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Abstract

Mathematical models can provide insights on how future epidemics may behave.
Evaluation and implementation of public health strategies can be more accurate
when reliable data is used to estimate parameters. However, not all cases are
reported, and the levels of uncertainty generated by the gap between the number of
reported cases and the actual number of cases has not been studied in detail. We
evaluate the impact of non-reported cases in the calculation of the final epidemic size
and the effect of different control measures on reducing the attack rate. A system of
non-linear ordinary differential equations is constructed to model the spread of
influenza. The final size relation for the total number of infected individuals and the
proportion of total reported cases are calculated. Both relations are used to generate
an expression that helps us quantify the level of non-reporting. To illustrate our
results, we consider the case of the 2009 A-H1N1 influenza outbreak in Lima, Peru.
Assuming different scenarios of reporting, we estimate key parameters using the data
from the initial exponential phase, from which we conclude that no more than 30%
of the actual cases were reported. We also perform Monte Carlo simulations to
quantify the uncertainty of the control reproductive number to model parameters.
Via numerical simulations, we study the impact of different values of the per-capita
isolation rates on the final epidemic size. Furthermore, we explore the effects of
social distancing varying the time when the intervention policy is applied and
different levels of reduction in the transmission rate.

B Introduction

There are between three and five million reported cases of influenza each year leading to 250,000-500,000
deaths worldwide [20]. However, these numbers are small in comparison to the Spanish influenza
pandemic of 1918-1919 where it was estimated that 1/3 of the total population got infected and 50
million deaths occurred, 10% of the total world population at that time [3]. It is thought that this strain
of influenza was so deadly because the virus may have been novel to humans. In the United States, a
yearly flu vaccine is administered to keep the spread of seasonal influenza under control [21]. However,
this vaccine only provides protection against the three strains which are predicted to be most common
for that particular year [21]. For example, in 2011-2012 the vaccine will protect against an influenza
A-H3N2 virus, an influenza B virus and the H1N1 virus that emerged in 2009 to cause a pandemic [21].
The consequences could be drastic if an influenza strain or subtype which is completely novel or radically
different from those in the vaccine becomes prevalent.
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Fears of consequences of a new infectious disease or even re-emergent, have generated an interest in
mathematical epidemiology modeling [1]. Recent examples are the Severe Acute Respiratory Syndrome
(SARS) epidemic in 2003 and the H1N1 pandemic in 2009 [28]. Mathematical models for the spread of
influenza can provide insight of how future influenza epidemics with similar epidemiological
characteristics may behave. This is extremely important, because quantification of disease transmission
are quite difficult.
Epidemiological data such as incidence, prevalence and number of deaths among others, are highly
valuable in estimating parameters of a model. Some of these parameters can be the recovery rates,
incubation periods, and deaths rates associated to the disease [5]. Having estimates for parameter values,
such as isolation, vaccination and transmission rates, are also beneficial as they allow for comparison of
control strategies and how effective they are. Models can provide a curve for the cumulative number of
cases. However, when trying to fit these curves to these data, inconsistencies might occur. Some of these
inconsistencies might be attributed to the model not properly describing the dynamics of the particular
disease, the data only quantifying the reported cases, delays in reporting, and incomplete data [1].
There are a number of reasons why accurate reporting is difficult. First, not all regions of a country may
be equipped to diagnose a disease [14]. For example, in rural areas in China, clinicians may not have the
skills or the equipment needed to correctly diagnose a disease [14]. Also, because of the large number of
patients a clinician may have, they may be far too busy to accurately report all confirmed cases of a
disease or patients might no even get tested [14]. Furthermore, a nation may choose to non-report cases
due to the fear that tourism and trade will drop [23]. In addition, people of lower socioeconomic status
often do not seek medical attention or they show only non-severe symptoms, further leading to
non-reporting the total number of infected cases [14].

C The influenza A-H1N1 in Lima, Peru

During the 2009 influenza pandemic in Peru, there were four main surveillance systems consisting
primarily of sentinel surveillance of influenza-like illnesses with virological surveillance of influenza and
other respiratory viruses. The other three are sentinel surveillance of severe acute respiratory infections
and associated deaths, surveillance of acute respiratory infections in children under the age of five years
and pneumonia in all age groups, and case and cluster surveillance [2].
The first confirmed case of pandemic A-H1N1 influenza in Peru was diagnosed in Lima on May 9,
2009 [2]. In Lima, which is the focus of the current study, the number of reported cases was 2989, and
the peak of the disease was reached on June 22, 2009. This peak corresponds to the point in time when
the number of new reported cases is the highest, beyond this point, the number of new reported cases
starts to decrease. Figure 2 shows the number of new reported/confirmed cases per unit time in Lima
from May 1, 2009 to December 31, 2009. However, the most reliable data is up to July 11 because on
that date, a policy was put in place. This policy changed the way data were collected: while during the
initial phase all individuals with severe symptoms were being tested, after the policy only individuals in
risk group who presented severe symptoms were tested (i.e., pregnant women, seniors, children and
individuals with pre-existing respiratory symptoms) [?]. Also only a portion of individuals exhibiting
influenza-like illnesses were tested for A-H1N1 [?].
This work focuses on the gap between the total number of cases of influenza and the reported cases.
Since reported A-H1N1 individuals were isolated in Peru, a model which takes isolation into account is
proposed in Section 3. In Section 4, basic reproductive numbers corresponding to the model with and
without isolation are discussed. In Section 5, calculations for the final epidemic size and the total number
of reported cases are shown. These computations lead to equations for the level of reporting and
non-reporting. In Section 6, parameter values are estimated, and a relation between the final epidemic
size proportion and the percentage of reporting is obtained. Section 7 numerically investigates the effects
on the final epidemic size of varying the isolation rates. In Section 8, also numerically, we asses the
impact on the final size of different social distancing alternatives. In section 9, uncertainty analysis is
conducted on the control basic reproductive number and the level of unreporting. Finally in Section 10
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we introduce an optimization problem where per-capita isolation rates are optimized under a budget
constraint aimed at controlling the disease via isolation efforts.

Figure 2: Number of new confirmed cases in Lima, Peru per unit time.

D The Model

The total population is stratified according to their epidemiological states: Susceptible individuals (S),
Infected (I1 and I2), Isolated (J) and Recovered (R) individuals. Susceptibles (S) acquire an infection
via contacts with individuals in the I1 or I2 class at a per-capita transmission rate β. The class I1
consists of individuals with less severe symptoms whose infectiousness is reduced by a factor δ.
Individuals in class I1 can either develop severe symptoms entering class I2 at a per-capita rate κ or they
recover (R) at a per-capita rate γ1. Severely infected individuals (I2) recover at a per-capita rate γ2.
Sick, individuals are isolated (J) from I1 and I2 at per-capita rates α1 and α2, respectively. In order to
quantify the proportion of reported individuals, they must be kept in separate compartments than the
rest of the population. The parameters of the model and their definition are provided in Table 8.
The model considers a single outbreak of influenza and demographic dynamics is not included. The
disease is caused by one strain of influenza transmitted through contact with infectious individuals. It is
assumed that individuals who recover develop total immunity against the circulating strain. The fraction
of infectious individuals who transferred to the isolated class are assumed to be perfectly isolated from
the rest of the population. Hence, we use a modified standard incidence: N − J is the interacting
population instead of N . We assume proportionate mixing between individuals, that is, all individuals
have an equal probability of interacting with each other. Symptoms are assumed to appear soon after an
individual becomes infected. The class J represents those isolated and in this case reported cases. The
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Figure 3: Compartmental diagram: susceptible individuals (S), individuals with less severe
flu (I1), individuals with severe flu (I2), recovered (R) and isolated (J) individuals.

system of non-linear ordinary differential equations is given by

dS

dt
= −βS

(
δI1 + I2
N − J

)
, (2)

dI1
dt

= βS

(
δI1 + I2
N − J

)
− (α1 + κ+ γ1)I1, (3)

dI2
dt

= κI1 − (α2 + γ2)I2, (4)

dJ

dt
= α1I1 + α2I2, (5)

dR

dt
= γ1I1 + γ2I2, (6)

N = S + I1 + I2 + J +R. (7)

Table 8: Parameters and their definition
Parameters Definition

β Transmission rate

κ Rate of development of severe symptoms

γ1 Recovery rate of individuals with less severe symptoms

γ2 Recovery rate of individuals with severe symptoms

α1 Isolation rate for those with less severe symptoms

α2 Isolation rate for those with severe symptoms

δ Factor by which the infectivity of the less severe class is reduced

The level of non-reporting in epidemiology may be significant in the case of influenza given that
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asymptomatic individuals are not accounted for and some symptomatics show only non-severe symptoms.
Hence, the quantification of the infected/recovered population presents a prolonged challenge. Through
our model we find an analytical expression for the level of non-reported infected individuals. To find this
quantity we will first calculate the final epidemic size and then compute the reported final size. Using
these quantities we can have an idea of the magnitude of the non-reporting and the role of the isolation
parameters α1 and α2.
Under the assumptions of our model, the non-reported cases happen if infected individuals (I1 or I2)
recover (R) without being isolated (J). We consider two types of infections given that individuals with
severe influenza symptoms are more likely to seek medical attention and get reported than individuals
with less severe symptoms; hence, we assume that α2 > α1.

E Basic reproductive numbers

In our model susceptible individuals can become infected due to interactions with either less severe or
severe infected individuals. Therefore, we have two contributions to the basic reproductive number, R0.
Typically, R0 is the average number of secondary infections caused by a single infectious individual
introduced into a entirely susceptible population. This term describes the initial phase of the epidemic
when the dynamics is determined only by “natural” forces, that is, when no human intervention such as
isolation or quarantine are in place, [6]. This scenario can be accommodated to our model by making
α1 = α2 = 0, that is, the isolation process is not active. The parameter β is the transmission rate of the
disease and it is also the force of infection of those infected with severe symptoms (I2). The force of
infection of the less severly infected is δβ where δ ∈ [0, 1] represents a reduction factor in the
infectiousness of individuals with less severe symptoms (I1). The average infection period for I1 is

1

κ+ γ1
, while for I2 it is

1

γ2
. We must also consider

κ

κ+ γ1
, the proportion of individuals with

non-severe symptoms that progress to a more severe stage of the disease. Therefore, R0 is given by

R0 =
βδ

κ+ γ1
+

(
κ

κ+ γ1

)(
β

γ2

)
. (8)

The control reproduction number, Rc, describes the number of secondary infections generated during an
epidemic outbreak by a typical infected individual when control measures are in place [6], such as isoltion
The expression for RC is given by

RC =
βδ

α1 + κ+ γ1
+

(
κ

α1 + κ+ γ1

)(
β

γ2 + α2

)
. (9)

The term
1

α1 + κ+ γ1
is the average time an individual spends in class I1. Hence

RC1 =
βδ

α1 + κ+ γ1
, (10)

is the contribution to RC by the less severe infected individuals. The term
1

α2 + γ2
is the average time

an individual spends in class I2;
κ

α1 + γ2 + κ
is the fraction of individuals reaching infection class I1 that

progress to infection class I2. Therefore,

RC2 =
βκ

(α1 + κ+ γ1)(α2 + γ2)
, (11)

is the contribution to RC by severe infected individuals.
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F Unreported and final epidemic size

Consider a closed population and suppose that it is completely free from a certain organism causing a
disease. Assume that in one way or another, the disease is introduced in at least one host. Therefore, the
number of susceptible individuals can only decrease and hence it must have a limit when time tends to
infinity [?]. We may ask the following questions: Will this limit be zero? Or will some fraction of the
population escape from getting infected? What proportion of the population will ultimately have
experienced infection? How does this fraction depend on the parameters of the model proposed? These
questions were posed by Kermack and McKendrick in 1927. In this section we will try to address some of
these questions for our model. We calculate and analyze the final epidemic size following the
methodology by Brauer ( [4, 6]) to quantify the non-reported cases (U∞), in Eq.(??), and the role of
isolation for the final epidemic of size (Y ) and the final reported cases (J∞).

F.1 Final epidemic size calculation

The final epidemic size is considered to be the final number of infected individuals during an epidemic
outbreak. We proceed by getting the expression for the severe infected individuals as a function of time,
I2(t), using the fact that

I ′2 = −S′ − I ′1 − (α1 + γ1)I1 − (α2 + γ2)I2, (12)

where I1 and I ′1 are fixed. To solve Eq. (12) for I2, we us an integrating factor μ = e
∫
(α2+γ2)dt. Knowing

that I2(0) = 0 (initially there were no severly infected), we obtain(
I2e

(α2+γ2)t
)′

=
(−S′ − I ′1 − (α1 + γ1)I1

)
e(α2+γ2)t,

=⇒ I2(t) =

∫ t

0

[−S′ − I ′1 − (α1 + γ1)I1
]
e(α2+γ2)(τ−t)dτ. (13)

Similarly, we obtain an equation for the infected individuals with less severe symptoms as a function of
time, given by:

I1(t) =

∫ t

0

−S′e(α1+γ1+κ)(τ−t)dτ. (14)

To find the final size relation we divide Eq.(2) by S and replacing Eqs. (13) and (14) we get

−S′(t)
S(t)

=
β(δI1 + I2)

N − J
, (15)

=⇒ ln
N

S∞
=

β

N

∫ ∞

0

∫ ∞

0

−S′(τ)
(
δe−(α1+γ1+κ)u + e−(α2+γ2)u

)
dudτ

+
β

N

∫ ∞

0

∫ ∞

0

(−I ′1(τ)− (α1 + γ1)I1(τ)
)
e−(α2+γ2)ududτ. (16)

Further, solving the integrals in Eq.(16), we obtain

ln
N

S∞
=

β

N
(N − S∞)

(
δ

α1 + γ1 + κ
+

1

α2 + γ2

)
− β(α1 + γ1)

N(α2 + γ2)

∫ ∞

0

I1(τ)dτ. (17)
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The typical final size relation is obtained by the substitution of Eq.(14) into Eq.(17), given by

ln
N

S∞
=

(
1− S∞

N

)(
βδ

α1 + κ+ γ1

β

α2 + γ2

)

−
(

β

α2 + γ2

)(α1 + γ1
N

)∫ ∞

0

∫ τ

0

−S′(s)e(α1+γ1+κ)(s−τ)dsdτ,

=

(
1− S∞

N

)[
βδ

α1 + κ+ γ1
+

β

α2 + γ2

(
κ

α1 + κ+ γ1

)]
,

ln
N

S∞
=

(
1− S∞

N

)
RC . (18)

Equation (18) is the typical final size relation [4, 6]. If we let s∞ =
S∞
N

as the proportion of the final

susceptible size Eq. (18) yields
ln(s∞) = (s∞ − 1)RC , (19)

where 0 < s∞ < 1 and we have changed the argument in the logarithm and hence the sign of the right
hand term. Here 1− s∞ represents the number of disease cases over the course of the epidemic. Let

y =
Y

N
be the final epidemic size proportion, where Y is the final epidemic size. Notice that

y �= lim
t→∞

I(t)

N
(since lim

t→∞
I(t)

N
= 0) and y is the proportion of cumulative number of infected individuals

during the whole epidemic, whereas s∞ = lim
t→∞

S(t)

N
. Also notice that for a single outbreak (no death)

y = (1− s∞). With that we get a proportional final size relation (from Eq. (19))

y = 1− e−yRC . (20)

We know that the final epidemic size is directly related to RC . This can be proven by rearranging terms
in Eq.(20) as follows

RC =
1

y
ln(1− y),

taking derivative with respect to y we obtain

dRC

dy
=

1

y2
ln(1− y) +

(
1

y

)(
1

1− y

)
> 0.

If we plot
dRC

dy
as a function of y : 0 < y < 1, we get that for all 0 < y < 1,

dRC

dy
> 0. That is, the basic

reproductive number and the final epidemic size are directly related in such interval, as shown in the
Figure 4.

F.2 Final reported cases (J∞)

From the equation of the rate of change of isolated/reported individuals, that is, Eq.(6), and with initial
condition J(0) = 0, we have ∫ ∞

0

J ′dt =
∫ ∞

0

(α1I1 + α2I2) dt. (21)

Therefore, replacing the equations for the infected individuals as a function of time, that is, Eq. 13 and
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Figure 4: Relation between RC and the proportional final size relation. As shown in the
graph, RC = 1.5 corresponds to the fact that 58.28% got infected.

Eq. 14 we have,

J∞ = α1

∫ ∞

0

∫ t

0

−S′e(α1+γ1+κ)(τ−t)dτdt

+α2

∫ ∞

0

∫ t

0

[−S′ − I ′1 − (α1 + γ1)I1
]
e(α2+γ2)(τ−t)dτdt,

J∞ = (N − S∞)

[
α1

α1 + γ1 + κ
+

(
κ

α1 + γ1 + κ

)(
α2

α2 + γ2

)]
. (22)

Dividing by the total population N , and defining j∞ as the final size proportion of reported cases, Eq.
(22) can be expressed as

j∞ = (1− s∞)

[
α1

α1 + γ1 + κ
+

(
κ

α1 + γ1 + κ

)(
α2

α2 + γ2

)]
,

= y

[
α1

α1 + γ1 + κ
+

(
κ

α1 + γ1 + κ

)(
α2

α2 + γ2

)]
.

Then, we obtain an expression for the level of unreporting, which is given by

u∞ = 1− j∞
y

,

= 1−
[

α1

α1 + γ1 + κ
+

(
κ

α1 + γ1 + κ

)(
α2

α2 + γ2

)]
, (23)

where
j∞
y

is the level of reporting.
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Notice that the transmission rate (β) and the reduction of infectivity by less severe individuals (δ) do not
appear in this expression. The reason is that the fraction of reported cases does not measure the rate of
inflow to the infected classes, connected to β and δ. The fraction of reported cases rather quantifies the
progression from infected individuals to isolation and recovered R (non-reported). An upper bound was
found for the level of reporting (see Appendix B).
In Eq. (23) the term

α1

α1 + γ1 + κ
,

is the proportion of non-severe cases that were isolated. The term(
κ

α1 + γ1 + κ

)(
α2

α2 + γ2

)
,

represents the contribution to isolation by severely infected individuals (I2), that is, given by the product
of

κ

α1 + γ1 + κ
,

which is the fraction of infected from I1 develops severe symptoms, and the term

α2

α2 + γ2
,

is the proportion of individuals who were in the more severe infected clas I2 and become isolated.

G Parameter estimation

The use of mathematical modeling to interpret disease outbreak data has provided many insights into
epidemiology, particularly in the context of emerging and re-emerging infectious diseases. In many
situations, the basic reproductive number R0, governs the probability of the occurrence of a major
outbreak, the typical size of the resulting outbreak and the rigor of control measures needed to mitigate
an outbreak. Estimates of R0 which we refer to as R̂0 can be obtained by substituting the corresponding
individual parameter estimates into the analytical formula of R0. Model parameters can be estimated
using least-square fitting of the model solution to the observed data. The optimal set of parameters best
fits the epidemic data by minimizing the sum of the squared differences between the observed data and
the model solution. Previous work using parameter estimation methods has been effective to estimate
parameters that are not measurable. In the work of Sutton [29] she uses parameter estimation on the
effect of vaccination in pneumococcal infection data in Australia from 2002 - 2004. Parameter selection
methods in inverse problem formulation has been studied by H. T. Banks and Ariel Cintrón-Arias [30].
They discuss methods for a priori selection of parameters to be estimated with inverse problem
formulations such as the Maximum Likelihood, Ordinary and Generalized Least Squares for
mathematical models with a large number of parameters. They specifically illustrate their ideas within a
host model for HIV dynamics which has been successfully validated with clinical data obtained from the
Massachusetts General Hospital in 2007.
In this work we were able to estimate some parameters of our model with our data set by using Ordinary
Least Squares (OLS), see [5]. This technique assumes that the epidemiological system is described by
some underlying dynamical model with some set of parameters, known as the true parameters, but that
the observed data arises from some noise of the output of this system (that is, observational errors). We
write the true parameter set as the p-element vector Θ0, where some of these parameters may be initial
conditions of the dynamic model if one or more of these are unknown. The n observations of the system,
Y1, Y2,..., Yn, are made at times t1, t2,..., tn. Then the mathematical model is written as

Yi = M(ti; Θ0) + Ei, i = 1, ..., n, (24)
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where M(ti; Θ0) corresponds to the observed solution for the mathematical model at the ith observation
time for a particular vector of p parameters Θ ∈ Rp. The term Θ0 represents the parameters which can
be perceive from the observations {Yi}ni=1 referred as the “true” parameters in the literature. The terms
Ei are random variables which can represent observation or measurement errors, such as “system
fluctuations” or other phenomena that cause observations not to be precise.
The appropriate estimation procedure depends on the properties of the errors Ei. We assume that the
errors have the following form

Ei = M(ti; Θ0)
ξεi, (25)

where the value ξ determines the method that will be use to estimate your parameters. When ξ = 0 we
use the ordinary least squares method, in this case Ei = εi, and it is assumed that the noise variance is
independent of the magnitude of the predicted value of the observations. For ξ = 1 the noise standard
deviation is assumed to be scale linearly with M and instead of OLS we need to use the generalized least
squares method (GLS). Finally, for ξ = 1/2 the noise standard deviation scales linearly with M (known
as Poisson noise) and the GLS method is used to estimate the parameters. The εi are assumed to be
independent, identically distributed random variables (i.i.d.) with zero mean and (finite) variance σ2

0 .
The random variables Yi have means given by E [Yi] = M(ti; Θ0) and variances Var [Yi] = M(ti; Θ0)

2ξσ2
0 ,

see [19]. We assume that the noise variance in our data in independent and consider ξ = 0 , hence we use
OLS.
The Ordinary Least Squares estimator ΘOLS is a random variable obtained by considering the objective
function

J(Y |Θ) =
n∑

i=1

wi(Yi −M(tiΘ))2, (26)

where the weights wi are given by

wi =
1

M(ti; Θ)2ξ
. (27)

Since we consider ξ = 0, then wi = 1 for all i, and in this case the optimal estimator is given by

ΘOLS = arg minΘ J(Y |Θo). (28)

Parameter Estimation for our model. In order to estimate a set parameters, namely, β and α2, that
are specific to the epidemic we are studying here, we fix all the other parameters in our model. We have
fixed the relative measure of infectiousness for the class I1 to δ = 0.4, as done by [7]. The value for the

rate of developing severe symptoms is taken to be κ =
1

3
(3 days) as in [25]. For the parameter

estimation, we let α1 = 0 to be consistent with our data set, since our data corresponds to the infectious
people with severe symptoms (from the class I2). We have also fixed the recovery rate of individuals with

severe symptoms to γ2 =
1

5
(5 days), as seen in [?]. We obtained the value of γ1 from the equation that

measures the level of reporting, that is,

j∞
y

=
α1

α1 + γ1 + κ
+

(
κ

α1 + γ1 + κ

)(
α2

α2 + γ2

)
. (29)

Let r be the percentage of reported cases where r
100

= j∞
y
(see Eq.(23) ). Then, replacing α1 = 0, κ = 1/3

and γ2 = 1/5, we get

r

100
=

( 1
3

γ1 +
1
3

)(
α2

α2 +
1
5

)
. (30)

Solving for γ1, we obtain

γ1 =
(500− 5r)α2 − r

3r (5α2 + 1)
. (31)

Therefore we have an expression for γ1 in terms of α2 and r provided that γ1 > 0 if α2 > r
5(100−r)

.
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The model parameters Θ = (β, α2) are fitted by OLS to the initial phase of the incidence of reported
cases (20 epidemic days of data, from May 30 to June 20). May 30 was assumed to be the starting point
of exponential growth of the epidemic outbreak in Lima. We also assumed that the exponential growth
phase continued through June 30 (see Figure 2). We implemented a MATLAB code to estimate our
parameters given a set of initial conditions using 20 iterations with a tolerance of 10−5. For different
percentages of reporting, r = 10k%, with k ∈ {1, · · · , 6}, we estimate the set of parameters Θ (for
7 � k � 10, the value of γ1 becomes negative). Given that we do not know what the percentage of
reporting was, we explore different parameter values for some of these percentages of reporting. We fixed
the level of reporting r to a given value r ∈ [10, 60] and by means of parameter estimation we obtain
values of α2 = α2(r), β = β(r) and γ1 = γ1(α2, r) as seen in Eq. (31). Figure 5 shows the fitting of the
model to the epidemic data using r = 30%. The best approximation of the data that can be obtained in
the initial phase of the epidemic are for values of r up to 60%. We also estimated the control
reproductive number, RC , and the final epidemic size proportion, y, for different values of r (see Table 1).

Figure 5: Model fit obtained using r = 30% and 20 epidemic days of data, from May 30
to June 20, of the 2009 A-H1N1 influenza epidemic in Lima. The plot corresponds to the
initial phase of the incidence number of reported cases.

Table 9: Estimates for the set of parameters Θ = (β, α2), RC and ξ
r(%) β α2 γ1 RC ξ

10 1.0529 0.0522 0.3566 2.6262 0.9080
20 1.0481 0.1714 0.4358 1.7684 0.7200
30 0.8953 0.2471 0.2807 1.6701 0.6775
40 0.7803 0.2981 0.1654 1.6731 0.6787
50 0.6971 0.3348 0.0840 1.7092 0.6953
60 0.6352 0.3628 0.0248 1.7599 0.7004

123



Residual plots. As we discussed earlier, the form of the error assumed in our statistical model
determines the estimator used. The true form of the error is typically unknown, and there is no way to
definitively determine this, but there are two residual tests that can support the chosen assumptions, or
indicate that the assumptions may be unreliable [5]. After the estimation procedure is completed for a
given set of data, one can plot the residuals ri = yi −M(ti,Θ) versus time ti or versus M(ti,Θ). If the
errors are in fact independent of time i.i.d., a plot of ri versus ti would be randomly distributed. Also, if
we have assumed constant variance, or that the errors do not depend on the model values M(ti,Θ), then
a plot of ri versus M(ti,Θ) should also show a random pattern (for more examples and a discussion
about error structures, see [5]). Figure 6 shows the residual plot from the best fit solution for the
parameters of our data. This plot suggests that it is reasonable to assume constant variance among our
observations, providing support for the statistical model underlying the parameter estimation procedure.

Figure 6: Residuals vs. time. This plot suggests that correct assumptions have been made
for the parameter estimation.

G.1 Relationship between the final epidemic size proportion (y) and
the percentage of reported cases (r)

We defined the percentage of reported cases, r, as
r

100
= j∞

y
where the level of reporting, j∞, is a

constant given by the data. Therefore, the final epidemic size proportion y is inversely proportional to r
and given by

y(r) =
(100j∞)

r

Figure 7 provides values of the final epidemic size proportion as a function of reporting (empirically).
Different levels of reporting percentage only makes sense for r < 30 since after that value of r the graph
changes its monotonicity. Looking at this graph of different y values produced with different percentages
of reporting, we see that after 30%, y begins to increase. This should not be the case, because in this
model, reporting an individual is the same as isolating that individual. Therefore, the more reporting
there is, the lower the final size of the epidemic should be. Furthermore, when assuming the data
captured more than 30 percent of the actual cases, the estimated parameter values are inconsistent with
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what is known to be biologically true. This means we cannot assume the data captured more than 30%
of the actual cases of influenza. This is a very important conclusion of this work since it suggests that
during the influenza pandemic in Lima, Peru, no more than 30% of the cases were reported.

Figure 7: Final epidemic size proportion as a function of the percentage of reporting cases.

H Numerical simulations: role of isolation

In this section is presented the numerical solutions of the model in Equations (2)-(7). We explore
dynamical properties of the model that are more difficult to ponder analytically. We make special
emphasis in the role of each of the per-capita isolation rates α1 and α2 and the effect of social distancing
in the final epidemic size.

H.1 The role of α1

In Lima, Peru only some severe cases were diagnosed and isolated. However we may also introduce public
health policies to account for the isolation of the less severe infected individuals. We explore the effects of
early diagnose and isolation in the containment of the epidemic by letting α1 > 0. Figure 8 shows that
increasing the rate of isolation of less severe cases (I1) reduces and delay the peak of the epidemic.
Comparing Figures 9 and 10, we note that α1 has a higher impact than α2 in the final epidemic size
reduction and in delaying the epidemic peak time. Furthermore, for smaller values of α1 we can achieve
similar reductions in the final epidemic size than with α2. For example, a value of α1 = 0.3 reduces the
final epidemic size by 80% where as the same value for α2 reduces the final size by 45%. These
simulations show that α1 is almost two times more effective than α2 in reducing the total number of
infected.
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Figure 8: Daily incidence. β = 0.9, δ = 0.4, γ1 = 0.43, κ = 1/3, γ2 = 1/5, α2 = 0.18
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Figure 9: Final size reduction and epidemic’s peak delay for α1 with β = 0.9, δ = 0.4, γ1 =
0.43, κ = 1/3, γ2 = 1/5, α2 = 0.18.

H.2 Infection level dependent isolation rate α2

We assume that the number of individuals that are being isolated with severe infection (I2) depends on
the actual number of infected people at a given moment of time. The term −α2I2 in Eq. (4) conveys this
idea by stating that the rate of change (outflow to the isolation class) of infected individuals is linear in
I2 with a constant rate α2. The aim here is to propose and numerically assess the effects of non-constant
isolation rates, a rate depending on the number of severely infected individuals. As the epidemic
increases it is reasonable to believe that the number of cases being isolated grows as well, not only due to
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Figure 10: Final size reduction and epidemic’s peak delay for α2 with β = 0.9, δ = 0.4, γ1 =
0.43, κ = 1/3, γ2 = 1/5, α1 = 0

an increase of infected individuals, but also as a result of more efficient and intense control measures
being put into action to seize the epidemic. However, due to limited resources, the isolation capacity will
reach a maximum, namely, αm

2 . A functional dependence that can satisfy all of these conditions is given
by a sigmoid function of I2 provided by

α2(I2) = 2αm
2

(
1

1 + e−aI2
− 1

2

)
. (32)
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Figure 11: Per-capita isolation rate as a function of severely infected individuals.
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Eq. (32) considers the parameter a as a saturation “speed” of the per-capita isolation rate. It is
reasonable to conclude that when a gets larger (see Figure 11), α2 reaches its maximum faster. Note that
α2(0) = 0 and α2(∞) = αm

2 . Therefore, the parameter a is a measure of how fast the saturation value αm
2

is reached. The parameter a can also be viewed as a measure of how fast the isolation system reacts to
the epidemic: for large a the response to the epidemic is faster.
Figure 12 and 13 show that the final size and the epidemic peak notably changes when a varies. For
these graphs we use the parameter values obtained in Section 7 (of the parameter estimation) that is,
αm
2 = 0.25, β = 0.9, δ = 0.4, γ1 = 0.44, κ = 1/3, γ2 = 1/5, α1 = 0. Moreover, for larger values of a the final

size and the delays in the peak are reduced. This suggests that responding faster to the epidemic could
reduce the infection level in the population and could also, due to the induced delay, provide a period of
time to implement other types of interventions like vaccination campaigns.

Figure 12: The final size gets reduced as the saturation parameter a increases.

I Numerical simulations: role of temporal social distancing

Social distancing is a public health intervention aimed at reducing the transmission and mitigate disease
burden by limiting contact between infectious and non-infectious individuals within the population.
Examples of these measures can include school closings, the cancellation of large public gatherings, and
the use of facemasks [8].
Recent observational studies support the implementation of school closure interventions to achieve
reductions in influenza transmission rates, [8, 22]. In the context of a pandemic, this can be particularly
useful to gain time until biomedical resources (vaccines, anti-virals) become available, and to relieve the
burden on health care institutions due to a reduced surge of influenza patients. The theory behind the
mitigative effect of school closings is that school age children have high contact rates, and tend to be
more susceptible to influenza infection than other age groups, [8]. Therefore, reducing transmission in
school children may reduce the attack rates of influenza in all age groups.
In general, social distancing is represented in epidemiological models by decreasing the transmission rate
(β). There are control measures, such as school closure, that can be incorporated to the model by
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Figure 13: The peak of the epidemics gets delayed with a larger saturation parameter a.

reducing this value temporarily, that is for a certain time period T = 14 days [18]. Hence, we consider a
transmission rate as a function of time , i.e., β = β(t) (see Figure I) where,
β(t) = βr, for 0 < t0 ≤ t ≤ t0 + T
β, otherwise.
The parameter βr is the reduced force of infection due to social distancing measures (naturally βr < β)
and t0 is the time at which the social distancing measure is implemented. We numerically investigate the
effect of different alternatives when implementing social distancing, namely, timing and reduction level of
the control measures. The results presented in this section related to the final size of the epidemic were
obtained from simulations that were run long enough (1000 days or more) to ensure all infected
individuals were taken into account, either getting isolated or recovered, making sure that the final size of
the epidemic was properly computed.
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I.1 Social distancing timing

In this section, we investigate the time to apply the social distancing, that is varying the time to
introduce the intervention, for fixed values of β and βr. The social distancing is applied for a fixed period
of time of 2 weeks, that is, T = 14 days. Figure 14 shows that the daily incidence curves markedly
changes whenever the social distancing measure is enforced. It can be seen that during this point of time
the social distancing decrease the rate of increasing the incidence. Then, after the intervention is over,
the curve tries to take its original course. If the intervention if done just before the peak time without
social distancing, that is for values of t0 < 75, the effect decreases the maximum incidence, furthermore it
decreases the final size of the epidemic. This behavior can also be explain by Figure 15.
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Figure 14: Daily Incidence. β = 0.9, βr = 0.7, δ = 0.4, γ1 = 0.43, κ = 1/3, γ2 = 1/5, α1 =
0, α2 = 0.18, T = 14.

Figure 15 shows a plot of the reduction proportion of the a peak time (time from the onset of the
epidemics to the highest peak) and the final size of the epidemic by varying the time of intervention for
the social distancing. These quantities are plotted as proportions, that is we normalized the final
epidemic size to better capture the effects of social distancing, i.e. each value of the final size at each t0
was divided by the maximum final epidemic size for all values of t0.
The same was done for the time of the peak. For example, if t0 = 60 the final size of the epidemic will be
reduced by 10%, where as if t0 = 40 the time for the peak delay can be reduced by approximately 12%.
Remarkably, there is a time tmin

0 for which the final size is minimum, that is, for tmin
0 ≈ 70. If the social

distancing is implemented after or before this optimal time, the effectiveness of the social distancing in
lowering the final size diminishes.
In Figure 15 we see a sharp decline in the peak time curve right before the time tmin

0 ≈ 70 when the
minimum final size is reached. This abrupt shift in the peak time is because at a particular time
60 ≤ ts0 ≤ 65 (s for shift) there are two local maximum with the same daily incidence. For t0 << ts0 the
only benefit we see is to delay the time of the epidemic. However, for t0 >> ts0, the social distancing has
merely no effect on the dynamics of the epidemic.
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Figure 15: Peak time and final size.

I.2 Varying the social distancing level

In this section we vary level of social distancing by means of temporarily reducing the transmission rate
β with different intensities. We ponder the effects of different values of βr (recall Eq.(I)) on the global
dynamics of the epidemics, specially in the epidemic’s final size. Figure 16 plots daily incidence for
different values of βr, all applied at 65 days since the beginning of the epidemics and for a period T of
two weeks.

Figure 16: Daily incidence. β = 0.9, δ = 0.4, γ1 = 0.43, κ = 1/3, γ2 = 1/5, α1 = 0, α2 =
0.18, t0 = 65, T = 14.

Figure 16 shows that the peak is delayed when reducing the transmission rate β. However, the size of the
peaks begin to increase as well. Hence, the impact on the final size that has reducing β remains unclear,
given that the final size is proportional to the area under the incidence curves. Figures 17 and 18 will
help to clarify this situation.
In Figure 17, we plot the final size proportion as a function of the reduced β, that is βr. The final size
will reach a minimum value when βo

r ≈ 0.6 (see Figure 17). Thus, there is an optimal value βo
r such that

the epidemic will have a minimum impact in the susceptible population. Decreasing the force of infection
too much (though not enough to make βr = 0) could have a negative effect on the population, compared
to what could have happened if βr ≈ βo

r . This can be explained in the following way: by reducing β too
much, we are leaving a large pool of susceptible in the population that are not getting infected in the first
smaller wave that forms when SD is implemented (see figure above). At the same time, by not making
βr = 0 for a time long enough so that all infected can recover, we are ensuring that the disease is still
prevalent in the population. Therefore, for a large reduction in β (but not down to zero) the effect of SD
is almost equivalent to just delay the peak of the incidence curve. Of course, such is still a positive result,
given the time is being provided to implement other alternatives into halting the course of the disease. In
Figure 18 we can verify how reducing the force of infection delays the peak of the epidemics.
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Figure 17: Final Size reduction. β = 0.9, δ = 0.4, γ1 = 0.43, κ = 1/3, γ2 = 1/5, α1 =
0, α2 = 0.18, t0 = 65, T = 14.

Figure 18: Delay of the peak of the epidemics.

J Uncertainty analysis for RC

We performed an uncertainty analysis on the control reproductive number RC by varying the parameter
values. We used Monte Carlo simulations (simple random sampling) to quantify the uncertainty of RC

when the model parameters are randomly distributed. A probability density function (PDF) was
assigned to parameters (β, δ, κ, α2, γ1, γ2). We sampled this set of parameters 103 times for different

values of r, holding α1 = 0, κ =
1

3
, δ =

2

5
and γ2 =

1

5
fixed and assuming that β has an exponential

distribution, δ a uniform distribution and α1, α2, γ1 and γ2 a gamma distribution. The parameter value
of κ was considered constant. Then, we computed RC from each set. The distribution of RC lies in the
mean range (1.67, 2.62), depending on the percentage of reporting (see Figure 20). Each distribution of
RC is characterized by its mean, standard deviation and median (see Table 10).

Table 10: Results of uncertainty for RC for each percentage of reporting.
r(%) Mean of RC Standard Deviation of RC Median of RC

10 2.68 3.32 1.56
20 1.78 3.50 1.61
30 1.67 2.04 1.02
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Figure 19: Histograms for RC , for each percetange of reporting, the mean of RC is 2.68,
1.78, 1.67, for r = 10, 20, 30%, respectively.

K Optimizing α1 and α2

Next we address the question of what are the optimal values of α1 and α2 so that the final epidemic size,
given by Eq.(20), is minimum under the constraint

B = c1α1 + c2α2. (33)

This relation represents a cost-dependent isolation per-capita rate. The value B could represent
the“budget” per unit time aimed at controlling the disease via isolation efforts, i.e., its units can be seen
as [cost unit]/[ day]. The parameters c1 and c2 are the respective costs of the per-capita isolation rates
from I1 and I2 to J . We reasonably assume that c1 > c2 since detecting earlier cases could be clinically
more difficult and also socially costly. The first reason comes from the fact that detecting the disease in
those who do not present clear or severe symptoms is medically more expensive due to an increase in
testing runs and the medical and technical staff needed to carry them out. The second reason stems from
the fact that, if a patient do not present severe symptoms, i.e., that person may not be sick from
influenza, and it is expensive to isolate such individuals.
We also know from the previous section that the final epidemic size is proportional to RC . Hence, if we
want to find an optimal relation between α1 and α2 to minimize the final size y is equivalent to minimize
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RC with respect to those parameters. We would then have the following optimization problem

min [RC(α1, α2)] = min

[
β

(
δ

κ+ γ1 + α1
+

κ

(κ+ γ1 + α1)(γ2 + α2)

)]
such that 0 = b− α1 − cα2

0 < α1

0 < α2

where we have introduced the unitless quantity c, relative cost, given by c = c2/c1 < 1, and the
parameter b defined as B/c1, with units of [1/day]. We have naturally constrained α1 and α2 to be
strictly positive. Our Lagrange function, with multipliers λ, μ1 and μ2 is given by

Λ(α1, α2, λ) = β

(
δ

κ+ γ1 + α1
+

κ

(κ+ γ1 + α1)(γ2 + α2)

)
− λ [b− α1 − cα2]− μ1α1 − μ2α2,

and we need to solve ∇Λ(α1,α2,λ,μ1,μ2) = 0, that is

∂Λ

∂α1
= − βδ

(γ1 + α1 + κ)2
− βκ

(γ1 + α1 + κ)2(α2 + γ2)
+ λ+ μ1 = 0,

∂Λ

∂α2
= − βκ

(γ1 + α1 + κ)(α2 + γ2)2
+ λc+ μ2 = 0,

∂Λ

∂λ
= b− α1 − cα2 = 0,

μ1α1 = 0,

μ2α2 = 0.

Since α1 and α2 can not be zero, the solution for those two conditions is μ1 = μ2 = 0. Isolating λ and α1

we obtain

βδ

(γ1 + α1 + κ)2
+

βκ

(γ1 + α1 + κ)2(α2 + γ2)
=

βκ

c
(γ1 + α1 + κ)(α2 + γ2)2

,

α1 = b− cα2,

which leads to the following quadratic equation in α2

(b− cα2 + γ1 + κ)
κ

c
= (α2 + γ2)

2δ + κ(α2 + γ2),

that has a pair of solutions given by

αo
2 =

−κc− δcγ2 ±
√

κc(κc+ δcγ2 + bδ + δγ1 + δκ)

δc

We take the biologically significant one (discard the negative solution) for the optimal value of α2 and its
corresponding solution for α1 as given below

αo
2 = −k

δ
− γ2 +

√
κ

δ

(
κ

δ
+ γ2 +

b+ γ1 + κ

c

)
, (34)

αo
1 = b+ c

[
κ

δ
+ γ2 −

√
κ

δ

(
κ

δ
+ γ2 +

b+ γ1 + κ

c

)]
. (35)

Notice that we have not checked for the positivity of the above solutions. Moreover, there is an infinite
number of parameter sets such that αo

1 or αo
2 can be negative. The expressions above are to be taken only

for those parameter sets that make both α1 and α2 simultaneously positive.
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So far we have proven necessary conditions for RC(α
o
1, α

o
2) to be a minimum or RC . Next we show

sufficiency conditions to guarantee that ∀(α1, α2) ∈ R
+, RC(α1, α2) ≥ RC(α

o
1, α

o
2). To prove that a

multivariable function has a minimum at a given critical point of its domain when there are no
constraints, the Hessian matrix’s determinant and trace at that point have to be positive definite. These
two conditions, along with the fact that the Hessian is a symmetric matrix, would guarantee that the
eigenvalues of the Hessian are positive, hence, at the critical point RC has a minimum. We rewrite RC ,
for the sake of simplicity, as follows

RC(α1, α2) =
A

(A1 + α1)
+

B

(A1 + α1)(α2 +B1)
,

where the new parameters are given by A = βδ,A1 = γ1 + κ,B = βκ,B1 = γ2. Notice that they are all
positive, given their biological significance. It can be easily shown that the determinant of the Hessian of
RC is given by

HRC =

∣∣∣∣∣∣
∂2RC

∂α2
1

∂2RC
∂α1∂α2

∂2RC
∂α2∂α1

∂2RC

∂α2
2

∣∣∣∣∣∣ ,

=
B(4Aα2 + 4AB1 + 3B)

(A1 + α1)4(α2 +B1)4
,

which is always positive for any positive value of α2, given that all the other parameters are also positive.
The trace, in general, is given by

2(BA2
1 + 2BA1α1 +B(α1)

2 +A(α2)
3 + 3A(α2)

2B1 + 3Aα2B
2
1 +AB3

1 +B(α2)
2 + 2Bα2B1 +BB2

1)

(A1 + α1)3(α2 +B1)3

This trace is positive for all αo
2 > 0. Therefore, for any critical point αo

2 > 0, and with no regard for the
constraint αo

1 and αo
2 are subject to, we can assure that at (αo

1, α
o
2), RC has a minimum in R

2+.
Therefore, we have shown the existence of an analytical expression for the optimal values of a
cost-dependent relation of the per-capita isolation rates. That is, knowing the parameter values and the
relative cost of each of the isolation rates, we can compute precise values for these per-capita isolation
rates so that the epidemics takes a lesser toll on the population.

L Conclusions

We considered the case of the 2009 A-H1N1 influenza outbreak in Lima, Peru and have studied the
impact of the unreported cases in the calculation of the final epidemic size. To accomplish this, a system
of non-linear ordinary differential equations was constructed. The final size relations for the total number
of infected individuals and for the total number of reported cases were computed. These size relations
were used to obtain an expression for the level of unreporting.
Estimating model parameters via ordinary least-squares fitting of the model solution to the observed
data we have measured the reliability of this parameter estimation under different scenarios of reporting,
concluding that we cannot assume the data captured more than 30% of the actual cases of influenza
during the initial phase of the epidemic.
An uncertainty analysis was conducted on RC in order to determine its range of values, depending on the
amount of variation in the parameter values. We found that the distribution of RC lies in the mean range
(1.67, 2.62), depending on the percentage of reporting that was assumed. As the percentage of reporting
increases, the mean of RC decreases, which is due to the fact that a larger percentage of individuals are
being isolated.
In addition, a sensitivity analysis was also performed for the control reproduction number and for the
percentage of non-reporting. We found that RC is most sensitive to changes in the transmission rate,
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followed by α2. However, as the percentage of reporting is increased, the influence of α2 on RC is
decreased. The RC is directly related to the final epidemic size, then, for a control policy it is a better
choice to decrease the transmission rate (social distancing), instead of increasing the isolation rate.
However, if we focus on the non-reporting, the isolation rate is the better choice for increasing the
reporting level.
Isolation of infectious individuals is a strategy used to contain a disease. Usually, only individuals who
exhibit severe symptoms are isolated. Looking at the effects that isolating individuals with less severe
symptoms would have on the incidence, we were able to see how effective early isolation is. By isolating
individuals with less severe symptoms, the size of the peak can be greatly reduced. Also, early isolation
(α1) is more effective than late isolation (α2) at delaying the time of the peak.
When we investigated an isolation rate that depends on the amount of infected individuals, we could
study the effects that the speed at which the isolation system reacts to the epidemic would have on the
final epidemic size and on the time of the peak. We found that increasing the speed at which the
isolation system responds to the epidemic would always lead to a reduction in the final size of the
epidemic, and would also always lead to a delay in the time of the peak.
In order to control an epidemic, temporary social distancing measures are often put into effect. These
measures lead to a decrease in the transmission rate, β, since the amount of contacts between infectious
individuals and susceptible is reduced. Via numerical simulations we the existence of an optimal value
that β should be reduced to in order to obtain the smallest final epidemic size. Furthermore, the timing
of the reduction is also important in terms of the social distancing effectiveness. Even though there is an
optimal time and transmission rate reduction so that the final size is minimum, social distancing always
result in a delay of the peak of the epidemic.
Given that isolating individuals with less severe symptoms is more effective in halting the epidemic, and
since it is reasonable to assume that doing so is more expensive, socially and economically, than isolating
individuals with severe symptoms, using an optimization problem we found analytical expressions for the
two optimal isolation rates as a function of the model parameters and their relative cost.
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Appendix

A Calculations of the unreported and final epidemic size

A.1 Final epidemic size calculation

Calculations of the final epidemic size [4, 6] are shown below. We proceed getting the expression for I2(t)
using the fact that

I ′2 = −S′ − I ′1 − (α1 + γ1)I1 − (α2 + γ2)I2, (36)
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where I1 and I ′1 are fixed. To solve Eq. (12) for I2, we us an integrating factor μ = e
∫
(α2+γ2)dt. Knowing

that I2(0) = 0 (initially no severe infection), we obtain(
I2e

(α2+γ2)t
)′

=
(−S′ − I ′1 − (α1 + γ1)I1

)
e(α2+γ2)t,

=⇒ I2(t) =

∫ t

0

[−S′ − I ′1 − (α1 + γ1)I1
]
e(α2+γ2)(τ−t)dτ. (37)

Similarly, we solve the following for I1(t):

I ′1 = −S′ − (α1 + γ1 + κ)I1, (38)

using an integrating factor μ = e
∫
(α1+γ1+κ)dt and with initial condition I1(0) = 0. This gives(

I1e
(α1+γ1+κ)t

)′
= −S′e(α1+γ1+κ)t,

=⇒ I1(t) =

∫ t

0

−S′e(α1+γ1+κ)(τ−t)dτ. (39)

To find the final size equation we divide Eq.(2) by S and use Eqs. (13) and (14) to get

−S′(t)
S(t)

=
β(δI1 + I2)

N − J
, (40)

−S′(t)
S(t)

=
β

N − J
δ

∫ t

0

−S′e(α1+γ1+κ)(τ−t)dτ

+
β

N − J

∫ t

0

(−S′ − I ′1 − (α1 + γ1)I1
)
e(α2+γ2)(τ−t)dτ. (41)

To simplify the following calculation, we consider the number of isolated individuals to be negligible
compared to the total population, then (N − J) ≈ N . Integrating with respect to time from 0 to ∞, we
obtain:

ln
N

S∞
=

β

N
δ

∫ ∞

0

∫ t

0

−S′(τ)e(α1+γ1+κ)(τ−t)dτdt

+
β

N

∫ ∞

0

∫ t

0

(−S′(τ)− I ′1(τ)− (α1 + γ1)I1(τ)
)
e(α2+γ2)(τ−t)dτdt, (42)

=
β

N

∫ ∞

0

∫ t

0

−S′(τ)
(
δe(α1+γ1+κ)(τ−t) + e(α2+γ2)(τ−t)

)
dτdt

+
β

N

∫ ∞

0

∫ t

0

(−I ′1(τ)− (α1 + γ1)I1(τ)
)
e(α2+γ2)(τ−t)dτdt, (43)

ln
N

S∞
=

β

N

∫ ∞

0

∫ ∞

τ

−S′(τ)
(
δe(α1+γ1+κ)(τ−t) + e(α2+γ2)(τ−t)

)
dtdτ

+
β

N

∫ ∞

0

∫ ∞

τ

(−I ′1(τ)− (α1 + γ1)I1(τ)
)
e(α2+γ2)(τ−t)dtdτ. (44)

Where the last step involved a change in order of integration. Letting u = −τ + t gives

ln
N

S∞
=

β

N

∫ ∞

0

∫ ∞

0

−S′(τ)
(
δe−(α1+γ1+κ)u + e−(α2+γ2)u

)
dudτ

+
β

N

∫ ∞

0

∫ ∞

0

(−I ′1(τ)− (α1 + γ1)I1(τ)
)
e−(α2+γ2)ududτ. (45)
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We evaluate the integral in the first term and obtain∫ ∞

0

∫ ∞

0

−S′(τ)
(
δe−(α1+γ1+κ)u + e−(α2+γ2)u

)
dudτ

=

∫ ∞

0

−S′(τ)dτ
(∫ ∞

0

(
δe−(α1+γ1+κ)u + e−(α2+γ2)u

)
du

)
,

=

∫ ∞

0

−S′(s)dτ
(

δ

α1 + γ1 + κ
+

1

α2 + γ2

)
,

= (N − S∞)

(
δ

α1 + γ1 + κ
+

1

α2 + γ2

)
. (46)

Substituting Eq. (??) into Eq. (16), we obtain

ln
N

S∞
=

β

N
(N − S∞)

(
δ

α1 + γ1 + κ
+

1

α2 + γ2

)
− β

N

∫ ∞

0

∫ ∞

0

−I ′1(τ)e−(α2+γ2)ududτ

− β

N
(α1 + γ1)

∫ ∞

0

∫ ∞

0

I1(τ)e
−(α2+γ2)ududτ.

Then, using ∫ ∞

0

−I ′1(τ)dτ = I1(∞)− I1(0) = 0,

gives

ln
N

S∞
=

β

N
(N − S∞)

(
δ

α1 + γ1 + κ
+

1

α2 + γ2

)
− β(α1 + γ1)

N(α2 + γ2)

∫ ∞

0

I1(τ)dτ. (47)

To evaluate the integral in Eq. 17 we use Eq.(14) and obtain

ln
N

S∞
=

(
1− S∞

N

)(
βδ

α1 + κ+ γ1

β

α2 + γ2

)

−
(

β

α2 + γ2

)(α1 + γ1
N

)∫ ∞

0

∫ τ

0

−S′(s)e(α1+γ1+κ)(s−τ)dsdτ,

=

(
1− S∞

N

)(
βδ

α1 + κ+ γ1
+

β

α2 + γ2

)

−
(

β

α2 + γ2

)(α1 + γ1
N

)[
(N − S∞)

(
1

α1 + κ+ γ1

)]
,

=

(
1− S∞

N

)[
βδ

α1 + κ+ γ1
+

β

α2 + γ2

(
κ

α1 + κ+ γ1

)]
,

ln
N

S∞
=

(
1− S∞

N

)
RC . (48)

Equation (18) is the typical final size relation [4, 6]. If we let s∞ =
S∞
N

as the proportion of the final

susceptible size Eq. (18) yields
ln(s∞) = (s∞ − 1)RC , (49)

where 0 < s∞ < 1 and we have changed the argument in the logarithm and hence the sign of the right
hand term. Here 1− s∞ represents the number of disease cases over the course of the epidemic.

A.2 Final reported cases (J∞)

From Eq.(6), and with initial condition J(0) = 0, we have
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∫ ∞

0

J ′dt =
∫ ∞

0

(α1I1 + α2I2) dt. (50)

Therefore, by Eqs.(13)-(14) we have,

J∞ = α1

∫ ∞

0

∫ t

0

−S′e(α1+γ1+κ)(τ−t)dτdt

+α2

∫ ∞

0

∫ t

0

[−S′ − I ′1 − (α1 + γ1)I1
]
e(α2+γ2)(τ−t)dτdt,

= α1

∫ ∞

0

∫ t

0

−S′e(α1+γ1+κ)(τ−t)dτdt+ α2

∫ ∞

0

∫ t

0

−S′e(α2+γ2)(τ−t)dτdt

+α2

∫ ∞

0

∫ t

0

−I ′1e(α2+γ2)(τ−t)dτdt

+α2(α1 + γ1)

∫ ∞

0

∫ t

0

−I1e(α2+γ2)(τ−t)dτdt. (51)

The four integrals in Eq.(??) further simplify (as done to find the final size relation), providing the final
number of reported cases, given by

J∞ =
α1(N − S∞)

α1 + γ1 + κ
+

α2(N − S∞)

α2 + γ2
−

(
α2(α1 + γ1)

α2 + γ2

)(
N − S∞

α1 + γ1 + κ

)
,

= (N − S∞)

[
α1

α1 + γ1 + κ
+

α2

α2 + γ2
−

(
α2

α2 + γ2

)(
α1 + γ1

α1 + γ1 + κ

)]
,

= (N − S∞)

[
α1

α1 + γ1 + κ
+

α2

α2 + γ2

(
1− α1 + γ1

α1 + γ1 + κ

)]
,

J∞ = (N − S∞)

[
α1

α1 + γ1 + κ
+

(
κ

α1 + γ1 + κ

)(
α2

α2 + γ2

)]
. (52)

Dividing by the total population N , and defining j∞ as the final size proportion of reported cases, Eq.
(22) can be expressed as

j∞ = (1− s∞)

[
α1

α1 + γ1 + κ
+

(
κ

α1 + γ1 + κ

)(
α2

α2 + γ2

)]
,

= y

[
α1

α1 + γ1 + κ
+

(
κ

α1 + γ1 + κ

)(
α2

α2 + γ2

)]
.

We obtain an equivalent expression for the level of non-reporting given by

u∞ = 1− j∞
y

,

= 1−
[

α1

α1 + γ1 + κ
+

(
κ

α1 + γ1 + κ

)(
α2

α2 + γ2

)]
, (53)

where
j∞
y

is the level of the final size proportion of reported cases.
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B Bounds for Levels of reporting and unreporting

B.1 An upper for the level of reporting

Equation (??) provides the level of the final size proportion of reported cases. We further proceed to

analyze this expression in order to provide a bound to
j∞
y

. Under different levels of infection for an

influenza outbreak, the rate of progression from class I1 to I2 is positive, that is κ > 0 and parameters for
the recovery and isolated cases are α1, α2, γ1, γ2 ≥ 0, we get the following expressions

1.
α1

α1 + γ1 + κ
≤ α1

α1 + κ
, the probability of isolation from class I1 without recovery is larger than

with recovery,

2.
κ

α1 + γ1 + κ
≤ κ

α1 + κ
, the probability of progression to I1 from I2 is longer without recovery than

with recovery,

3.
α2

α2 + γ2
≤ α2

α2
= 1, for individuals with more severe infections I2 the probability of becoming

isolated is always one provided no recovery.

Then,

j∞
y

=
α1

α1 + γ1 + κ
+

(
κ

α1 + γ1 + κ

)(
α2

α2 + γ2

)
,

≤ α1

α1 + κ
+

κ

α1 + κ
= 1. (54)

From Eq. (54) we get that
j∞
y

= 1 if γ1 = 0 and γ2 = 0, which means that under no recovery every

infected individual gets reported.
Under a typical scenario of influenza epidemiological surveillance (data) only individuals with severe
symptoms are being isolated (α1 = 0), then Eq.(??) becomes

j∞
y

=

(
κ

γ1 + κ

)(
α2

α2 + γ2

)
, (55)

thus we can bound Eq.(55) with γ1 > 0, obtaining

j∞
y

=

(
κ

γ1 + κ

)(
α2

α2 + γ2

)
<

(κ

κ

)(
α2

α2 + γ2

)
, (56)

which implies
j∞
y

<
α2

α2 + γ2
, (57)

under α1 = 0, that is when less severe infections are not reported. Equation (57) provides an upper bound
for the reporting level. Since in a real epidemic scenario we cannot control the value of γ2, this upper
bound only depends on the isolation level of people with severe symptoms (α2), for fixed values of γ2 .

B.1.1 Asymptotic behavior of the non-reporting u∞
The level of non-reporting u∞ → l, l <∞ when α2 →∞, but there is no asymptote for α1. The
explanation for this is connected to their “position” in the chain of the infection-isolation events. The
parameter α1 acts on those just infected, or, in the first chain of events, and for large α1 the infected will
go from I1 to J at a much higher rate than to R or I2 that is, if

α1 � {γ1, κ} =⇒ α1

α1 + γ1 + κ
�

{
γ1

α1 + γ1 + κ
,

κ

α1 + γ1 + κ

}
. (58)
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From the total proportion of non-reported relation, Eq.(23), we have lim
α1→∞

u∞ = 0. This suggests that

under perfect isolation of less severe infected individuals the non-reported will be minimal. The vast
majority of less severely infected individuals will be reported. In this case, the model behaves like a
classic SIR with the R class representing the isolated class.
For α2 we have that, given that it acts on I2, there is a whole infectious compartment, I1, that can
escape from this isolation process. From Eq.(23) we then have

lim
α2→∞

u∞ = 1−
(

α1

α1 + γ1 + κ
+

κ

α1 + γ1 + κ

)
,

=
γ1

α1 + γ1 + κ
.

that is, under perfect isolation of severe infected individuals (I2), individuals with less severe infections
(I1) will still recover.
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C Fitting of the model to data for different percentage of
reporting (all data)

Figure 20: Model fit to all the data from Lima, Peru of the incidence number of reported
cases varying the percentage of reporting (r), that is, r = 10%, 20% and 30%, respectively.
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C.1 Fitting of the model to data for different percentage of reporting
(initial phase of the epidemic)

Figure 21: Model fit to the initial phase of the incidence number of reported cases varying
the percentage of reporting (r), that is, r = 10%, 20% and 30%, respectively.
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D Sensitivity analysis

D.1 Sensitivity analysis for RC

To explore the sensitivity of RC to the variability of the parameters of the model, we let λ represent any
of the parameter values that define RC in our model. Considering a small perturbation of λ by Δλ, RC

will be perturbed by ΔRC as well. The normalized sensitivity index Sλ is the ratio of the corresponding
normalized changes. We define the sensitivity index for parameter λ as

SRC
λ =

ΔRC
RC

Δλ
λ

=

(
λ

RC

)(
∂RC

∂λ

)
.

Since the control reproductive number for the model is given by

RC = β

(
δ

κ+ γ1 + α1
+

κ

(κ+ γ1 + α1)(γ2 + α2, )

)
,

we calculate the sensitivity indices

SRC
β =

β

RC

(
∂RC

∂β

)
= 1,

SRC
δ =

δ

RC

(
∂RC

∂δ

)
=

δ(α2 + γ2)

δα2 + δγ2 + κ
,

SRC
κ =

κ

RC

(
∂RC

∂κ

)
=

κ(−δα2 − δγ2 + α1 + γ1)

(α1 + κ+ γ1)(δα2 + δγ2 + κ)
,

SRC
α2

=
α2

RC

(
∂RC

∂α2

)
=

−α2κ

(α2 + γ2)(δα2 + δγ2 + κ)
,

SRC
γ1

=
γ1
RC

(
∂RC

∂γ1

)
=

−γ1
α1 + κ+ γ1

,

SRC
γ2

=
γ2
RC

(
∂RC

∂γ2

)
=

−γ2κ
(α2 + γ2)(δα2 + δγ2 + κ)

.

We computed the sensitivity indices for RC for each percentage of reporting, where parameters

δ =
2

5
, γ2 =

1

5
, κ =

1

3
, and α1 = 0 are fixed, and parameters β, α2, and γ1 are varied according to r, the

level of reporting cases (see Table ?? for the different parameter values). The values of the sensitivity
indices for RC are given in Table 11. The transmission rate β is the most influential parameter in
decreasing RC since the sensitivity index is 1. Also, since the isolation rate for those with severe
symptoms, α2, provides possible intervention strategies, we examine how changes to this parameter affect
the control reproductive number RC . For example, for r = 10%, we have SRC

α2 = −0.159 which means
that a 6.3% increase in α2 results in 1% decrease in RC . Whereas, for r = 30%, we have SRC

α2 = −0.360
which means that a 2.7% increase in α2 results in a 1% decrease in RC .
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Table 11: Sensitivity analysis of RC

Index 10% 20% 30%

SRC

β 1 1 1

SRC

δ 0.232 0.308 0.349
SRC
κ 0.285 0.258 0.108

SRC
α2

-0.159 -0.319 -0.360
SRC
γ1

-0.517 -0.567 -0.457
SRC
γ2

-0.609 -0.372 -0.291

D.2 Sensitivity analysis for u

Since one of the aims of this work is to investigate the impact of non-reporting on the final epidemic size,
a sensitivity analysis is also conducted on u.

u = 1−
[

α1

α1 + γ1 + κ
+

(
κ

α1 + γ1 + κ

)(
α2

α2 + γ2

)]

Su
κ =

κ

u

(
∂u

∂κ

)
=

κ(α1γ2 − γ1α2)

(α1 + κ+ γ1)(κγ2 + γ1α2 + γ1γ2)

Su
α2

=
α2

u

(
∂u

∂α2

)
= − α2κγ2

(α2 + γ2)(κγ2 + γ1α2 + γ1γ2)

Su
γ1

=
γ1
u

(
∂u

∂γ1

)
=

γ1(α1α2 + α1γ2 + κα2)

(α1 + κ+ γ1)(κγ2 + γ1α2 + γ1γ2)

Su
γ2

=
γ2
u

(
∂u

∂γ2

)
=

α2κγ2
(α2 + γ2)(κγ2 + γ1α2 + γ1γ2)

Table 12 provides the values for the sensitivity index for u. We vary values of α2, one of the most
influential parameters. However, as the percentage of reporting increases, the sensitivity index of α2 gets
closer to zero, meaning that a higher percent change in α2 is needed to obtain a 1% decrease in u. For
example, when the percentage of reporting is r = 10%⇒ Su

α2
= −0.779. This suggest a 1.25% increase in

α2 would result in a 1% decrease in u. When the level of reporting is 30%⇒ Su
α2

= −0.374, this suggest
that as 2.6% increase in α2 gives a 1% in u.

Table 12: Sensitivity analysis of u
Index 10% 20% 30%

Su
κ -0.057 -0.142 -0.196

Su
α2

-0.799 -0.533 -0.374
Su
γ1 0.057 0.142 0.196

Su
γ2 0.799 0.533 0.374

145



Table 12 provides the values for the sensitivity index for u. The parameter whose value can be altered in
reality is α2, which happens to be one of the most influential parameters. However, as the percentage of
reporting increases, the sensitivity index of α2 gets closer to zero, meaning that a higher percent change
in α2 is needed to obtain a 1% decrease in u. For example, when the percentage of reporting is r = 10%,
Su
α2

= −0.779, meaning a 1.25% increase in α2 would result in a 1% decrease in u. When the level of
reporting is 30%, Su

α2
= −0.374, which means that to get a 1% decrease in u, α2 needs to be increased by

2.6%.
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