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Abstract

We formulate a discrete time model to identify and evaluate the role of optimal con-
trol strategies on influenza transmission. We divide the population in two subgroups
defined according to the contact activity or susceptibility levels. The individuals are
identified as susceptible, infectious, treated, and recovered. The potential effect of
antiviral treatment considering unlimited and limited resources is evaluated, where
an isoperimetric constraint is incorporated in the presence of limited resources. The
optimal control problem is solved by using the primal-dual interior-point method that
enforces epidemiological constraints explicitly. Our goal is to determine how treat-
ment doses should be distributed in each group when the objective is to minimize the
number of infected and the cost of treatment.
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1 Introduction

It is well known that every year millions of individuals get “flu” and thousands die from
seasonal influenza. New specific vaccines are developed and distributed each year. In the
case of seasonal influenza, the focus is on protecting high risk individuals. However, the
cost associated with lost life and productivity due to influenza must also be considered [15].
Continuous time models have been used to study influenza outbreaks and the impact of
different control policies [4, 8, 13, 24, 25]. Optimal control methods are used to evaluate the
impact of control policies in epidemiology and other fields [16, 21]. In the case of influenza,
the cost of antiviral treatment or the cost of isolation of infectious individuals has also
been addressed using continuos time models [19, 20]. Recently, the evaluation of influenza
public health interventions using discrete epidemiological models has also been proposed
[6, 27, 28]. The fact that most epidemiological data is discrete particulary justifies the use
of a discrete time formulation.

Here we explore the role of heterogeneity via a discrete time epidemiological model
involving two interacting groups, since the goal is to explore the role of different contacts
or susceptibility levels. An optimal control problem is formulated to evaluate the effect
of antiviral treatment in scenarios involving limited or unlimited resources. This model
extends the discrete single-group influenza model analyzed in [12]. The optimal control
problem is solved using the primal-dual interior-point method, which to the best of our
knowledge has not been previously used to solve control problems in epidemiology. The
benefit of interior point methods is that the inclusion of explicit inequality constraints is
natural and more efficient.

This manuscript is organized as follow; in the Section 2, we introduce the epidemio-
logical model and the optimal control problem associated. Our goal is to reduce the
number of infected individuals at a minimal cost of treatment during a single epidemic
outbreak. In Section 3, we present the basic ideas of interior point methods and the
algorithm that we use in order to solve our problem. The results of selected numerical
simulations are presented in Section 4, by considering different scenarios such as different
activity or susceptibility levels under limited or unlimited resources. Finally, we present
some discussions and conclusions in Section 5.

2 Epidemiological Model

A discrete time Susceptible-Infectious-Recovered (SIR) model was analyzed in [12]. The
susceptible, infectious and recover individuals are represented by S, I, and R respectively.
Births and deaths from natural causes and disease induced deaths are ignored (N =
S + I + R); The subindex t denotes the number of individuals of each class at time t,
and the range of t = 1, 2..., n where n denotes the final time. The fraction of susceptible
individuals at time t that get infected at time t+ 1 is modeled by the function

Gt = ρ
It
Nt
,
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where ρ is the susceptibility rate. It is assumed that infectious individuals recover with
probability σ (per generation). The model (without control) is given by the following
system of nonlinear difference equations:

St+1 = St(1−Gt)
It+1 = StGt + (1− σ) (1− δ)It
Rt+1 = Rt + σ (1− δ) It.

(1)

Since many disease dynamics such as measles and influenza are strongly correlated with
age [7], we want to extend Model (1) by considering that the total population is divided
into two age groups. Groups can be defined according to contact activity or susceptibility
levels. We assume that people mix homogeneously within its group and proportionaly
between groups; this is known as proportionate mixing [5]. Epidemiological models with
age structure have been considered in [7, 9, 14]. Now we introduce the group-structured
model.

Let Ni(t) be the number of individuals in group i at time t, (i = 1, 2) and qij be the
probability that somebody from Group i has contact with somebody from group j. If we
assume that both groups are connected (qij > 0) and we consider proportionate mixing
[7], we have

qij = qj =
CjNj

C1N1 + C2N2
, (2)

where Ci is the average contact number of individuals in group i. For the properties of the
contact matrix [23]

q1 + q2 = 1.

Now we generalize the single population model SIR model (1) to a two-group model.
Let Si(t), Ii(t), and Ri(t) denote the number of susceptible, infectious, and recovered
individuals in the ith group, i = 1, 2. We consider a single outbreak and people remain
in the same group. We assume that infectious individuals from group i naturally recover
with probability σi. The fraction of susceptible individuals on group i at time t that get
infected at time t+ 1 is modeled by the function

Gi(t) = ρi

(
q1
I1(t)

N1(t)
+ q2

I2(t)

N2(t)

)
, (3)

where ρi is the susceptibility rate for individuals in group i = 1, 2. In Group 1. Figure 1
ilustrate the diseases dynamics.

The model is given by the system of difference equations

Si(t+ 1) = Si(t)(1−Gi(t))
Ii(t+ 1) = Si(t)Gi(t) + (1− σi) Ii(t)
Ri(t+ 1) = Ri(t) + σiIi(t).

(4)
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Figure 1: Diseases dynamics in Group i.

for i = 1, 2. The basic reproductive number is calculated by using the next generation
operator [1], it is given by

R0 =
ρ1q1

1− (1− σ1)(1− δ1)
+

ρ2q2
1− (1− σ2)(1− δ2)

.

Notice that there is a contribution from each group: it highlights that new infections can
be generated from infected individuals in any group.

The next step is to include treatment as control policy in Model (4); we consider that
a fraction τi(t) of infected individuals in group i gets treatment at time t. We assume that
individuals (from any group) who get treatment recover with probability σ. Since treated
individuals are still infectious with reduction parameter 0 < εi < 1, i = 1, 2 the function
Gi given in (3) is modified as

Gi = ρi

(
q1
I1(t) + ε1T1(t)

N1
+ q2

I2(t) + ε2T2(t)

N2

)
, (5)

The model with control is given by the following system of difference equations:

Si(t+ 1) = Si(t)(1−Gi(t))
Ii(t+ 1) = Si(t)Gi(t) + (1− τi(t)) (1− σi) Ii(t)
Ti(t+ 1) = (1− σ)Ti(t) + τi(t) (1− σi) Ii(t)
Ri(t+ 1) = Ri(t) + σiIi(t) + σTi(t).

(6)

Our goal is to minimize the number of infected individuals in both groups during the entire
epidemic duration at a minimal cost; hence the optimal control problem is given by

min
1

2

n−1∑
t=0

(
BI1I1(t)

2 +Bτ1τ1(t)
2 +BI2I2(t)

2 +Bτ2τ2(t)
2
)

(7)

s.t. Model (6), 0 ≤ τi ≤ 1

where n denotes the final time and the weight constants Bj for j = {Ii, τi} and i = 1, 2
represent the relative cost of treatment. We want to solve Problem (7) by considering
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two scenarios: unlimited and limited doses of treatment. The first scenario is the problem
given in (7). For the second one, we need to include the isoperimetric-constraint [20, 21]

n−1∑
t=0

(τ1(t)I1(t) + τ2(t)I2(t)) = k, (8)

where k represents the available number of treatment doses. A similar problem has been
solved by considering limited vaccine for a continuous time influenza model [20] . The
problem was solved by using the two-point boundary method; the authors remark that by
including the isoperimetric-constraint, convergence issues have to be addressed. We will
solve it by using the primal-dual interior-point method. We claim that the primal-dual
interior-point method allows to include the new constraint more efficiently. Our goal is to
determine how treatment doses should be distributed in each group in order to reduce the
total number of infected at a minimal cost. In the next section we present the primal-dual
interior point method.

3 Methodology

In this section, we present the methodology for solving unconstrained and constrained
optimal control problems (7). Most of the optimal control problems on epidemiology are
solved by using Pontryagin’s maximum principle [16, 19, 20]. This principle provides the
necessary conditions for finding an optimal solution [21], applying the two-point boundary
method. We want to solve our problem by using the primal-dual interior-point method
[3, 10, 22]. This technique has been applied successfully in different areas but to our
knowledge, there is few evidences of applications on epidemiological problems. We present
the basic ideas of primal-dual interior-point method in the next subsection.

3.1 Primal-Dual Interior-Point Method

Interior Point Methods (IPM) were introduced by Karmarkar in 1984 [17] for solving li-
near programming problems and his seminal work has been extended for solving large
scale nonlinear programming problems. In particular we want to apply this method to our
optimal control problem (7). Let us rewrite our Problem (7) as a nonlinear programming
problem,

min f(y)
s.t. E(y) = 0,

y ≥ 0,
(9)

where
y = (S1(1), I1(1), T1(1), τ1(0), . . . , S1(n), I1(n), T1(n), τ1(n− 1),

S2(1), I2(1), T2(1), τ2(0), . . . , S2(n), I2(n), T2(n), τ2(n− 1)),
(10)
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and n is the final time. The objective functional is given by

f(y) =
1

2

(
BI1‖Ĩ1‖2 +Bτ1‖τ‖2 +BI2‖Ĩ2‖2 +Bτ2‖τ2‖2

)
,

f : R8n → R, with Ĩi = (Ii(0), Ii(1), . . . , Ii(n− 1)) and τi = (τi(0), τi(1), . . . , τi(n− 1)) for
i = 1, 2. From Model (6), we get the equality constraint E : R8n → R6n,

E(y) =



S1(1)− S1(0)(1−G1(0))
I1(1)− S1(0)G1(0)− (1− τ1(0)) (1− σ1) I1(0)
T1(1)− (1− σ2)T1(0)− τ1(0) (1− σ1) I1(0)
...
S1(n)− S1(n− 1)(1−G1(n− 1))
I1(n)− S1(n− 1)G1(n− 1)− (1− τ1(n− 1)) (1− σ1) I1(n− 1)
T1(n)− (1− σ2)T1(n− 1)− τ1(n− 1) (1− σ1) I1(n− 1)
S2(1)− S2(0)(1−G2(0))
I2(1)− S2(0)G2(0)− (1− τ2(0)) (1− σ1) I2(0)
T2(1)− (1− σ2)T2(0)− τ2(0) (1− σ1) I2(0)
...
S2(n)− S2(n− 1)(1−G2(n− 1))
I2(n)− S2(n− 1)G2(n− 1)− (1− τ2(n− 1)) (1− σ1) I2(n− 1)
T2(n)− (1− σ2)T2(n− 1)− τ2(n− 1) (1− σ1) I2(n− 1)



, (11)

where Gi is given in (5). Hence the total population N is almost constant, we just
have to consider S, I, and T because R = N − S − I − T . In the case of limited resources
we need to include the isoperimetric constraint

n−1∑
t=0

(τ1(t)I1(t) + τ2(t)I2(t)) = k,

where k represents the number of treatment doses available, it can be written as the inner
product of τ i and Ĩi, (i = 1, 2)

τT1 Ĩ1 + τT2 Ĩ2 − k = 0, (12)

hence we modify the equality constraint given by (11) by adding the constraint (12), in
this case E : R8n → R6n+1.

Now we describe the primal-dual interior-point method used to solve problem (9). We
define the Lagrangian associated to (9) as

L(y, w, z) = f(y) + E(y)Tw − yT z,

6



where w and z are the lagrange multipliers associated with the equality and inequality
constraint, respectively. Therefore the perturbed KKT conditions are given by

Fµ(y, w, z) =

 ∇yL(y, w, z)
E(y)
Y Ze− µe

 = 0, (13)

where ∇yL(y, w, z) = ∇yf +∇ETw − z, Y = diag(y), Z = diag(z), and e = (1, . . . , 1) ∈
R8n. The Newton’s system associated with problem (9) is

F ′µ(y, w, z)∆ν = −Fµ(y, w, z) (14)

where

F ′µ(y, w, z) =

 ∇2L ∇ET −I
∇E 0 0
Z 0 Y

 and ∆ν =

 ∆y
∆w
∆z

 .
The standard Newton’s method assumptions for the convergence [10] of problem (9)

are given by:

1. There exists ν∗ = (y∗, w∗, z∗), solution to problem (9).

2. The jacobian matrix F ′µ(ν∗) is nonsingular.

3. The jacobian operator F ′µ is locally Lipschitz continuous at ν∗.

To simplify the system (14), we derive a reduced system written as follows:[
Y∇2L+ Z Y∇ET
∇E 0

] [
∆y
∆w

]
=

[
−Y∇f − Y∇ETW + µe

−E

]
, (15)

with
∆z = ∇2L∆y +∇ET∆W +∇y +∇ETW − z. (16)

Therefore, the reduced system of equations (15) has some advantages over (14), there is
a considerable size reduction in the system being solved (16n × 16n) and the condition
number of the associated matrix to the system is smaller that the one in system (14).

We use a path-following strategy [3] to solve (15). For µ > 0 and working from the
interior (y, z) > 0, we apply a linesearch Newton’s method [22] to the perturbed KKT
conditions (13). An optimal solution is reached when the perturbation parameter µ goes
to zero. Let us present the primal-dual interior-point algorithm used to solve the nonlinear
programming problem (9).
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Algorithm 1 Primal-Dual Interior-Point Algorithm

1: Consider an initial interior point v0 = (y0, w0, z0), i.e., (y0, z0) > 0, choose σ ∈ (0, 1).
2: for k = 0, 1, 2 . . . until convergence do

3: Set the perturbed parameter µk = σ (yk)
T zk

10n .
4: Solve the reduced system (15) for ∆ν = (∆y,∆w), and solve (16) for ∆z.
5: Maintain y, z positive. Calculate α̃k according to

α̃k = min

(
−1

min(Z−1∆z,−1)
,

−1

min(Y −1∆y,−1)

)
6: Force a descent direction, For i = 0, 1, 2, . . . , set αk+1 =

(
1
2

)i
α̃k until

M(vk + αk+1∆v) < M(vk) + 10−4αk+1∇MT∆v

where M = ||Fµ||2, for Fµ as in (13).
7: Update vk+1 = vk + αk+1∆v.
8: If ||Fµ|| ≤ ε, break,
9: end for

The numerical results of selected simulations generated by the implementation of the
primal-dual interior-point method are discussed in the next chapter. Since the solution
is based on Newton’s method, the initial conditions are choosen carefully in order to get
convergence.

4 Numerical Results

In this section we present some results of selected numerical simulations under various
scenarios. First we consider both groups with the same population size under unlimited
and limited treatment resources. In the first case, we consider no restrictions of antiviral
treatment, in the second one we assume some restrictions in the treatment supply. Finally
we present a more realistic scenario with different population sizes. For all simulations,
we solve an optimal control problem by using the primal-dual interior-point method given
in (3.1). In the case of limited resources, we include an isoperimetric constraint [20, 21].
For each case, the proportion of infected individuals generated in the absence of control
or in the presence of control are compared. In these simulations the weight constants are
selected in part to facilitate computational issues, IPM is sensitive to these values. We
assume a moderate value of R0, (1.5 − 1.7). The final time, 180 days, is chosen for all
simulations. The baseline parameter values are given in Table 1.
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Table 1: Definition of parameters and baseline values.
Parameter Value Definition

σi
1
7 Recovering probability without treatment in Group i = 1, 2

σ 1
5 Recovering probability with treatment in each group

ε 0.3 Transmissibility reduction of the treated class

δ 0.001 Mortality rate

ρi 0.135− 1.9 susceptibility rate for individuals in Group i = 1, 2

Ci 0.003− 0.01 Average contact rate of individuals in Group i = 1, 2

Bj 0.3− 1 Weigh constants in the objective function, j = {Ii, τi} and i = 1, 2

4.1 Unconstrained Formulation Problem

By considering the case of unlimited doses of treatment, we divide the total population
into two groups with same population size and we consider three different scenarios. In
the first one, both groups have the same activity level and same susceptibility, basically we
want to validate our IPM algorithm. As we define in section 2, Ci and ρi are the average
contact and the susceptibility levels for individuals in group i = 1, 2, respectively. For the
second scenario, we assume that Group 1 is more active than Group 2, hence the average
contact number is higher in Group 1 than Group 2 (C1 > C2) and both groups have the
same susceptibility level (ρ1 = ρ2). For each scenario, Figures 2 - 8 show the control effort,
the proportion of infected individuals and the final epidemic size in Group 1 on figures in
the top (A, B, and C). The ones in the bottom (D, E, and F) show the control effort, the
proportion of infected individuals and the final epidemic size in Group 2.

Scenario 1: Same Activity Level and Same Susceptibility
Since both groups have the same population size and similar behavior, the optimal control
solution requires the implementation of the same amount of treatment on both groups
(Figures 2A and 2D) and therefore we get the same reductions in the final epidemic size,
14% in each group, Figures 2C and 2F. The implementation of treatment strategy move
the epidemic peak, without treatment is on day 50, while in the presence of treatment is
around day 60 (Figures 2B and 2E).

Scenario 2: Same Activity Level, Higher Susceptibility in Group 1
Figures 3A and 3D show the optimal control solution when both groups with the same
size population have the same activity level but Group 1 is more susceptible than Group
2. Since Group 1 has higher susceptibility, the optimal control solution requires the ap-
plication of higher values of treatment in this group. The reduction in the final epidemic
is given by 11% and 13% in Groups 1 and 2, respectively, (Figures 3C and 3F). This
reduction is smaller in Group 1 because the number of infected individuals is higher in
this group.
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Figure 2: In the case of same population size in Group 1 and 2, the first scenario considers
both groups with the same susceptibility and same activity level. Since both groups have
similar behavior, the optimal control strategy requires the implementation of the same
amount of treatment in both groups. The final epidemic size is reduced by 14% in each
group.
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Figure 3: For Scenario 2, Group 1 is more susceptible than Group 1 but they have the
same activity level. Since Group 1 is the high risk group, the optimal control strategy
requires the implemetation of high control value in this group, however the number of
infected individuals is higher in Group 1 and the reduction in the final epidemic size will
be bigger in Group 2.
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4.2 Constrained Treatment Strategy

In the case of limited resources, we solve the problem by including the isoperimetric
constraint given in (8), where k represents the availability in treatment doses. We consider
both groups with the same population size under three different scenarios. In Scenario 1
both groups have the same activity level and they are equally susceptible, i.e. C1 = C2 and
ρ1 = ρ2. In the case of Scenario 2, they have the same susceptibility but Group 1 is more
active than Group 2, C1 > C2. Finally for Scenario 3, we consider that both groups have
the same activity level but Group 1 is more susceptible than Group 2, then ρ1 > ρ2. For
each scenario we assume a moderate value of R0 (1.5-1.8). For each case, we present the
proportion of infected individuals generated in the absence of control or in the presence
of control for different values of treatment doses k. Figures 4, 5, and 6 show the optimal
control function, the proportion of infected individuals and the cumulative proportion of
infected individuals in both groups under each scenario.

Scenario 1: Same Activity Level and Same Susceptibility in Each Group
Since both groups have the same behavior, the treatment should be distributed likewise
on each population (Figures 4A and 4D). Three values of k are used, by assuming that 4%,
7%, and 11% of the infected individuals get treatment; the final epidemic size is reduced by
4.5%, 8.1%, and 14.7% for each value of k, respectively. When resources are highly limited
4% and 7%, Figures 4A and 4D show that the maximum effort in control is applied at the
begining of the epidemic until all the resources are depleted (70 and 80 days, respectively).

Scenario 2: Same Activity Level, High Susceptibility in Group 1
Figure 5 shows the results for Scenario 2. The optimal control solution shows that more
effort should be implemented in Group 1 (Figure 5A and 5C), since this is the high risk
group; however the proportion of infected individuals is higher in Group 1 (Figures 5B and
5D). By using different values of k, 3%, 6%, and 13%, the final epidemic size in Group 1 is
reduced by 2.4%, 5.8%, and 16% in each case; For Group 2, it is reduced by 3%, 7%, and
19%. Althoug the optimal solution allows the implementation of higher effort in Group 1,
the reduction in the final epidemic size is higher in Group 2. For small values of k, (3%
and 6%), Figures 5A and 5D show that in both groups, the maximum effort in control is
applied at the begining of the epidemic, 55 and 75 days respectively.

Scenario 3: Same Susceptibility, High Activity Level in Group 1
Figure 6 shows that in the case of Scenario 3, Group 1 has more activity level than Group 2
but they have the same susceptibility, the optimal control solution requires the application
of higher values of treatment in Group 1 (Figures 6A and 6D), however the number of
infected individuals is the same in both groups (Figures 6B and 6E). For different values
of k (4%, 7% and 14%), Figures 6C and 6E shows that the final epidemic size is reduced
by 3%, 9% and 19% respectively.
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Figure 4: For Scenario 1, since both groups have similar behavior and same population
size, the resources have to be distributed likewise. Figures A and D show that in the
case of very limited resources (4 % and 7%),the maximum effort in control have to be
implemented at the begining of the epidemic, until all the resources are spent.
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Figure 5: For Scenario 2, since Group 1 is the high risk one, more effort have to be applied
in this group (Figure A and D) however for each value of k the reduction in the final
epidemic size is higher in Group 2.

Figure 6: For Scenario 3, since Group 2 has high activity level, more control has to be
implemented in this group, however since the susceptibility is the same for both groups,
the number of infected individuals is alike for Group 1 and Group 2.
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5 Seasonal Influenza

Finally, we consider a more realistic scenario, we divide the total population into two
groups with different population sizes. Group 1 is given by 12.5% of the population
aged 65 or more, and Group 2, 87.5% of the population aged less than 65 [5]. For these
simulations we assume R0 = 1.5 and we consider seasonal influenza, it is Group 1 is the
high risk population (ρ1 > ρ2). For Scenario 1, we assume same activity level (C1 = C2);
for Scenario 2 we assume that Group 2 is more active than Group 1(C2 > C1).

Scenario 1: High Susceptibility in Group 1 and Same Activity in Both
Groups
Figure 7 shows the results for Scenario 1. The optimal control solution shows that the
amount of treatment that should be implemented is a little bit higher in Group 2 because
it has a bigger population size (Figure 7A and Figure 7D). The final epidemic size in
Group 1 is reduced by 10.7% with the implementation of the optimal control treatment.
In the case of Group 2, is reduced by 25% (Figure 7C and Figure 7F).

Scenario 2: High Susceptibility and Less Activity Level in Group 1
The results for Scenario 2 are shown on Figure 8. since we have Group 2 as the more
active one, then the optimal control requires more effort for this group than for the other;
Figure 8D shows that we need to apply twice the treatment for Group 2 than for Group
1 (Figure 8A). The reduction in the final epidemic size is given by 8.2% and 24.9% in
Groups 1 and 2 respectively.

Figure 7: For Scenario 1, Group 1 (12.5 % of the total population) is the high risk
population, both groups have the same activity level. Because of the size population, the
control effort is a little big higher in Group 2 and therefore the reduction in the final
epidemic size is higher in Group 2 (25%) than Group 1 (10.7%).
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Figure 8: For Scenario 2, Group 1 (12.5 % of the population) is more susceptible but less
active than Group 1. Since Group 2 is more active, more effort has to be applied in this
group. Figure D shows that we need to apply twice the treatment for Group 2 than for
Group 1 (Figure A).
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6 Discussion

We present a two-age group discrete influenza model when the population is divided into
susceptible, infected, treated, and recover individuals. An optimal control problem is
formulated in order to reduce the number of infected individuals during a single influenza
outbreak. We analyze different scenarios by considering same and different population
sizes in each group. We also consider the case of unlimited resources by introducing
an isoperimetric constraint. We solve the problem by using the primal-dual interior-point
method (IPM), in contrast to the two point boundary method that is most used in optimal
control problems in biological applications [11, 16, 19–21]. Interior Point Methods have
become a popular choice for solving large scale constrained optimization problems. Its
numerical advantages first demonstrated in the seminal work of Karmarkar [17], have led
Interior point methodologies to be implemented in a variety of applications whose model
induces a constrained optimization problem. This applications include fields in economics,
machine learning, medical imaging, and geophysics [2, 18, 26] just to mention a few. As
far as we know it has not been previously used to solve control problems in epidemiology.
From our simulations we found that IPM allows to incorporate inequality constraints and
the isoperimetric constraint in a more efficient way than the two point boundary method.
However, we find that the solution is very sensitive to initial conditions since the IPM is
based on Newton Method. We need to have good initial conditions in order to guarantee
convergence.

In all scenarios, we find that the implementation of treatment reduces the number of
infected individuals at a minimal cost. In the case of two groups with same population
size and similar behavior, we get the same optimal control solution and therefore the same
reduction in the final epidemic size. If one of the groups is more susceptible, more effort
has to be implemented in that group but the reduction in final epidemic size will be bigger
in the less susceptible group. In the case of limited resources, we found that the maximum
effort in control have to be implemented at the beginning of the epidemic until all the
resources are used.

The results are sensitive to the population size, in the case of small size population
with high susceptibility (Group 1), the control effort is a bit higher in Group 2, (the one
with big size population) when they have same activity level. However if we have a higher
activity level in Group 2, the treatment has to be twice in this group even though Group
1 is more susceptible. We conclude than more effort has to be applied in the group with
a higher activity level.
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