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Abstract

Gonorrhea is a sexually transmitted bacterial infection caused by Neisseria gonorrhoeae
that has become resistant to a wider range of antibiotics in recent decades. We study the
competition dynamics of multiple N. gonorrhoeae bacterial strains within a host in an effort
to better understand the development of antibiotic resistance and examine individual-patient
treatment regimes to determine conditions for within-host antibiotic-resistance emergence. To
that aim, we propose a phenomenological model that takes into account essential ideas such as
the effects of different treatment levels, the mutation rates of bacteria, and the response of the
immune system. We find steady state solutions and use analytical and numerical techniques to
analyze their biological significance and stability behavior. Numerical simulations also provide
a more integral view of how model parameters affect the emergence of within-host resistance.
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1 Introduction

Gonorrhea infects approximately sixty million people a year, making it the second largest sex-
ually transmitted infection worldwide [5]. This infection is caused by N. gonorrhoeae, also known
as gonococcus. Gonococcus exclusively inhabits humans and is contracted via sexual contact. N.
gonorrohoeae normally colonizes mucosal surfaces such as the cervix and urethra [33].

Untreated gonorrhea can cause infections in newborns, ectopic pregnancy, and pelvic inflamma-
tory disease. Gonorrhea can spread throughout an individual’s body and form lesions in locations
such as joints and the heart. In some rare cases, gonococcus can be found in blood clots and can
attack bones [19]. Gonorrhea causes pelvic inflammatory disease in a woman and epididymitis in
a man, making it one of the major causes of infertility [8] (See Appendix).

Due to the aforementioned complications associated with untreated gonorrhea, it is critical to
be able to maintain treatment. The primary way to stop the spread of N. gonorrhoeae is through
the use of antibiotics. The six main antibiotics to which some N. gonorrhoeae strains have ac-
quired resistance are Sulfonamides, Penicillin, Tetracycline, Spectinomycin, Fluoroquinolones (e.g.
ciprofloxacin), and Cephalosporins (e.g. ceftriaxone and cefitime). (See Appendix). Recently,
strains of gonorrhea resistant to Cephalosporins, which are considered the last line of defense, have
emerged and have the potential to become a threat [21].

2 Biological Overview

2.1 Antibiotic Resistance Mechanisms in Bacteria

Changes in the genetic material of N. gonorrhoeae can occur horizontally (gene transfer from
an external source) and vertically (mutations during cell division). Both these methods serve for
the developing of antibiotic resistance phenotypes in bacteria. There are three independent means
of horizontal gene transfer: conjugation, transformation, and transduction. Vertical gene transfer
discussed herein refers to chromosomal mutations.

Conjugation is the transmission of genetic material via bacteria cell-to-cell contact (see Figure
1). During this process, a conjugative plasmid1 is acquired by one bacterium attaching its pili
to another bacterium, resulting in the transference of a plasmid. The plasmid replicates itself,
transfers the genetic material to the other bacterium, and integrates the newly replicated DNA
into the other bacterial chromosome. The F+ factor in the plasmids is the reason why bacteria can
conjugate. R plasmids carry genetic code for resistance to a single or multiple drugs, meaning N.
gonorrhoeae can obtain various means of resistance in a single step by conjugation [37]. Penicillin
and Tetracycline are two good separate examples of the way N. gonorrhoeae obtain antibiotic re-
sistance by plasmid conjugation.

The first stage of the development of bacterial resistance to antibiotics is generally either plas-
mid conjugation (whole or partial gene attainment) or chromosomal mutation, which are selected
due to antibiotic pressure. After a substantial number of bacteria cells within the host become

1A plasmid is a circular DNA molecule that is generally independent of the chromosome and can self-replicate
and repair its own DNA. The process of conjugation is centered around the plasmid.
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resistant, the resistant genotype is widely spread through the population of bacteria, mainly via
natural transformation [35].

Figure 1: Conjugation: transfer of a plasmid with genetic material via bacteria cell-to-cell contact. Con-
jugative plasmid is acquired by one bacterium attaching its pili to another bacterium. The plasmid
replicates itself, transfers the genetic material to the other bacterium, and integrates the newly replicated
DNA into the other bacterial chromosome [25].

Natural transformation (see Figure 2), is the ability for bacteria to uptake DNA from the extra-
cellular environment and efficiently incorporate the DNA into their chromosomes. N. gonorrhoeae
is naturally competent at all phases of growth, meaning that the organism is able to transform
at every phase, constituting one of only 44 species of naturally competent bacteria (e.g., Bacillus
subtilis and Haemophilus influenzae [27]). Transformation has four steps: DNA donation, uptake,
processing and integration into the chromosome. The transforming DNA is given by the surround-
ing N. gonorrhoeae cells by two mechanisms, secretion of chromosomal DNA into the extracellular
environment or autolysis 2. N. gonorrhoeae only takes up DNA that has the genus specific DNA
uptake sequence (DUS), so they can readily exchange DNA with each other [23]. For instance,
Streptomycin is an antibiotic that N. gonorrhoeae gained resistance to through transformation [29].

The third means of horizontal gene transfer is transduction, a type of DNA exchange that occurs
when a bacteriophage (bacteria-infecting virus) takes DNA from one bacterium and transplants

2Autolysis is a self-destruct or self-digest mechanism that releases DNA into the surroundings [9].
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Figure 2: Transformation: direct uptake of genetic material from its external surroundings. Trans-
formation has four steps: DNA donation, uptake, processing and integration into the chromosome. N.
gonorrhoeae only takes up DNA that has the genus specific DNA uptake sequence (DUS) [10].

it to another bacterium. There are no phages known to infect N. gonorrhoeae [9]. Therefore, for
purposes of this manuscript, transduction is rendered irrelevant.

Besides horizontal gene transfer, the other method for developing resistance is chromosomal
mutation, or spontaneous mutation, which is a random event that alters the genes of a bacterium.
This event, however, is rare due to multiple mechanisms that repair mutated genes. Penicillin and
Fluoroquinolones are two examples to which N. gonorrhoeae gained resistance through chromoso-
mal mutations.

If a resistant genotype is acquired through chromosomal mutations, it does so over many gen-
erations, whereas plasmid-gained resistance is a quick, one-step process [21]. Hence, chromosomal
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mutations occur substantially less often than plasmid conjugation. Further, plasmid conjugation is
considerably less efficient than transformation [35]. Only transformation, not plasmid conjugation,
can mobilize chromosomal genes [9].

Another way N. Gonorrhoea can obtain resistance is by efflux pumps in the cell membrane that
can eject the antibacterial out of the cell, making the bacteria resistant to the antibiotic. These
pumps are antibiotic and species dependent [22].

2.2 Immune System Response to Gonorrhea

Everyday we are bombarded by a slew of extraneous infectious agents. Our defense mechanism
to these disease-causing agents is the immune system. The immune system can be divided into
two complementary segments, innate and adaptive. Innate immunity is characterized as being
non-specific, targets any foreign substance, and fast. It is our first line of defense against foreign
invaders or substances, which are also known as pathogens.

Once a microorganism, such as N. gonorrhoeae, has invaded, it encounters the cellular and
humoral aspects of our immune system. The cells of the innate system include phagocytes, which
engulf and destroy pathogens. After these cells have engulfed the antigen (a foreign substance that
induces an immune response) they will travel to localized areas to present and inform the cells of
the adaptive immune system of infection.

Adaptive immunity in most cases takes much longer than the innate immune system to respond
to antigen; however, it is highly specific and forms immunological memory for future invasions.
This memory allows it to react faster in successive exposure. Another advantage of adaptive im-
munity is that it can recognize if a host cell is infected whereas the innate system cannot.

The cellular component of adaptive immunity which recognizes if host cells are infected, in-
cluding innate cells, are T cells. The other components of the adaptive immune response are B
cells which cannot tell if host cells are infected. Like the innate immune system, B cells recognize
pathogens outside of cells. In most cases, a B cell will react to a particular antigen, engulf it,
and present it to T cells for activation. In other cases, B cells do not need T cells for activation.
This can occur when B cells recognize completely foreign substances to the host, such as LPS,
lipo-poly-sacchride, a component of the outer membrane of gram negative bacteria.

Once activated, the B cells will undergo a process and begin secreting antibodies, which recog-
nize the same antigen as the B cell because the antibody was once the B cell receptor. Antibodies
in essence tag a pathogen for either destruction by a phagocyte or to stimulate complement, a
part of the innate immune system. Complement is composed of proteins that bind to antibody or
carbohydrates on a pathogen. When complement is stimulated by antibodies, it will rupture the
cell. When stimulated by carbohydrates on the pathogen, it will mark the pathogen for destruction
by phagocytes.

While the immune system has an array of responses to prevent and rid the body of infection,
N. gonorrhoeae has adapted a repertoire of mechanisms to avoid the immune system. In a recent
study done by Liu, Feinen, and Russel, it was shown that N. gonorrhoeae suppresses T cell activa-
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tion by activating T regulatory cells (Treg) and specific antibody responses. Treg cells suppress T
cell activation by secreting TGF-β, a chemical mediator, which is also found naturally in genital
tracts and is important for reproduction. Therefore, N. gonorrhoeae amplifies part of the body’s
natural environment to survive [14].

Also, there is evidence that N. gonorrhoeae can survive within neutrophils, a type of phagocyte
[4]. This is because N. gonorrhoeae has the ability to suppress intracellular oxidative burst, a main
mechanism used by neutrophils to destroy pathogens [7]. N. gonorrhoeae has the ability to invade
both phagocytes and non-immune system cells by using Opa proteins which furthers its capability
to evade the immune system [18].

N. gonorrhoeae maintains a diverse population which allows it to avoid complete destruction
by protein specific antibody. A diverse population is achieved through genetic polymorphism of
surface proteins, recombination of genes, uptaking DNA from the environment, as well as secret-
ing it, and phenotype switching of bacterium [14]. Another mechanism used by N. gonorrhoeae
to increase its survival is to secrete a protease with two functions. First, the protease is able to
destroy one of the two common antibodies found in the mucosal lining of vaginal tracts in infected
individuals [3]. Second, the protease is believed to cleave an endosomal membrane protein which
allows N. gonorrhoeae to survive intracellularly in host cells [13].

An additional mechanism used by N. gonorrhoeae to prevent antibodies binding is to create
decoys. Firstly, N. gonorrhoeae sheds its outer membrane and creates blobs of genetic material to
which antibody bind. Likewise, present on N. gonorrhoeae exterior is lipooligosaccharide(LOS), a
type of LPS, which triggers an immediate B cell reaction. However, LOS mimics human ganglio-
sides, used for cellular recognition and cell to cell communication [6]. The host will then naturally
modify it and this allows it to prevent antibodies from binding [30]. A second advantage to this
modification is that it prevents complement binding and increases the bacteria’s resistance to
phagocytes [18].

The complexity of the ability of N. gonorrhoeae to evade the immune system poses a hindrance
to our ability to accurately model the immune system effect on the bacteria. However, we know
that the immune system can completely clear gonorrhea [19]. We will assume the rate of adapting
to N. gonorrhoeae by the immune system is such that the body will reach a peak saturation point
where the clearing rate of N. gonorrhoeae by the immune system is constant. The first three mod-
els will present a scenario in which the immune system has reached a saturation point, therefore,
we will use a constant clearing rate, i, for gonorrhea.

2.3 Modeling the Evolution of Within Host Antibiotic Resistance

Our modeling framework is as follows. At the infection event, the patient receives a load of drug-
sensitive N. gonorrhoeae. These bacteria colonize and reproduce in a certain area of the host body
(e.g. the cervix area). Mutations that lead to different phenotypic variants occur spontaneously.
Thus, in a short amount of time after infection, there are multiple drug-sensitive bacteria strains
and some drug-resistant bacteria (see Figure 3). In the absence of treatment, bacteria reproduce
at a rate determined, mainly, by their relative reproductive fitness (inter-bacterial competition for
space and resources) and the immune system response to the infection. Usually, the acquisition
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of a drug-resistant genotype is accompanied by a reduction in the mutant bacteria’s fitness (e.g.
lower reproduction success). Therefore, in this non-treatment scenario, it is expected that the
drug-sensitive bacteria3 outcompetes the drug-resistant strains.

Figure 3: Schematic of Antibiotic Resistance Emergence. Soon after the initial infection, and before
the onset of treatment, there are multiple drug-sensitive strains and some drug-resistant strains. In this
environment, the drug-sensitive strains have a higher fitness. Treatment adds a new selection pressure
into this environment, affecting mainly the drug-sensitive strains, thus giving a selective advantage to the
resistant strains.

The introduction of treatment into this bacterial competition scenario changes the fitness func-
tion4 of the environment. That is, treatment is a new selection pressure that mainly affects
the drug-sensitive strains and, consequently, could confer a reproductive advantage to the drug-
sensitive strains. If treatment indeed provides sufficient selection advantage to the drug-resistant
strains, they would proliferate and become the prevailing strain. In this case, the patient cannot
be cured with this antibiotic and serious complications could follow, including severe side effects
from the disease and the spread of resistance at the population level.

Given this simplified modeling framework, our goal is to better understand the evolutionary
dynamics of bacteria resistance in gonorrhea within a host and propose treatment strategies to
mitigate the emergence of resistance in treated patients and, consequently, its spread at the pop-
ulation level. To that aim, next we present a phenomenological model that intends to capture the
dynamics described above. Section 3.1 presents a simpler version of the original model that makes
the simplifying assumption that bacteria grow exponentially with no inter-bacterial competition.
Section 3.2, on the one hand, reincorporates the logistic growth within the bacteria population. On
the other hand, we reduce its complexity by excluding nonlinear interaction terms (conjugation).
The dynamics of these two simplified models are studied analytically. In Section 3.3 we present
the full model with both logistic growth and conjugation integrated. This last version is analyzed
numerically, providing a more complete understanding of the factors that determine how antibiotic
resistance emerges within an infected host. In addition, Section 3.4 presents a sensitivity analysis,

3Also known as wild-type because of its high prevalence at the host-population level.
4Since treatment changes the environment, it also changes what the optimal phenotype is.
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quantifying the relative effects of changes in controllable parameters such as treatment and the
immune system.

3 The Gonorrhea Strain Competition Model

In this manuscript, we focus on the within-host dynamics of antibiotic resistance, applied to
the case of gonorrhea. A phenomenological (non-mechanistic) mathematical model is built aim-
ing to mimic the coevolution of drug-sensitive and drug-resistant bacteria (see Figure 4). As
discussed previously, bacteria experience spontaneous mutations, horizontal gene transfer, and
drug-resistance-based selection among the bacteria. These factors play an important role in the
relative strain abundance distribution (proportion of each bacteria strain type in the population).

Based on susceptibility to antibiotics, we assume that the N. gonorrhoeae bacteria in the host
can be classified as one of three strains: drug-sensitive (S), resistant with low fitness (Rl), and
resistant with high fitness (Rh). The model we consider is a system of non-linear differential
equations given by:

dS

dt
= S

[
bS

(
1− N

K

)
− i− T −m1

]
− pS(Rl +Rh) (1)

dRl
dt

= Rl

[
bl

(
1− N

K

)
− i− αT −m2

]
+m1S + pRl(S −Rh) (2)

dRh
dt

= Rh

[
bh

(
1− N

K

)
− i− αT

]
+m2Rl + pRh(S +Rl) (3)

Each of these bacteria strains are produced at a per-capita rate bs, bl and bh, respectively. An
important aspect of this evolutionary scenario is the inter-bacteria competition for the limited
space and resources inside the host. Moreover, in general, bacteria do not die from old age, but
rather from food scarceness. A simple way to capture this is to assume that bacterial growth (i.e.,
cell division rate) follows a logistic growth pattern. To integrate this assumption into the model,
the per-capita growth rate of the x bacterial strain, bx, becomes

bx

(
1− N

K

)
where N = S +Rl +Rh is the total population of strains (not necessarily constant), and K is the
carrying capacity or maximum number of bacteria that can survive in the infected region (e.g.,
a section of the cervix). Notice that the carrying capacity term depends on the entire bacterial
population, not only the x strain, better mimicking the inter-bacteria competition. Due to trans-
formation from the genus Neisseria and mutations during cell division, drug-sensitive bacteria
become drug-resistant at a per-capita rate m1. Normally, horizontal gene transfer from the al-
ready resistant bacterial flora (other than gonorrhea) does not contribute to m1 due to the DUS 5

requirements for gene transfer.

Mutation from the drug-sensitive strain to the low-fitness antibiotic-resistant strain by acquisi-
tion of a resistant phenotype is typically accompanied by a fitness cost, and generally reflected in

5DUS stands for a DNA uptake sequence. Gonorrhea bacteria only absorb DNA with a genus specific DUS, and
so it cannot uptake genetic material from other bacterial flora within the host.
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a decreased birth rate for the low fitness resistant strain. Thus our parameter values must satisfy
bl < bs, which implies that, in the absence of treatment, the drug-sensitive bacteria typically has
higher fitness than the low-fitness drug-resistant strain.

Compensatory mutations occur at a per-capita rate m2, which includes all vertical and hor-
izontal gene transfers that lead to a high-fitness resistant strain. In this model, compensatory
mutations increase the birth rate of the high-fitness drug-resistant strain without compromising
this resistant phenotype. In other words, bh > bl.

When two bacteria interact, resistance encoding genetic material can be transferred through
bacterial conjugation at a rate p. Moreover, it is assumed that p is the rate of conjugation be-
tween all three strains of bacteria because the exchange mechanisms are comparable for each strain.

A holistic view of the effect of the immune system on the bacterial infection is adopted. That
is, the components of the immune system (phagocytes, T-Cells, B-Cells) and its infection-clearing
mechanisms (antigen-binding affinity, etc.), are not explicitly modeled. Rather, an emphasis is
placed on the combined effect of all these components on the bacterial population. Thus, it is
assumed that the immune system clears the infection at a per-capita rate i. Moreover, the immune
system will affect all three bacterial strains with the same rate.

Antibiotic treatment comes in different forms (e.g. penicillin, cephalosporins, fluoroquinolones,
and tetracyclines), and consequently affects the bacteria’s life cycle differently. In this model it is
considered that treatment either disrupts the bacteria cell division process or directly eliminates
them. In either case, these phenomena can be modeled by assuming that treatment clears the
drug-sensitive bacteria at a per-capita rate Ts. Additionally, both the drug-resistant bacteria
variants are affected by treatment at a per-capita rate Tr. A simple way to model the fact that
drug-resistant bacteria are less affected by treatment than drug-sensitive, is through a constitutive
relation between Tr and Ts given by

Tr = αTs, where 0 ≤ α ≤ 1.

For values of α between 0 and 1, this parameter is representative of increasing levels of partial
resistance to the antibiotic. For α = 0, the drug-resistant bacteria has complete resistance to the
antibiotic, which therefore cannot decrease the population of drug-resistant bacteria. For α = 1,
the drug-resistant bacteria are cleared by the antibiotic in the same manner as the drug-sensitive
bacteria. Thus α adds richness to our model by allowing us to explore the impact of different levels
of resistance on the overall coevolutionary dynamics. For notational simplicity, we will symbolize
the treatment clearing rate by T .

3.1 Model I: Absence of Inter-Bacteria Competition

In this version of model (1)-(3), all bacteria strains are, as before, intrinsically produced at a
per-capita rate bs, bl and bh, respectively. However, the competition for space and resources is not
considered (i.e. K → ∞). Instead, bacteria naturally die at a rate µ. The system of non-linear
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Figure 4: Flow Diagram of the Compartmental Model of the Dynamics between Drug-Sensitive and &
Drug-Resistant Bacteria in system (1)-(3). Three strain types are featured: a drug-sensitive (S), a low-
fitness (Rl) and a high fitness (Rh) resistant strains. All strains grow logistically and different mutation
rates (m1,m2, p) convert drug-sensitive strains into drug-resistant strains. Additionally, strains are cleared
by the immune system (i) and treatment (T ).

ordinary differential equations describing this scenario is as follows:

dS

dt
= S(bs − µ− i− T −m1)− pS(Rl +Rh) (4)

dRl
dt

= Rl(bl − µ− i− αT −m2) +m1S + pRl(S −Rh) (5)

dRh
dt

= Rh(bh − µ− i− αT ) +m2Rl + pRh(S +Rl) (6)

3.1.1 Non-dimensionalization of Model I

The system (4)-(6) can be non-dimensionalized by introducing the following new dimensionless
state and time variables:

s = S
p

m1
l = Rl

p

m1
h = Rh

p

m1
τ = tm1

In these new variables, system (4)-(6) becomes

ds

dτ
= sA− s(l + h) (7)

dl

dτ
= l (B −M) + s+ l(s− h) (8)

dh

dτ
= hC + lM + h(s+ l) (9)

where

A =
a

m1
− 1 B =

b

m1
C =

c

m1
M =

m2

m1

a = bs − µ− i− T b = bl − µ− i− αT c = bh − µ− i− αT
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This new system (7)-(9) has only four parameters, compared to ten in the original one.

Let Gs, Gl, and Gh be the reproductive numbers for the sensitive, low-fitness and high-fitness
resistant bacterial strains, respectively. We define these quantities as follows

Gs :=
bs

µ+ i+ T +m1
Gl :=

bl
µ+ i+ αT +m2

Gh :=
bh

µ+ i+ αT

Biologically, these quantities can be interpreted as follows: Gx is the average number of vi-
able bacteria offspring that a typical strain x bacteria produces in its lifetime. Notice that
Gs ≤ 1 ⇐⇒ A ≤ 0 and Gs ≥ 1 ⇐⇒ A ≥ 0. Also Gl ≤ 1 ⇐⇒ B − M ≤ 0 and
Gl ≥ 1 ⇐⇒ B −M ≥ 0. Finally, Gh ≤ 1 ⇐⇒ C ≤ 0 and Gh ≥ 1 ⇐⇒ C ≥ 0. Also Gh ≥ Gl
since Gh has a larger numerator (bh ≥ bl), and a smaller denominator than Gl.

3.1.2 Analysis of Equilibria

The system (7)-(9) has four steady states6, P 1
1 , P

2
1 , P

3
1 and P 4

1 . The first two points are

P 1
1 = (0, 0, 0) P 2

1 =

(
0, C

(
−1 +

M

B

)
, B −M

)
The third and fourth points are of the form (S∗, R∗

l , R
∗
h), with S∗ 6= 0, R∗

l 6= 0, and R∗
h 6= 0 and

are presented in the Appendix. The first steady state, P 1
1 , is the infection-free equilibrium. The

second one, P 2
1 , represents the worst case scenario in which the resistant strains completely colonize

the host. The third and fourth equilibria represent possible coexistence scenarios in which both
strain types are present in the bacterial infection.

We will focus on finding the conditions for P 2
1 to be biologically significant, and also derive

the parameter constraints that determine the stability of P 1
1 and P 2

1 . Moreover, we are interested
in finding conditions for the scenario in which the host has cleared the infection, i.e., when P 1

1 is
locally stable and P 2

1 unstable.

For P 2
1 to be biologically significant, all its coordinates must be in the first octant. The Rh

coordinate is non-negative if B−M ≥ 0, which also implies Gl ≥ 1. Regarding the Rl coordinate,
if B −M ≥ 0, since M ≥ 0, then B ≥ 0 as well. Consequently, B −M ≥ 0 =⇒ M

B ≤ 1 =⇒
−1 + M

B ≤ 0. Then, for the Rl coordinate to be non-negative, the condition C ≤ 0 must be
satisfied. Recalling that C ≤ 0 =⇒ Gh ≤ 1, Rl is non-negative whenever

Gh ≤ 1 ≤ Gl

However, this does not make biological sense in our model. Since the Rh strain is by definition
more fit than the Rl strain, we have that bh > bl, so the numerator of Gh is greater than that of
Gl. Also, since the denominator of Gh is smaller than that of Gl, we know that Gl < Gh. Hence,
P 2
1 , the resistant-only equilibrium, is never biologically relevant in this specific context.

6Subscript stands for the model, and the superscript stands for the steady state number in that model
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3.1.3 Local Stability Analysis

The local stability of the steady states can be established by finding the corresponding eigenval-
ues of the Jacobian matrix of the system (7)-(9) evaluated at the respective steady states [32]. The
sign of the real part of these eigenvalues will determine the local stability. For any given steady
state, if all three eigenvalues have a negative real part, then that steady state is locally stable.

Eigenvalues for the infection-free equilibrium P 1
1

λ11 = A λ12 = B −M λ13 = C

We can readily see that the infection-free steady state is locally stable if

Gs < 1, Gl < 1, and Gh < 1.

The biological interpretation of this result is straightforward: if none of the strains can produce
more than one viable offspring in their lifetime, then the infection dies out.

The main finding derived from Model I is that if all the reproductive numbers Gs, Gl and Gh
are less than one, the infection-free equilibrium is locally asymptotically stable. Also of interest is
that the equilibrium in which only both resistant strains coexists is not biologically relevant to the
specific problem addressed in this work.

3.2 Model II: Absence of Conjugational Gene Transfer

For the purpose of analytic tractability, this simplified version of the model in (1)-(3) disregards
the acquisition of the resistant phenotype by means of conjugation, that is, p = 0. With these
modification, Model II becomes:

dS

dt
= S

[
bS

(
1− N

K

)
− i− T −m1

]
(10)

dRl
dt

= Rl

[
bl

(
1− N

K

)
− i− αT −m2

]
+m1S (11)

dRh
dt

= Rh

[
bh

(
1− N

K

)
− i− αT

]
+m2Rl (12)

3.2.1 Non-Dimensionalization of Model II

The system (10)-(12) will be non-dimensionalized by rescaling the bacterial populations with

the carrying capacity K, and rescaling time with the mean sensitive-bacteria-doubling time
1

bs
.

The new dimensionless variables s, l and h are defined as follows:

s =
S

K
l =

Rl
K

h =
Rh
K

τ = bst.
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With this change of variable the new system is now

ds

dτ
= s(1− s− l − h)− s

Gs
(13)

dl

dτ
= Fl

[
l(1− s− l − h)− l

Gl
+ sU

]
(14)

dh

dτ
= Fh

[
h(1− s− l − h)− h

Gh
+ lW

]
(15)

with

Fl =
bl
bs
, Fh =

bh
bs
, U =

m1

bl
and W =

m2

bh
.

Notice that Fl and Fh are the relative fitness of the low-fitness and high-fitness bacteria with
respect to the sensitive strain, respectively (thus Fh > Fl). Gs, Gl and Gh are defined as in 3.1.1,
with the modification of µ = 0, where µ was the natural death rate of the bacteria in Model I:

Gs =
bs

i+ T +m1
Gl =

bl
i+ αT +m2

Gh =
bh

i+ αT

3.2.2 Analysis of Equilibria

In our non-dimensionalized model 13-15, we found four equilibria. They are listed as follows,

Infection-Free Equilibrium: P 1
2 = (0, 0, 0)

High-Fitness Resistant-Only Equilibrium: P 2
2 =

(
0, 0,

Gh − 1

Gh

)
Resistant-Only Equilibrium: P 3

2 =

(
0,

Fh(−1 +Gl)(−Gh +Gl)

Gl(Fh(−Gh +Gl) +GhGlW )
,

GhW (−1 +Gl)

Fh(−Gh +Gl) +GhGlW

)
Coexistence Equilibrium:

P 4
2 =

(
FhFl(Gs −Gh)(Gs −Gl)(−1 +Gs)

Gsψ
,
UFhGl(Gs −Gh)(−1 +Gs)

ψ
,
UWGsGlGh(−1 +Gs)

ψ

)
where ψ = Fh(−Gh +Gs)(Fl(−Gl +Gs) +GlGsU) + UWG2

sGlGh.

We are able to determine analytical conditions for the biological relevance and local stability
of the first three equilibria. The fourth one was analyzed numerically.

High-Fitness Resistant-Only Equilibrium: P 2
2

The high-fitness resistant-only equilibrium is biologically relevant if
Gh − 1

Gh
≥ 0 holds. This is

only true if Gh ≥ 1. Hence, we need the reproductive number of the high-fitness resistant bacteria
to be greater than one for this equilibrium to be admissible.
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Resistant-Only Equilibrium: P 3
2

If this equilibrium is to be biologically relevant, both the l and h components must be nonneg-
ative. In the case of h we have

h =
GhW (−1 +Gl)

Fh(−Gh +Gl) +GhGlW
≥ 0

Hence, (−1 +Gl) and (−FhGh + FhGl +GhGlW ) must be either both positive or both negative,
so we have either

Gl ≥ 1 and − FhGh + FhGl +GhGlW ≥ 0 or

Gl ≤ 1 and − FhGh + FhGl +GhGlW ≤ 0.

We also need

l =
Fh(−1 +Gl)(−Gh +Gl)

Gl(Fh(−Gh +Gl) +GhGlW )

to be positive. From the h coordinate we have that
(−1 +Gl)

Fh(−Gh +Gl) +GhGlW
≥ 0, so in order for

this point to be biologically relevant, the term (Gl−Gh) must be positive, implying that Gl ≥ Gh.
However, this is not true in this specific biological context, as previously explained in Section 3.1.
Therefore, for the purposes of this model, the Resistant-Only Equilibrium is never biologically
relevant. Interestingly, we arrived at the same conclusion using Model I, suggesting that the two
resistant strains cannot coexist alone. This result is intuitively sound since, in the absence of a
drug-sensitive strain (which “feeds” the low-fitness resistant strain at a rate m1) the high-fitness
resistant strain is more fit (higher reproduction rate) than the low-fitness one, thus the former one
will always outcompete the latter.

Coexistence Equilibrium: P 4
2

For the coexistence equilibrium to be biologically relevant, we must have its h, l, and s com-
ponents to be non-negative. Let us first consider when the h component is non-negative. This
happens when the denominator and the numerator are either both non-negative, or both negative.
Hence, we have two cases:

Gs ≥ 1 and Fh(−Gh +Gs)(Fl(−Gl +Gs) +GlGsU) + UWG2
sGlGh ≥ 0,

and
Gs ≤ 1 and Fh(−Gh +Gs)(Fl(−Gl +Gs) +GlGsU) + UWG2

sGlGh ≤ 0.

Let us next consider when l is non-negative. If either of the above cases hold, this implies that
(Gs −Gh) ≥ 0 in order for l to be non-negative.

Finally, consider when the s component is non-negative. If either of the above cases hold
together with the condition that makes the l component non-negative, then the s component is
non-negative when (Gs − Gl) ≥ 0. To summarize, the conditions determining the biological rele-
vance of the coexistence equilibrium P 4

2 all rely on the value of Gs in the following forms:

Case I: 0 ≤ Fh(−Gh +Gs)(Fl(−Gl +Gs) +GlGsU) + UWG2
sGlGh; 1 ≤ Gs; Gh ≤ Gs and
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Gl ≤ Gs

Case II: 0 ≥ Fh(−Gh +Gs)(Fl(−Gl +Gs) +GlGsU) + UWG2
sGlGh; 1 ≥ Gs; Gh ≤ Gs and

Gl ≤ Gs

Biologically, these two cases can be interpreted as follows. The last three conditions in cases I
and II imply that for the coexistence equilibrium to be admissible, the drug-sensitive strain must
have a higher reproductive number than its resistant counterparts, and that it does not matter
how many viable offspring a typical drug-sensitive bacterium produces in its lifetime.

To sum up, P 2
2 is biologically significant if and only if Gh ≥ 1, P 2

3 is never biologically relevant in
the context of this model, and for P 2

4 to be biologically relevant, it is necessary (but not sufficient)
that Gl ≤ Gh ≤ Gs.

3.2.3 Local Stability Analysis

Infection-Free Equilibrium
For the infection-free equilibrium to be locally stable, each of the eigenvalues of the Jacobian

matrix evaluated at P 1
2 have a negative real part. The eigenvalues are

λ1 = Fh

(
1− 1

Gh

)
, λ2 = Fl

(
1− 1

Gl

)
, and λ3 = 1− 1

Gs
.

Thus, this point is locally stable if and only if

Gh < 1, Gl < 1, and Gs < 1.

Therefore, in order for the infection-free equilibrium to be locally stable, the reproductive number
of each strain of N. gonorrhoeae must be less than one. The biological interpretation of these
conditions are equivalent to those given in Model I, that is, if none of the strains can produce more
than one viable offspring in their lifetime, the infection dies out.

High-fitness Resistant-Only Equilibrium: P 2
2

The eigenvalues for this equilibrium are

λ1 = Fh

(
−1 +

1

Gh

)
, λ2 = Fl

(
1

Gh
− 1

Gl

)
, and λ3 =

1

Gh
− 1

Gs
.

Hence, the conditions for local stability of this point are

1 < Gh, Gl < Gh, and Gs < Gh.

This means that for the high-fitness resistant-only equilibrium to be locally stable, its reproductive
number must be greater than one, and greater than the reproductive numbers of both the low-
fitness resistant and drug-sensitive strains.

Since the Resistant-Only Equilibrium is not biologically relevant, its stability is not considered.
The stability of the coexistence equilibrium was not analyzed analytically. However, a necessary
condition about its stability can be deduced. Since the infection-free equilibrium is stable if Gs < 1,

16



then Gs > 1 must necessarily hold for the coexistence equilibrium to be stable. In the next section
we provide, in addition to this analysis, a numerical characterization of the stability behavior of
the system.

A summary of the analytical results regarding the biological significance and stability of Model
II is presented on Table 1:

Table 1: Conditions for biological significance and local stability for the equilibria in Model II

Biological Significance Local Stability
P 1
2 Always Gs < 1, Gl < 1, Gh < 1
P 2
2 Gh ≥ 1 Gh > 1, Gh > Gl, Gh > Gs
P 3
2 Never
P 4
2 Gl ≤ Gh ≤ Gs ( necessary) Gs > 1 ( necessary)

Additionally, Table 1 provides the following remarks:

• If P 1
2 is stable, then P 2

2 is not biologically relevant or stable.

• If P 2
2 is stable, then P 1

2 is not stable and P 4
2 is not biologically relevant. Thus, when Gh

crosses 1 (from below), if Gh > Gs, P
2
2 becomes stable and P 1

2 loses its stability.

• If P 4
2 is biologically admissible, P 2

2 is not stable. Moreover, if Gs < 1, and P 4
2 is admissible,

then P 1
2 is stable. In this case, the phase space has two equilibria, with P 1

2 as the stable one.
It also seems that, since P 1

2 can lose its stability when Gs crosses 1 (from below), if P 4
2 is

admissible, then the latter point becomes stable, through a transcritical bifurcation.

3.2.4 A Numerical Perspective of the Stability Analysis

In this section, we numerically analyzed the equilibria of Model II. For parameter values used
in the numerical computation, see Table 2 in Appendix 5.3.

To have a clearer idea of when the high-fitness resistant only equilibrium (P 2
2 ) and the coex-

istence equilibrium (P 4
2 ) are biologically significant as a function of the immune system clearing

rate i and the treatment level T , Figure 5 shows for what values of i and T these two equilibria are
biologically significant (white). In the small shaded triangular area P 2

2 and P 4
2 are both biologically

relevant, thus, for these parameter values the phase plane has three admissible equilibria (including
the infection-free equilibrium). It may appear that i plays no role in the P 2

2 case because of the
vertical line separating the black and white regions. However, in order for P 2

2 to be biologically
relevant, Gh = bh

i+αT ≥ 1, so i does play some role. P 4
2 is admissible only for lower values of

i. Interestingly, high treatment makes P 2
2 inadmissible, probably because high treatment would

clear out the sensitive bacteria before it can mutate into resistant strains, rendering P 1
2 as the only

admissible equilibrium. P 4
2 is only admissible when treatment is medium-to-low. It is intuitive

that high treatment levels would not allow the coexistence point to exist since all the sensitive
bacteria would be cleared from the host.
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Figure 5: Biological Significance of P 2
2 and P 4

2 as a function of immune system (i) and treatment (T )
in system 1-3. Black stands for no biological significance, white stands for biological significance. The
parameter values used for these numerical simulations are the same as those in Table 2 in Appendix 5.3,
with the exception that i and T are allowed to vary.

Figure 6: Stability of P 1
2 , P 2

2 and P 4
2 as a function of immune system (i) and treatment (T ) in system

1-3. Black stands for not stable, white stands for stable. The parameter values used for these numerical
simulations are the same as those in Table 2 in Appendix 5.3, with the exception that i and T are allowed
to vary.
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Figure 6 depicts, through the same numerical approach, the values of i and T for which P 1
2 , P

2
2

and P 4
2 are stable 7 (white). Interestingly, this figure suggests that there cannot be two equilibria

stable at the same time (notice that the white zones are exclusive and add up to the entire square).
That is, local stability suggests global stability (at least numerically). In the shaded triangular
area, where the three equilibria are present, P 4

2 is globally stable. Moreover, comparing Figure 5
and 6 we readily see that whenever P 4

2 is admissible, it is also globally stable.

3.3 The Gonorrhea Strain Competition Model: Numerical Simulations

In this section we numerically explore the model given in System (1)-(3) (see in Table 2 for
parameter values). More specifically, we examine the role played by some of the key parameters
in our model, especially those that are variable from within one patient to within another patient
(e.g., immune system and treatment levels), and those whose values are uncertain and/or difficult
to measure (e.g., mutation rates and relative fitness of resistant bacteria). When parameters are
not varied in the plots, they are fixed at the values in Table 2, including setting α = 0 to model
full resistance. We will focus on the prevalence of each bacterial variant after one month of the
infection event in Figures 7-14. The reasoning behind this particular time frame is that symp-
toms take 1-2 weeks to show, then treatment takes up to a week to clear the infection, adding
up to about 20 days in which the patient was either treated and his/her symptoms disappeared
if treatment was effective, or the patient did not seek for medical help and the disease took its
“natural” course. Mathematically, we observe that for the parameter values of Table 2, the system
after one month is extremely close to its equilibria levels, (see Figure 7). In addition, we assume
in the ensuing figures that the initial bacterial population starts as entirely drug-sensitive, with no
resistant strains present initially.

To ensure that our parameter values yield expected results, we simulate our system with and
without treatment. In the case of no treatment we expect the drug-sensitive bacteria to prevail
in the population, while the resistant variants are kept at lower levels. Conversely, in the pres-
ence of treatment, a severe selection pressure is placed on the sensitive strain, and as a result the
high-fitness resistant strain can rise, eventually becoming more prevalent than the sensitive strain.
Figure 7 shows these scenarios, adding to the validity of our model.

Role of Treatment and Different Levels of Drug-Susceptibility

Figure 8 (left) depicts the effect of treatment on the bacterial prevalence after one month.
As expected, treatment severely affects the drug-sensitive population, while it gives a significant
selective advantage to high-fitness resistant strains. Figure 8 (right) shows that, in the presence
of treatment, increasing the drug-susceptibility (α) of the drug-resistant strain will decrease the
after-one-month prevalence of the drug-resistant strains and also favor the dominance of the drug-
sensitive strain.

Role of Carrying Capacity

The value of the carrying capacity as a proxy for the level of inter-bacteria competition plays
a significant role in the frequency of bacteria in the population after one month. Moreover, Figure

7To decide which points were stable (white) in the (T, i) phase space, we picked those whose three eigenvalues
had negative real part.

19



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

1

2

3

4

5

6

7

8

9
x 10

7

Time

B
a
c
te

ri
a
 P

o
p
u
la

ti
o
n

 

 

Sensitive

R. Low−Fitness

R. High−Fitness

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

1

2

3

4

5

6

7

8

9
x 10

7

Time

B
a
c
te

ri
a
 P

o
p
u
la

ti
o
n

 

 

Sensitive

R. Low−Fitness

R. High−Fitness

Figure 7: Bacterial Population with no Treatment (left) and with Treatment (right, T = 1 × 10−3),
where the time is measured in minutes. With no treatment, the drug-sensitive prevails. In the presence of
treatment the high-fitness resistant dominates the strain competition.

1 2 3 4 5 6 7 8 9 10

x 10
−4

0

1

2

3

4

5

6

7

8

9
x 10

7

Treatment

B
a
c
te

ri
a
 P

o
p
u
la

ti
o
n
 a

t 
1
 m

o
n
th

 

 

Sensitive

R. Low−Fitness

R. High−Fitness

Total

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9
x 10

7

α

B
a
c
te

ri
a
 P

o
p
u
la

ti
o
n
 a

t 
1
 m

o
n
th

 

 

Sensitive

R. Low−Fitness

R. High−Fitness

Total

Figure 8: Bacterial Population after one month of initial infection with different levels of treatment (left)
(α = 0) and drug-susceptibility of the resistant strain (right) (T = 1 × 10−3). For low levels of treatment,
the drug-sensitive strain is widespread within the host. As treatment increases, the high-fitness resistant
strain begins to increase its prevalence until it completely colonizes the host. As α increases, the high-fitness
resistant strain loses its fitness advantage and the drug-sensitive strain outcompetes it.

9 shows that increasing the carrying capacity will linearly favor the uprise of the drug-resistant
population, while the drug-sensitive and low-fitness drug-resistant strain populations are at zero,
meaning they are cleared from the host. That is, when treatment is present, a decrease in the inter-
bacteria competition mainly benefits the drug-resistant strain. This unexpected result suggests
that if the resource availability increases (larger K), the strain with the highest fitness takes most
advantage of this rich envoronment.
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Figure 9: Bacterial Population after one month with Treatment and varying the carrying capacity K.
As the resource availability increases within the host (larger K), the high-fitness resistant strain increases
linearly with K, while the drug-sensitive and low-fitness drug-resistant strain populations are at zero,
meaning they are cleared from the host. The other two strains go extinct regardless of the value of K.

Role of immune system

A patient that gets infected with gonorrhea could be immunocompromised and unable to fight
the disease, increasing the risk of suffering from side effects or even death. Conversely, the patient
could possess a healthy immune system that allows him/her to keep the infection at low lev-
els, remaining infectious (not latent) but decreasing the risk of incurring further gonorrhea-related
complications. It is thus our interest in this section to explore how different levels of immune activ-
ity, along with different treatment levels, can impact the prevalence of the different bacteria strains.

Figure 10 shows the populations of drug-sensitive strain (left) and high-fitness resistant strain
(right) after one month. In this plot the treatment and immune system are varied. It is clear that
for low-medium immune system levels and low treatment regimes, the drug-sensitive strain out-
competes the high-fitness resistant strain. However, if treatment is high and the immune system
is low, the resistant strain takes over the host. Note also that higher values of the immune system
clears both infections. This last observation hints about the importance of a healthy immune sys-
tem in fighting the disease.

Role of Mutation Rates

How fast bacteria can mutate to resistance is clearly a major determinant in antibiotic resistance
development. In this section we focus on how each mutation rate (m1,m2, p) affects the disease
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Figure 10: Drug-sensitive strain (left) and high-fitness resistant strain (right) populations after one month
with varying treatment and immune system. For low-medium immune system levels and low treatment
regimes, the drug-sensitive strain outcompetes the high-fitness resistant strain. If treatment is high and
the immune system is low, the resistant strain takes over the host. Higher values of the immune system
clears both infections.

prevalence.
Figure 11 and Figure 12 show, in essence, that varying the values of the mutation rates m1

and m2 does not have a large impact on the emergence of resistance within the host. However,
if treatment surpasses a certain threshold, resistance will likely emerge in the patient. If instead,
treatment levels are low enough, resistance will not emerge and the sensitive strain will still prevail
in the host.
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Figure 11: Drug-sensitive strain (left) and high-fitness resistant strain (right) populations after one month
with varying treatment and mutation rate m1. Low treatment doses hinders the emergence of resistance
in the host. For higher values of treatment, and with almost no regard for the values of m1, resistance
emerges.
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Figure 12: Drug-sensitive strain (left) and high-fitness resistant strain (right) populations after one month
with varying treatment and mutation rate m2. Low treatment regimes hinders the emergence of resistance
in the host. For higher values of treatment, and with almost no regard for the values of m2, resistance
emerges.

Figure 13 displays the role of the conjugational rate p. It can be readily observed that low values
of treatment, together with low values of p, will halt the rise of the resistant strain in the infected
host. High values of treatment, however, will increase the likelihood of resistance emergence. Two
interesting features of this plot is (i) even for low very low treatment values, if p is large enough
(p > 6× 10−12), resistance will emerge, and (ii) in the region given by 3× 10−12 < p < 5× 10−12

and 1× 10−4 < T < 0.5× 10−3, neither strain colonizes the host. This observation suggests that,
if p could be estimated, levels of treatment can be deduced such that the infection gets cleared.
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Figure 13: Drug-sensitive strain (left) and high-fitness resistant strain (right) populations after one month
with varying treatment and mutation rate p. Low treatment and p levels hinders and the emergence of
resistance in the host. For higher values of treatment, regardless of p, resistance emerges.
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Role of Relative Fitness

Even though mutation rates affect the pace of resistance development, the fitness cost of resis-
tance is also a crucial factor in the risk for resistance development [1]. For instance, in the case
when resistant mutants form at a high rate, if the resistant phenotype severely reduces fitness, the
resistant mutants might not take over the population. In this model, we assume that the reduction

in fitness is expressed by a reduction in the birth rate. Let Fh =
bh
bs

be the relative fitness of the

high-fitness resistance bacteria with respect to the sensitive bacteria. Hence, Fh is a simple way
to represent the biological cost of resistance: lower Fh implies a higher cost, whereas higher Fh
implies resistance is less costly. Generally Fh < 1 implies that the resistant phenotype hinders the
reproduction rate. However, compensatory mutations could reverse this situation, yielding Fh > 1.

Figure 14 shows that for high treatment levels and relative fitness Fh, the high-fitness resistant
strain outcompetes the other strains. Lower values of fitness and high treatment, instead, favor
the rise of the low-fitness strain. Finally, low fitness values and low treatment regimes, allow the
drug-sensitive to increase its prevalence in the infected host. These observations constitute one of
the most interesting results in this section. Figure 14, along with Figures 11, 12, and 13, suggest
that in the presence of treatment, the relative fitness Fh, and not the mutation rates m1,m2 and p,
plays a chief role in the inter-bacteria competition dynamics and in whether resistance will emerge
within the host. This possibility was suggested in [1], and here we provide supporting evidence, at
least for the specific parameters used here (see Table 2).
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Figure 14: Drug-sensitive strain (left), low-resistance strain (middle) and high-fitness resistant strain
(right) populations after one month with varying treatment and mutation rate Fh. For high treatment
levels and fitness, the high-fitness resistant strain outcompetes the other strains. Lower values of fitness
and high treatment favor the rise of the low-fitness strain. Low fitness values and low treatment levels,
allows the drug-sensitive to prevail in the host.

Note: All of these observations were made for a certain choice of parameters, (see Table 2).
Any observations herein arrived at may be biased by this fact, thus we cannot necessarily extend
their applicability to another region of the parameter space.

3.4 Sensitivity Analysis

This section presents a sensitivity analysis of two equilibria of system (1)-(3), to determine the
relative impact on the bacterial population of changes in parameters that can be controlled to fight
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off the infection, (i.e. treatment, T , and the immune system, i).

Sensitivity analysis considers the percent change of the state variable over the percent change
of the parameter:

%change in state variable

%change in parameter

More formally, from sensitivity analysis theory, the sensitivity index S (also known as elasticity)
of a function ξ(t, p) with parameter p is

Sp(ξ(t)) =

δξ

ξ
δp

p

≈ ξ(p+ εp, t)− ξ(p, t)
εp

· p

ξ(p, t)
≈ ∂ξ(p, t)

∂p

p

ξ(p, t)

For our sensitivity analysis, δp = εp with ε = .0001.
The analysis will be performed numerically (see Table 2 for parameter values) with the system

starting at an equilibrium point. Our equilibrium points for equations (1)-(3) were solved nu-
merically and we obtained the infection-free, the resistant-only, high-fitness only, and coexistence
equilibria. Since the resistant-only equilibrium was uninteresting in the previous models, we will
not be considering it here. We will not consider the infection-free equilibrium, (0, 0, 0), in this
analysis when it is stable since it is not sensitive to changes in either the treatment or the immune
system. Consider first the effect of small changes in the immune system on the high-fitness resis-
tant only equilibrium, (see Figure 15 (left)). For a 1% increase in the clearing rate of the immune
system, we observe a roughly 2% negative impact on the high-fitness antibiotic-resistant equilib-
rium. This is to be expected since this strain is still affected by the immune system. However, this
equilibrium is not sensitive to changes in treatment, as the high-fitness antibiotic-resistant strain
has complete resistance to antibiotics (see Figure 15 (right)).

Figure 15: Sensitivity of high-fitness resistant only equilibrium on Immune System (left) and Treatment
(right) on High Fitness Equilibrium. The high-fitness resistant strain is negatively affected by changes in
i, while T has no effect on it.

Consider now the coexistence equilibrium, (S ≈ 107, Rl ≈ 105 and Rh ≈ 101 at this point of
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the parameter space). A 1% increase in the clearing rate of the immune system negatively affects
all strains (see Figure 16 (left)). Interestingly, a 1% increase in the immune system appears to
affect the high-fitness antibiotic-resistant strain the most with an approximately 4.5% decrease.
A plausible explanation is that since the immune system affects all strains at the same rate, the
high-fitness resistant strain is not only directly affected by the immune system but also indirectly
because of the reduction in the incoming population from the sensitive and the low-fitness resistant
strains (due to pSRh, m2, and pRlRh).

Figure 16: Sensitivity Analysis of the coexistence equilibrium of model (1)-(3). A small increase in
i negatively affects all strains; the high-fitness resistant strain is impacted the most. As T is slightly
increased, the drug-sensitive and the low-fitness resistant strain are negatively affected; the high-fitness
resistant strain is positively and largely impacted.

At this equilibrium all strains are sensitive to changes in the treatment. For a small increase
in treatment, both the sensitive strain and the low-fitness antibiotic-resistant strain are negatively
impacted Figure 16 (right). The sensitive strain is directly negatively impacted by the increase
in treatment, whereas the low-fitness resistant strain is indirectly negatively impacted by the
treatment because any change in the population size of the sensitive strain changes the amount
of incoming sensitive strain (due to m1S and pSRl). The increase in treatment, however, has
a positive, and relatively larger, impact on the high-fitness antibiotic-resistant strain. While the
incoming amount of sensitive and low-fitness antibiotic-resistant strains (due to pSRh, m2, and
pRlRh) is decreased as treatment increases, this is negligible in comparison to the reproductive
advantage conferred by treatment on the high-fitness resistant strain.

4 Discussion

Gonorrhea is a bacterial infection that has developed resistance to many of the most accessi-
ble antibiotics and it is on the rise globally. A mathematical model that qualitatively captures
the dynamics of antibiotic resistance of gonorrhea within a host could help to investigate the role
of key factors in the emergence of resistance within a host. Modeling the dynamics of within
host antibiotic resistance in gonorrhea proves to be an exciting, yet complex and challenging task.
Observing the effects of treatment alone yields unsatisfying results given the interplay between
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different factors such as the immune system, bacterial mutations and inter-bacteria competition.
Our model shows that, as suspected, increasing the treatment dose poses a selective pressure on
the drug-sensitive strain, facilitating the spread of the high-fitness resistant strain in the patient.
We also found that the high-fitness resistant strain cannot coexist with the low-fitness strain alone,
as it will outcompete it thanks to its fitness advantage in a limited resource environment. More-
over, unless the treatment and immune system together have a high enough impact to clear the
infection, we will see either a stable high-fitness only equilibrium or a stable coexistence equilibrium.

A very interesting finding of this project that is suggested by numerical simulations is that, in
the presence of treatment, the relative fitness of the the high-fitness resistant strain, and not the
mutation rates, plays a leading role in the likelihood of resistance emergence within the host. This
observation provides supporting evidence to conjectures made elsewhere.

Immune response to gonorrhea is a very important factor in preventing the development of
resistance in the host. In our model, the immune system does not distinguish between resistant
and sensitive strains. Thus, the immune response has a greater impact on the growth dynamics of
all bacteria variants. As the immune response is increased, eventually all gonorrhea strains will be
cleared from the host. However, as critical as the immune system is in this model, it is inherently
difficult to quantify. In future studies, the immune system response mechanisms must be studied
in more detail if drug-resistance is to be more effectively controlled [11, 28].

This model takes an incredibly complex microbiological process into account and through sim-
plifications, explores how important evolutionary processes at smaller space and time scales are in
our everyday life.

Possible Improvements and Future Research

In order to obtain analytical results, we neglected the inherent complexity of factors such as
the immune system and the stochasticity of phenotype switching within the population of N.
gonorhoeae. Rather than create a mechanistic model, we assumed the immune system clears out
all different bacterial strains at a constant rate. Further research must be done on the immune
system response in humans, because it is a key factor affecting resistant gonorrhea strains. Such
studies would improve understanding of how exactly resistance develops, which in turn would in-
form treatment policies to hinder the spread of gonorrhea without inducing resistance.

Phenotype variation as well as random drug-resistance conferring mutations should be studied
using stochastic methods. We should consider a stochastic mutation model due to the fact that
mutations occur as events in time and not as continuous happenings over time.
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5 Appendix

5.1 Complications with Untreated Gonorrhea

In the late 1800s and early 1900s, before the introduction of antibiotics, gonorrhea caused
severe complications in colonized patients. In primary infection sites, such as the urogenital and
perigenital, common symptoms include inflammation of tissues and glands, lesions, discharge, and
cysts. According to Charles C. Norris (1913) [19], untreated N. gonorrhoeae can cause rupturing
of the fallopian tubes, ectopic pregnancy, pregnancy in the fallopian tubes (which does not result
in viable births), and gonorrhea infections in newborns. Secondary infection sites include lesions
in the lungs, tissues, joints, bones, and the heart. In some rare cases, gonococcus can be found in
blood clots and can attack bones, the frequent target being the heel bones [19][24].

Despite modern treatment availability, gonorrhea can still cause severe health problems in
both men and women, mainly because gonorrhea has become increasingly asymptomatic. The
primary infections documented by Norris still occur today, including ectopic pregnancy and pelvic
inflammatory disease (PID). PID can damage the Fallopian tubes to the point where a woman is
unable to have children. In the case of infected males, if gonorrhea spreads from the urethra to
the testicles, it can develop into epididymitis, inflammation of a certain part of the testicles[8][20].
Hence, gonorrhea is one of the major causes of infertility in both women and men.

5.2 Brief History of Antibiotic-Resistance in Gonorrhea

The six main antibiotics which some N. gonorrhoeae strains have acquired resistance to are
Sulfonamides, Penicillin, Tetracycline, Spectinomycin, Fluoroquinolones (e.g. ciprofloxacin), and
Cephalosporins (e.g. ceftriaxone and cefixime). Sulfonamides were first listed as a treatment for
gonorrhea in 1937, but N. gonorrhoeae developed resistance several years later [21]. Penicillin,
the “new miracle drug”, became the widespread treatment for gonorrhea in 1943. Through the
decades the minimum dosage of Penicillin required to cure gonorrhea increased, until in the mid-
1980s, when N. gonorrhoeae gained complete resistance [21] [35]. When penicillin was still widely
used, tetracycline was used as a substitute for those individuals whom penicillin did not effectively
treat. In the mid to late 1980s tetracycline was no longer a treatment option [35]. Yet another
alternative to penicillin was spectinomycin. However, gonorrhea developed resistance to it as
well [21]. Subsequently, Fluoroquiolones, such as ciprofloxacin, became the treatment option for
gonorrhea in the mid-1980s. Resistance to fluoroquinolones were seen in the early 2000s, and they
were taken off the recommended treatment list by the Center for Disease Control and Prevention
(CDC) in 2007 [12]. N. gonorrhoeae has recently gained resistance to Cephalosoporins, which
are considered the last line of defense [21]. More ominous is the fact that many N. gonorrhoeae
strains have acquired multiple-antibiotic resistance, allowing them to resist eradication by a broad
spectrum of antibiotics.

5.3 Parameter Calculations

Our population of bacteria will be measured using the units of CFU, or colony forming units.
One CFU= one healthy, reproducing bacteria. Our time scale will be measured in minutes.

In S, the doubling time ranges from 45 to 115 minutes, so we decided to choose 80 minutes
for our calculations [26]. Using properties of exponential growth, we have determined that if a

population follows the growth pattern
dN

dt
= rN , then r =

ln(2)

t
, where t is the doubling time of
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the population. So bs =
ln(2)

80
[1/min]= 8.664× 10−3[1/min] ≈ 8× 10−3[1/min], which is the value

used in our model. The doubling time of Rl can vary, but must be greater than that of S, so we
shall choose bl = 4×10−3[1/min] to observe a resistant low-fitness strain with half the growth rate
of the drug-sensitive strain. The doubling time of Rh can also vary, but must be less than that of
Rl, and typically no smaller than that of S, so we choose to make bh = 0.8×bs = 6.4×10−3[1/min].

We have calculated m1 to be a combination of spontaneous mutations and transformations,
which we found to be 10−8 to 10−9[34] and 3.6 × 10−3 (with a standard error 1.1 × 10−3[29]),
respectively, where all units are mutations per cell division. However, the spontaneous mutations
occur at a substantially lower rate than the transformation rate and therefore are not included in
the calculation of m1. To calculate the transformation rate of mutations we converted the units to
[1/min] by calculating m1 = (3.6×10−3 mutations

cell division )( cell division
80minutes ) = 4.5 × 10−5[1/min], which is in the

same value range as 2× 10−5[1/min], the chosen value.

Although we have not been able to find data on the compensatory mutation rate for N. gonor-
rhoeae, the compensatory mutation rate forSalmonella typhimurium is greater than 10−7 per cell
per generation [15], and we will assume that the compensatory mutation rate for N. gonorrhoeae is
comparable to this rate. To convert this rate from terms of mutations per cell generation to muta-
tions per minute, we will divide by the doubling time of 110 minutes versus 80 minutes, to account

for a longer doubling time for the Rl strain. So we obtain m2 ≥ ( 10−7 mutations
cell division )( cell division

110 min ) =
9.09×10−10[1/min]. We will use 9×10−9[1/min] as our m2 parameter, since it falls into this range
of values.

We will assume that p is the rate of conjugation between all three strains of bacteria because the
exchange mechanisms are comparable for each strain. In our model, we will consider a gonorrhea
infection at the cervix, which is near the section of largest vaginal width, 32.5 mm[2]. Under the
assumption that the shape of the cervix is similar to a disk with radius 32.5 mm, then its surface
area is around 814.3322317 mm2. If we assume that region which N. gonorrhoeae inhabits is only 1
mm thick, then the volume we will study is 814.3322317 mm3 = 0.814 mL 1 mL. We know that for
Escherichia coli, the bulk conjugation rates for conjugation are: 10−8 to 10−15 [mL/(CFU×min)]
[36]. Multiplying the bulk conjugation rate and the volume of the section of the cervix under study
yields a value in the range of 10−8 to 10−15 [1/(CFU×min)]. For our study, we choose the value
p = 5 ∗ 10−13 [1/(CFU×min)].

For K, the carrying capacity, we shall choose 108CFU [31].

For the initial population values, we choose So = 104CFU, and Rlo = Rho = 0.

5.4 Model I: P 3
1 and P 4

1

In section 6.2, the system (1)−(3) has four steady state points where the first two are mentioned
and analyzed in the section. Here we include the last two, P 3

1 , P 4
1 which represent possible

coexistence scenarios. If we set

φ = 2(A+ 1)M(A(A−B + c+ 1)− c) + (A(A−B + c+ 1) + c)2 + (A+ 1)2M2,
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Table 2: Parameter and State Variable Initial Condition Description
Param. Description Value Ref.
So Initial Population of Sensitive strain 104cfu
Rlo Initial Population of Resistant strain with low fitness 0 cfu
Rho Initial Population of Resistant strain with high fitness 0 cfu
bs Birth rate of the S strain 8× 10−3[1/min] [26]
bl Birth rate of the Rl strain 4× 10−3[1/min] [26]
bh Birth rate of the Rh strain 6.4× 10−3[1/min] [26]
K Carrying capacity of bacterial population 108[cfu]
m1 Mutation rate to Low-fitness Resistant strain 2× 10−5[1/min] [29] [17]
m2 Compensatory mutation rate 9× 10−9[1/min] [16]
p Bacterial conjugation rate 5× 10−13[1/(cfu ·min)] [36][2]
i Clearing rate due to immune system each strain 10−3[1/min]
T Treatment-induced mortality rate 10−3[1/min]
α Level of drug-resistance of the resistant bacteria [0, 1]

π = 2(A−B + c+ 1), γ = A2(−(B + c)) +A
(
B2 −B(M + 1) + c(−c+M − 1)

)
,

ν = A2 −AB +Ac+AM +A− c+M , τ = A2 −A(B − c+M − 1) + c−M , and

σ = (A(A−B + c+M + 1)− c+M)2 + 4Ac(A−B + c+ 1) then

P 3
1 =

(
γ + (c−B)

(√
φ− c+M

)
π(A+ 1)

,
ν +
√
σ

π
,
τ +
√
σ

π

)

P 4
1 =

(
γ − (c−B)

(√
φ+ c−M

)
π(A+ 1)(A−B + c+ 1)

,
ν −
√
σ

π
,
τ +
√
σ

π

)

5.5 The Model with a Dynamic Immune Response and without Conju-
gation

As an extension of (1)-(3) (with p = 0), we consider the immune system to depend on the
presence of the bacterial agents. More specifically, we consider that, in the presence of small quan-
tities of bacteria, the immune system per-capita clearing rate (i) scales linearly with the size of
the infection. If the bacteria population keeps increasing, the immune system reaches a point after
which the per-capita clearing rate diminishes.

To mimic the dynamics between the immune system and the bacteria population we propose
the following function of i
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i(N) =
θ1N

θ2 +N2
(16)

where N = S +Rl +Rh. The parameters θ1 and θ2 need to be estimated and they stretch the
graph horizontally and vertically (see Figure 17).
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Figure 17: Immune System clearing rate, i, as a function of bacterial population, N . (Left) θ1 = 10 and
θ2 = 10 in 16 and (Right) θ1 = 10000 and θ2 = 1 × 107. θ1 controls the height of the maximum, while θ2
determines both the height and the N-coordinate of this maximum.

We used the parameters in Table 2 except for p = 0, θ1 = 8.015 × 104, θ2 = 5 × 1014, and
T = 6.5 × 10−5. From this we see three biologically relevant equilibrium points and they are
defined as follows: the infection-free, the high resistance only and the coexistence equilibra. The
high resistance only equilibrium is a saddle point and the infection-free equilibrium is unstable
therefore we will only be considering the unique stable point, the coexistence equilibrium. With
these parameter values, the treatment level and the immune system response are low enough for
the sensitive strain to survive and the immune system response is low enough for all strains to exist.

If θ1 < 8.014×104, the coexistence equilibrium doesn’t exist and the high resistance equilibrium
is stable. In terms of our model, the high resistance equilibrium emerges because treatment will
clear all of the antibiotic sensitive strain leaving only the two antibiotic resistant strains. We will
be left with only the high-fitness antibiotic-strain due to the high-fitness strain out competing the
low fitness strain. In comparison with Model II, (10)-(12), we observe the same behavior, where
the high-resistance is the only survivor. When θ1 is extremely large, e.g θ1 = 8.015 × 1012, the
coexistence stable equilibrium has all its values smaller than one, which we can interpret as the
immune system being strong enough to clear all of the infection.

If we increase T keeping θ1 = 8.015 × 104 constant, we never see the coexistence equilibrium
and only the high-resistance stable equilibrium exists. When T > 6.5 × 10−5,the treatment level
is high enough, no matter the immune system level, to clear out the sensitive strain and have only
the high-resistance strain survive. When T < 6.5× 10−5, the sensitive will survive and we see the
coexistence equilibrium. This is due to the treatment level not being strong enough to clear the
infection.

An important conclusion from this brief study of a dynamic immune system is that it behaves,
at least qualitatively, similarly to Model II.
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