functions of time are displayed. The black solid, blue dotted and red dashed curves
represent the cases without controls, (B1 = 10, B3 = 10) and (B1 = 100, B3 = 100) with
controls, respectively.
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Figure 6: The optimal controls u2(t), u3(t) and the infectious individuals of Strategy 4
as functions of time are displayed. The black solid and blue dotted curves represent the
cases without controls and with controls (B2 = 10, B3 = 10) respectively.
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Figure 7: The optimal controls u1(t) and the infectious individuals of Strategy 5 as func-
tions of time are displayed. The black solid, blue dotted and red dashed curves represent
the cases without controls, (B1 = 10) and (B1 = 100) with controls, respectively.
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Figure 8: The optimal controls (u1(t), u2(t) and u3(t)) and state variables of Strategy
6 as functions of time are displayed. The black solid, blue dotted, red dashed, green
dot-dashed curves represent the cases without controls, (B1 = 10, B2 = 100, B3 = 10),
(B1 = 100, B2 = 100, B3 = 10) and (B1 = 100, B2 = 100, B3 = 100) with controls,
respectively.
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Figure 9: The optimal controls u1(t), u2(t) and t he infectious individuals of Strategy 7
as functions of time are displayed. The black solid, blue dotted and red dashed curves
represent the cases without controls, (B1 = 100, B2 = 100) and (B1 = 100, B2 = 1000)
with controls, respectively.
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Figure 10: The optimal controls u1(t) and the infectious individuals of Strategy 8 as func-
tions of time are displayed. The black solid, blue dotted and red dashed curves represent
the cases without controls, (B1 = 100) and (B1 = 1000) with controls, respectively.
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Figure 11: The optimal controls u2(t) and the infectious individuals of Strategy 9 as func-
tions of time are displayed. The black solid, blue dotted and red dashed curves represent
the cases without controls, (B2 = 100) and (B2 = 1000) with controls, respectively.
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