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Abstract

Sahara Mustard (Brassica tournefortii) is an invasive weed that has become wide-
spread throughout the southwestern United States. Its early germination, high fe-
cundity, and dispersal effectiveness augment its ability to outcompete and possibly
displace local flora. In this work, we model the dynamics of Sahara Mustard as it
competes with winter annuals native to the Sonoran Desert, such as the widespread
forb Lepidium lasiocarpum. A discrete-time competition model of plant-plant interac-
tions is constructed to study factors that may affect competition between invasive and
native species in favor of the native species. Through a system of non-linear difference
equations we quantify each species’ seed banks and flowering adult populations over
several generations. We take into consideration the dependence of fecundity, surviv-
ability, and germination on total annual rainfall. A stochastic simulation is used to
examine the effect of seasonal variability on existence of native species in competition
with Sahara Mustard. We found that rainfall variability was advantageous to the na-
tive population, though the native forbs that compete with Sahara Mustard will likely
be reduced in population or driven to extinction in absence of any control strategy.
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1 Introduction

Brassica tournefortii, commonly known as Sahara Mustard, African Mustard, or Asian
Mustard, is an annual forb native to the deserts of North Africa and Southwestern Asia
[12]. A forb is an annual or perennial flowering plant that lacks a woody stem and is
not a grass. Annual forbs live for a single season and die away after flowering. Sahara
Mustard was first spotted in the United States in California in 1927 and has since spread
to Nevada, Arizona, New Mexico, and western Texas [20, 11], where it now competes with
native plants, including winter annual forbs. Since Sahara Mustard germinates early in
the winter season and reaches maturity before native annuals, it has been successful in
displacing native species throughout the Mojave and Sonoran deserts [12, 3, 21]. Stands of
dead Sahara Mustard are a serious fire hazard. To make matters worse, Sahara Mustard
seeds can still germinate from the seed bank after a fire, while most Sonoran plants have
no fire tolerance [12, 16, 15].

Though rodents and birds eat the delicious seeds of Sahara Mustard, grazers do not
seem to find the rest of the Sahara Mustard plant palatable [11]. The Sahara Mustard
might be having a detrimental effect on the Sonoran Pronghorn. In the United States, the
Sonoran Pronghorn is limited in range to the Cabeza Prieta National Wildlife Refuge [17].
The invasive Sahara Mustard, common throughout the southwest, has appeared there as
well, and could outcompete the main food source of Pronghorn fawns: native annual forbs.

Water is, somewhat obviously, a limiting factor for plant growth [9]. In the Sonoran
Desert, where water is limited and winter rains vary in timing and amount [6], the fitness
of a plant species can vary significantly from year to year. Thus, when examining the
life cycle of desert annuals we consider the effect of rainfall on various parameters. The
percentage of seeds that germinate in a season [18], the number of seedlings that survive
to maturity [9], and the number of seeds that a mature plant will produce [1] can depend
on how much water the plant receives in a season.

Some studies have been conducted on the impact of Sahara Mustard invasion on native
Sonoran Desert plant communities. The studies show that over time the proportion of
Sahara Mustard plants in an area increases while native plant populations decrease [4, 5].
Fortunately, Sahara Mustard is not yet omnipresent throughout the southwest, and so
control of the plant in many areas is still possible [15]. The effectiveness of various control
strategies on the mustard have also been studied. Two main methods of control, manual
hand-pulling and herbicide, have been applied to pre-reproductive plants [2, 11]. Hand-
pulling is only feasible for small invasions because of the man-power and time required
[16]. Herbicide may often be the better option as it is more cost-effective and does not
disturb the soil (which can make an area vulnerable to further invasion) [2]. Since Sahara
Mustard germinates earlier than native plants [3], herbicide can be applied in a window
of time before native annuals germinate [16], and this was shown to have minimal impact
on native plants while still being effective at reducing invasive species populations [15].

We propose a model to determine the conditions necessary to contain Sahara Mustard
and allow survival of native winter annuals by incorporating a stage structured ecological
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framework. For the native plant parameters, we used information on Lepidium lasio-
carpum, a widespread native of the Sonoran Desert. The exact identity of the competitors
of Sahara Mustard will in reality vary substantially from region to region and depend on
what microclimate the Sahara Mustard inhabits (Tom Philippi, personal correspondence,
July 16, 2012).

In Section 2, we introduce the competition model for Sahara Mustard and L. lasio-
carpum. We consider and analyze a simplified model with no seed bank in Section 3. The
model with a seed bank is then considered in Section 4. The stability analysis of various
equilibria such as extinction, coexistence, and competitive exclusion are also shown in
Section 4. In Section 5 we discuss the analysis of both models. In Section 6, we intro-
duce the values for parameters used in our model under varying weather conditions. We
give the numerical results from deterministic simulations in Section 7 and the Stochastic
simulations in Section 8.

2 Model for the Dynamics of Competing Plant Species

We introduce a system of non-linear discrete difference equations to model the competi-
tion between Sahara Mustard and a single species of native Sonoran Desert annual forb,
Lepidium lasiocarpum. The generations are measured in years, with all the processes of
germination, growth, competition, and new seed production occurring within one iteration
of the system. Before we introduce the model explicitly, we will revisit the life history and
ecology of Sahara Mustard and Sonoran Desert winter annuals.

Annual plants germinate, live, and die in a single season. Plants and seeds are assumed
to be surveyed at the end of the winter season, during flowering and before new seeds are
produced. Therefore, the plants counted are those that survive to flowering, and the seeds
are those that have survived in the seed bank and not germinated. This means that
although the number of seeds moving on to the next year is dependent on the plants of
the previous generation, plant generations of both Sahara Mustard and native forbs are
non-overlapping. Seeds for both species can become dormant and enter a seed bank that
spans generations. Sahara Mustard is a winter annual; it germinates in winter and flowers
and dies in late winter or spring. It grows quickly, taking only two to three months to
age from seedling to flowering plant [16]. Seeds remain dormant during the summer when
high temperatures prevent germination despite regular rainfall [3]. Native Sonoran winter
annuals have a similar life cycle, but germinate later in the season (see Figure 1) [3].
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Figure 1: Timing of pertinent events for (B. tournefortii) and L. lasiocarpum. The be-
ginning of the winter season in the Sonoran Desert is customarily taken to be October.
However, because the winter rainfall is highly erratic, the date of winter annual germi-
nation events varies from year to year. Sahara Mustard and native winter annuals have
flowered and died by April, the end of the winter season.

Winter annuals in the Sonoran Desert are highly dependent on the sporadic winter
rains. These plants’ seeds have selected for innate dormancy strategies as a bet-hedging
adaptation to the unpredictability of winter precipitation [18]. This implies that some
percentage of viable seeds will not germinate even when given sufficient amounts of rain
[18]. These dormant seeds are a safeguard against years where there is enough rain for
germination, but not enough for plants to survive to maturity [22].

The presence of dormant seeds in addition to plants motivates a two-compartment
stage-structured model for each plant species, with viable dormant seeds (Si) and plants
(Pi) for both Sahara Mustard (M) and the native forb (N), where i ∈ {M,N}. Figure 2
shows the model life cycle for both species in absence of intra- or interspecific competition.
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Figure 2: Life cycle of winter annuals, assuming no intra- or interspecies competition and
100% survivability of seedlings.

Each year, the winter annuals produce a certain number of viable seeds (given by fi).
Some fraction σi of these seeds germinate the next year, and so become plants within that
year. The remainder of these seeds enter the seed bank. Seeds in the seed bank can either
spoil and no longer be viable (with probability 1 − ri), germinate (with probability gi),
or remain viable in the seed bank (with probability ri). As the plants being modeled are
annuals, all the mature plants from the previous generation will die and contribute only
indirectly to the next generation through seeds produced.

2.1 Competition Model

In arid regions like the Sonoran Desert, water is a limiting resource for plant growth.
Consequently, there is competition for water among plants in desert ecosystems [9]. The
model includes both intra- and interspecies competition that affect the survival of new
seedlings.

The dynamics of our competition model are governed by the following system of non-
linear difference equations:

SN (t+ 1) = (1− σN )fNPN (t) + (1− gN )rNSN (t), (2.1.1)

PN (t+ 1) =
µNσNfN

1 + αNGN (t) + βGM (t)
PN (t) +

µNgNrN
1 + αNGN (t) + βGM (t)

SN (t), (2.1.2)

SM (t+ 1) = (1− σM )fMPM (t) + (1− gM )rMSM (t), (2.1.3)

PM (t+ 1) =
µMσMfM

1 + αMGM (t)
PM (t) +

µMgMrM
1 + αMGM (t)

SM (t). (2.1.4)
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Let

Gi(t) = σifiPi(t) + giriSi(t), (2.1.5)

be the new seedlings, or all the seeds that germinate just before time t+1 for the Sahara
Mustard or native species. The terms

1

1 + αMGM
(2.1.6)

and
1

1 + αNGN + βGM
(2.1.7)

represent the competition functions, which are thus dependent on the number of new
seedlings.

Then Equations 2.1.2 and 2.1.4 can be rewritten as

PN (t+ 1) =
µNGN (t)

1 + αNGN (t) + βGM (t)
, (2.1.8)

PM (t+ 1) =
µMGM (t)

1 + αMGM (t)
. (2.1.9)

Many models of multi-species plant competition have been used and successfully fit
to data. For our competition functions we chose functions that would be relatively easy
to analyze but still had been shown to be effective in modeling plant competition [13].
We assume the competition term for PM (t + 1) does not depend on GN because the
Sahara Mustard germinates earlier and grows faster, and so it is already well-established
by the time the native annual seedlings are attempting to grow. Table 1 summarizes the
parameters used in our competition model.

Parameter Range Definition

σi 0 ≤ σi ≤ 1 probability of germination of fresh seeds
gi 0 ≤ gi ≤ 1 probability of germination out of the seed bank
ri 0 ≤ ri ≤ 1 probability of surviving dormancy in the seed bank
µi 0 ≤ µi ≤ 1 probability of surviving from seedling to flowering plant
fi fi ≥ 0 number of seeds produced per plant
αi 0 < αi < 1 quantifies the intensity of intraspecific competition
β 0 < β < 1 quantifies the intensity of Sahara Mustard’s effect on native

annuals

Table 1: Parameter definitions for the competition model.

Here, αN and αM are reduction constants that relate to the amount of intraspecific
competition for the native forbs and Sahara Mustard, respectively. The parameter β is a
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reduction constant that determines how strongly the Sahara Mustard competes with and
disrupts the growth of the native annual. Since αi and β are always positive fractions, the
competition functions (Formulas 2.1.6 and 2.1.7) are always less than one, and, similar
to µi, reduces the number of seedlings surviving to adulthood. For both PN and PM ,
αi plays a role in setting the carrying capacity. This is because as Gi → ∞, Pi → µi

αi
,

so the population cannot increase above this value. Increasing αi increases intraspecific
competition by reducing each species’ carrying capacity depending on the population of
that species. We always set αi � µi to avoid having fractional plants at equilibrium.

3 Seed bank-free Model

We begin with an analysis of the seed bank-free model (i.e. ri = 0). The analysis of
this simplified model will provide some important insights into the dynamics of System
2.1.1-2.1.4. The seed bank-free model tells us how the full system would behave if the
only germinating seeds came from plants from the previous years. This means that seeds
entering the seed bank are never viable. As such, we disregard those seeds.

Biologically, the seed bank-free model represents a location where both the Sahara
Mustard and native annuals have not yet set up a seed bank. For those seeking to halt
the invasion of Sahara Mustard, these types of locations are essential for conservation. In
many parts of the Sonoran desert, including the Cabeza Prieta National Wildlife Refuge,
ecologists and rangers work to create semi-wild feeding areas for the local fauna, including
the endangered Sonoran Pronghorn [17]. Irrigation systems are created to bring water to
previously dry desert locations. These newly wet areas are meant to provide a haven of
native forbs for local fauna to consume, but they are also open to invasion by the Sahara
Mustard.

Our seed bank-free model is obtained by letting ri = 0 in System 2.1.1-2.1.4 and is
given by:

SN (t+ 1) = (1− σN )fNPN (t), (3.0.10)

PN (t+ 1) =
µNσNfNPN (t)

1 + αNσNfNPN (t) + βσMfMPM (t)
, (3.0.11)

SM (t+ 1) = (1− σM )fMPM (t), (3.0.12)

and PM (t+ 1) =
µMσMfMPM (t)

1 + αMσMfMPM (t)
. (3.0.13)

Since Equations 3.0.11 and 3.0.13 are decoupled from Equations 3.0.10 and 3.0.12, respec-
tively, the dynamics of the system are determined explicitly from Equations 3.0.11 and
3.0.13.

The equilibria of the equations are found by setting f(P ∗i ) = P ∗i , where f(PN ) and
f(PM ) are the right hand sides of Equations 3.0.11 and 3.0.13, respectively. From these
equations we obtain the equilibria values P ∗N and P ∗M given by the solutions of the following
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equations:

P ∗N =
µNσNfNP

∗
N

1 + αNσNfNP ∗N + βσMfMP ∗M
and P ∗M =

µMσMfMP
∗
M

1 + αMσMfMP ∗M
.

Therefore, the two dimensional system obtained from Equations 3.0.11 and 3.0.13 has
two equilibria. One of these is the extinction equilibrium E0 = (0, 0). The other is the
coexistence equilibrium E1.

E1 =

(
αM (µNσNfN − 1)− β(µMσMfM − 1)

αMαNσNfN
,
µMσMfM − 1

αMσMfM

)
.

In order for the coexistence equilibrium to exist, we need αM (µNσNfN−1)−β(µMσMfM−
1) > 0 and µMσMfM − 1 > 0, that is,

β

αM

(
µMσMfM − 1

µNσNfN − 1

)
< 1, (3.0.14)

and

µMσMfM > 1. (3.0.15)

3.1 Stability of Equilibria for the Seed Bank-Free Model

To determine the stability of the equilibrium points, we linearize the system around the
equilibria by taking the Jacobian matrix:

J(E) =

(
∂PN
∂PN
|E ∂PM

∂PN
|E

∂PN
∂PM
|E ∂PM

∂PM
|E

)
,

where E = (P ∗N , P
∗
M ) is a equilibrium of the system provided by Equations 3.0.11 and

3.0.13. The equilibrium point is said to be asymptotically stable if ρ(J(E)) < 1, where
ρ(x) is the spectral radius operator of J(E) (i.e. ρ(J(E)) = |max {λ1, λ2} |, where λ1 and
λ2 are the eigenvalues of J(E)).
The Jacobian matrix at the extinction equilibrium E0 is:

J(E0) =

(
µNσNfN 0

0 µMσMfM

)
.

Hence the eigenvalues of J(E0) are λ0
1 = µNσNfN and λ0

2 = µMσMfM . Therefore, in
order for E0 to be asymptotically stable we must have ρ(J(E0)) = |max

{
λ0

1, λ
0
2

}
| < 1.

In other words, either

|λ0
1| = µNσNfN < 1 or |λ0

2| = µMσMfM < 1. (3.1.1)

8



Thus, E0 is locally asymptotically stable, provided that ρ(J(E0)) < 1. However, if either
of these conditions in Inequality 3.1.1 hold, the coexistence equilibrium E1 will not exist
(see Inequalities 3.0.14 and 3.0.15).

The Jacobian matrix at E1 is given by:

J(E1) =

(
Λ 0
Φ 1

µMσMfM

)
,

where Λ = αM+β(µMσMfM−1)
αMµNσNfN

and Φ = βσMfM
αNσNfN

(Λ−1). Hence the eigenvalues of J(E1)
are:

λ1
1 = Λ and λ1

2 =
1

µMσMfM
.

Therefore, the coexistence equilibrium E1 is locally asymptotically stable provided that:

ρ(J(E1)) = |max
{
λ1

1, λ
1
2

}
| < 1. (3.1.2)

If λ1
1 < λ1

2 (ρ(J(E1)) = |λ1
2|) and

µMσMfM > 1, (3.1.3)

(which is always true whenever E1 exists by Inequality 3.0.15), then E1 will be locally
asymptotically stable.

On the other hand, if λ1
2 < λ1

1, ρ(J(E1)) = |Λ| = Λ, since µMσMfM > 1 is required
for E1 to exist. The condition for local asymptotical stability of E1 becomes:

Λ < 1⇒ β

αM

(
µMσMfM − 1

µNσNfN − 1

)
< 1. (3.1.4)

Equation 3.1.4 is satisfied by the existence condition of E1, therefore E1 is locally
asymptotically stable wherever it exists.

3.2 Conditions for global asymptotic stability of the extinction equilib-
rium

Here, we will show that E0, the extinction equilibrium for both plant species, is globally
asymptotically stable. In order to prove this we designate a Lyapunov function V such
that: V : Rn → R, is a continuous scalar function that is locally positive-definite, i.e.

V (0) = 0,

V (X) > 0 ∀ X ∈ U 6 {0} ,

where U is a neighborhood around X = 0
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Theorem 1. (Case r = 0) Global stability of the extinction equilibrium.
Assume µNσNfN < 1 (or fN < 1

µNσN
) and µMσMfM < 1 (or fM < 1

µMσM
) then the

extinction steady state, E0 = (0, 0), is globally asymptotically stable. Furthermore, E0 is
the only equilibrium point of the system.

Consider the Lyapunov function:

V (PN , PM ) = P 2
N + P 2

M > 0. (3.2.1)

If ∇V (X) < 0 ∀ X ∈ Rn 6 {0}, and V (X) → ∞ as ‖X‖ → ∞, then the equilibrium is
globally asymptotically stable (g.a.s.). Where here ∇V (X) is defined as:

∇V (X) = V (f(X))− V (X). (3.2.2)

for f(X) = X(t+ 1).

f

(
PN
PM

)
=

(
PN (t+ 1)
PM (t+ 1)

)
. Since PN (t+ 1) and PM (t+ 1) are always positive, we must

show that ∇V
(
PN
PM

)
< 0.

∇V
(
PN
PM

)
= V

(
f

(
PN
PM

))
− V

(
PN
PM

)
= V

(
PN (t+ 1)
PM (t+ 1)

)
− V

(
PN
PM

)
=

(
µNσNfNPN

1 + αNσNfNPN + βσMfMPM

)2

+

(
µMσMfMPM

1 + αMσMfMPM

)2

− P 2
N − P 2

M

=

[(
µNσNfN

1 + αNσNfNPN + βσMfMPM

)2

− 1

]
P 2
N

+

[(
µMσMfM

1 + αMσMfMPM

)2

− 1

]
P 2
M

≤ [(µNσNfN )2 − 1]P 2
N + [(µMσMfM )2 − 1]P 2

M

< 0

if and only if µNσNfN < 1 and µMσMfM < 1.
Since fecundity (fi) is greater than one and often a large number, the last two inequal-

ities will be satisfied if µiσi is sufficiently smaller than 1, or µiσi <
1
fi

. Table 2 summarizes
the stability analysis for the seed bank-free model.

Equilibrium Existence Criteria Stability Conditions

Extinction always exists ρ(E) = µifiσi < 1

Coexistence µMfMσM > 1 and β(µMσMfM−1)
α(µNσNfN−1) < 1 µMfMσM > 1 and β(µMσMfM−1)

α(µNσNfN−1) < 1

Table 2: Fixed point existence and stability, where i ∈ {N,M}.
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4 Seed Bank Model

Our competition model including a seed bank is, as mentioned previously,

SN (t+ 1) = (1− σN )fNPN (t) + (1− gN )rNSN (t), (4.0.3)

PN (t+ 1) =
µNσNfN

1 + αNGN (t) + βGM (t)
PN (t) +

µNgNrN
1 + αNGN (t) + βGM (t)

SN (t), (4.0.4)

SM (t+ 1) = (1− σM )fMPM (t) + (1− gM )rMSM (t), (4.0.5)

PM (t+ 1) =
µMσMfM

1 + αMGM (t)
PM (t) +

µMgMrM
1 + αMGM (t)

SM (t). (4.0.6)

Where

Gi(t) = σifiPi(t) + giriSi(t). (4.0.7)

As with the r = 0 case, we solve for the equilibria of the system by setting f(E∗) =
E∗. The equilibrium values for the seeds can simply be written as a function of the
corresponding plant equilibrium values, where:

S∗i =
(1− σi)fiP ∗i
1− ri(1− gi)

.

If an annual produces no seeds (fi = 0) or all of its seeds germinate (σi = 1) within the
first year, there will be no seed bank (S∗i = 0). Also, as r → 0, S∗i → (1− σi)fiP ∗i , which
is simply the number of seeds that do not germinate the first year, coinciding with the
reduced model where r = 0. Clearly, if there are no plants then there is no seed bank at
equilibrium.

There are four equilibria associated to System 4.0.3-4.0.6, corresponding to the ex-
tinction, native forb exclusion, Sahara Mustard exclusion, and co-existence equilibria,
respectively, of the form E = (S∗N , P

∗
N , S

∗
M , P

∗
M ). These are

E0 = (0, 0, 0, 0), (4.0.8)

E1 =

(
0, 0,

(1− σM )fMP
∗
M1

1− rM (1− gM )
, P ∗M1

)
, (4.0.9)

E2 =

(
(1− σN )fNP

∗
N1

1− rN (1− gN )
, P ∗N1, 0, 0

)
, (4.0.10)

E3 =

(
(1− σN )fNP

∗
N2

1− rN (1− gN )
, P ∗N2,

(1− σM )fMP
∗
M1

1− rM (1− gM )
, P ∗M1

)
. (4.0.11)
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The terms of the equilibria are given by:

P ∗M1 =
µMfMΘM − 1

αMfMΘM
,

P ∗N1 =
µNfNΘN − 1

αNfNΘN
,

P ∗N2 =
αM (µNfNΘN − 1)− β(µMfMΘM − 1)

αMαNfNΘN
,

and Θi =
σi + ri(gi − σi)
1− ri(1− gi)

.

If ri = 0, Θi = σi, reducing the system to the seed bank-free model. For i = M , σM = gM
(see discussion of parameters in Section 4 for justification) and so ΘM simplifies to

ΘM =
σM

1− rM (1− σM )
.

The equilibrium values for the Sahara Mustard are independent of the native annual
plant equilibria, as expected, since the equations associated with Sahara Mustard (4.0.5,
4.0.6) are decoupled from those associated with the native annuals (4.0.3, 4.0.4).

The conditions for the existence of E1, the native annual exclusion equilibrium, and
E2, the Sahara Mustard exclusion equilibrium, are:

µMfMΘM > 1 and (4.0.12)

µNfNΘN > 1, (4.0.13)

respectively, while for E3 (the coexistence equilibrium) to exist, we need that:

β(µMfMΘM − 1)

αM (µNfNΘN − 1)
< 1, (4.0.14)

µMfMΘM > 1, and µNfNΘN > 1. (4.0.15)

To analyze the stability of the equilibria we linearize the system around each point by
computing the Jacobian matrix and study the spectral radius in each case. For details see
Appendix A. Table 3 summarizes the existence criteria needed for the equilibria and their
respective stability conditions.

Fixed Point Existence Criteria Stability Conditions

Extinction always exists Ri < 1

Native Annual Exclusion RM > 1 RM > 1, β(RM−1)
αM (RN−1) > 1

Sahara Mustard Exclusion RN > 1 RN > 1, RM < 1

Coexistence Ri > 1, β(RM−1)
αM (RN−1) < 1 1 < RN < 2, RM > 1

Table 3: Fixed point existence and stability, where i ∈ N,M .
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5 Discussion of Analytical Results

Definition 1. Persistence: Ri = µifiΘi.
fiΘi represents the ratio of seedlings to the population of plants of the previous gener-

ation. Thus µifiΘi is the average ratio of surviving seedlings to the previous year’s plant
population absent competition. In order for a population to increase in a single generation,
this ratio must be greater than one. If R > 1, the population is said to be persistent.

Absent considerations of competition, Ri = µifiΘi = 1 would imply that the popu-
lation remain constant in size. However, in this model, the competition between native
annuals and Sahara Mustard, both intra- and interspecific, create more stringent condi-
tions for stability which are dependent on the values of αM and β.

The global asymptotic stability of the extinction equilibrium in the seed bank-free
model gives a lower bound on the amount of control that must be applied to the Sahara
Mustard. If the fecundity (the number of viable seeds produced by an average plant)
of the Sahara Mustard (fM ) is kept less than the number of seeds which germinate and
survive to flowering ( 1

µMσM
), then the population of Sahara Mustard will eventually die

out, assuming that a seed bank is never allowed to develop. There are several ways
to control the spread of Sahara Mustard, which vary in their effectiveness. Marushia
analyzes the effectiveness of hand-pulling of seedlings and herbicide treatment [16]. Hand-
pulling of seedlings can disturb the stratum of the seed bank and allow Sahara Mustard
seeds to germinate but in the case that a seed bank does not yet exist this is no longer
a problem. Hand-pulling effectively decreases the proportion of seedlings which survive
to adulthood (µCM < µM ), with minimal effect on the native annual population [16].
Herbicide treatments of seedlings does not halt seed production but has been shown to
decrease seed viability to 0% (fCM = 0) for at least one generation while having a small
but not insignificant effect on native annuals [16]. The development of herbicide-resistant
strains of Sahara Mustard is a definite concern, therefore herbicides should only be used
judiciously.

Table 3 illustrates the conditions for stability of the four equilibria in the seed-bank
model. Expanding from the simple case of the seed bank-free model grants us strikingly
similar results. As noted earlier, ri = 0 implies Θi = σi. Although the full model has two
more equilibria (the competitive exclusion cases) than the seed bank-free model, there
are clear similarities between the equilibrium existence criteria and stability conditions
of the seed bank-free model and the full model. Figure 5 plots persistence of the native
population against persistence of Sahara Mustard. If both plant species are not persistent,
the extinction equilibrium is stable. If one species is not persistent and the other is, there
is exclusion of the non-persistent species. The more interesting case is if both species
are persistent. The stability then depends further on αM and β. If β > αM (that is,
interspecific competition is greater than the Sahara Mustard intraspecific competition),
coexistence will occur for a smaller range of persistence values. If αM > β, the native
annuals are more likely to coexist with the Sahara Mustard.
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The trivial or extinction equilibrium always exists but is only stable when, for both
species, there are on average fewer surviving seedlings than there were adults in the pre-
vious year. Or, both species are below the persistence threshold.

The extinction equilibrium is not a desired equilibrium for our system. While Sahara
Mustard elimination is a definite goal, it should not come at the expense of losing the
native annual species. This is especially important to remember when considering use
of herbicides. While studies have shown that herbicides have a minimal effect on annual
species when applied at an appropriate time, if this effect is large enough to put the native
species below its persistence threshold then that population will also go extinct.

The conditions for existence and stability of the Sahara Mustard exclusion equilibrium
are analyzed as follows: if the native annual population is above its persistence threshold
and the Sahara Mustard population is below its persistence threshold, then the Sahara
Mustard exclusion equilibrium will have both existence and stability. This equilibrium
represents the ideal goal of conservationists in the Sonoran Desert: complete elimina-
tion of Sahara Mustard. A perfect control method would push only the Sahara Mustard
population beneath its persistence equilibrium, leading to its eventual demise.

The native annual exclusion equilibrium requires only that the Sahara Mustard pop-
ulation be above its persistence threshold to exist. In order for this point to be stable, a
second stability condition must also be satisfied. When the native annual population is
below its persistence threshold, this condition is satisfied for all values of αM and β.
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Figure 3: Bifurcation Diagram, in terms of Sahara Mustard and native annual persistence.
The coexistence equilibrium is stable below the line of slope αM

β , and native annual ex-
clusion is stable above this line. Three lines are plotted for different values of β for fixed
values of αM . In our deterministic simulations and stochastic realizations, αM

β > 1.

The existence criteria and stability conditions for coexistence are attainable for realistic
parameter values. For β such that β > αN , αM (i.e., inter-specific competition is stronger
than intra-specific competition) the magnitude of the coexistence equilibrium for native
annuals is very small relative to that of the Sahara Mustard. Biologically this could
represent the ability of the native annual to find refuge in the presence of large populations
of Sahara Mustard. Further field studies must be conducted to determine if this is a
realistic scenario or simply an apocryphal product of the form of our model.

6 Parameters

Table 4 provides a list of parameter values for different environmental conditions. The
probability of Sahara Mustard and native plant seeds surviving dormancy in the seed bank
(rN and rM ), as dormant seeds are assumed to be immune to weather conditions in our
model.
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Ranges (rainfall in inches) [3,∞) [1.5, 3) [0.59, 1.5) [0, 0.59) -

Parameter Wet Normal Dry Very Dry Reference

σN 0.64 0.11 .04 0.0 [19] [18]
gN 0.43 0.07 0.03 0.0 [18]
µN 0.5 0.1 0.05 - [A]
fN 1750 1000 200 - [A]

σM 0.7 0.58 0.35 0.0 [7] [14]
gM 0.7 0.58 0.35 0.0 [3]
µM variable 0.0 - -
fM 6000 1000 0.0 - [21]

rN 0.37 [A]
rM 0.55 [12]

αN 0.001 [13]
αM 0.001 [13]
β 0.01 [13]

Table 4: Parameter values for the stochastic model. [A]: (Tom Philippi, Personal Corre-
spondence, July 16, 2012)

The orders of magnitude of the competition parameters were taken from a paper by
Law and Watkinson[13], which studied competition between two winter annual grasses.
Other parameter calculations and justifications are as follows.

6.1 Rainfall

We chose to classify years based on the biology of either Sahara Mustard or plants similar
to L. lasiocarpum. For very dry years, we assumed no germination for either species
(gi, σi = 0). There is generally a critical value of rainfall below which there is no, or
negligible, germination for even the best-adapted desert plants. The lowest germination
rates for L. lasiocarpum were seen when 15mm of rainfall was simulated (about 0.59 inches)
[10], which led us to choose 0.59 inches of rain as that critical value.

Although years such as this are rare, they do occur in the Sonoran Desert. For example,
in the year 1995 not a single drop of rain fell in Ajo, AZ [6]. It is assumed that there
would be no winter annuals germinating in such a year. For very dry years, then, µi and fi
are irrelevant, as no plants survive to set seeds. Sahara Mustard is capable of widespread
germination when 1.5 or more inches of rainfall are present, so this was chosen as the lower
bound for our normal years. The upper bound for a normal year was chosen based on the
average rainfall in Ajo over several years [6], as we knew that sudden invasions of Sahara
Mustard were seen after years with increased rainfall [8].
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6.2 Native Plants

• σN : The values for normal and dry years were averages of numbers taken from a
study by Philippi [19] where limited water was given to L. lasiocarpum seeds in order
to track their germination. The value for a wet year was found in a second study,
also by Philippi [18], where seeds were given enough water to ensure that water stress
did not limit germination.

• gN : In a lab study, germination of L. lasiocarpum was tracked over two years. The
first set of seeds, given good germinating conditions two years in a row, had .47
probability of germination in the second year. The second set of seeds, given first
bad and then good conditions, had .4 probability of germination in the second year
[18]. Since it was outside the scope of our model to incorporate seed memory, we
took an average to get 0.43 as the probability of second-year germination for a wet
year. We then assumed that second-year germination rates were linearly dependent
on first-year germination rates, or that gN = kσN . Using .43 for gN and .64 for σN
in a wet year, we found that k = .67. The remaining values of gN were calculated
using the equation gN = .67σN .

• µN : L. lasiocarpum can have 50% survivability under low-density greenhouse con-
ditions and 0-10% survivability in the wild (Tom Philippi, personal correspondence,
July 16, 2012). Because µi was assumed to be independent of density conditions,
we chose 0.5 for survivability under wet conditions. Then we chose 0.1 as average
survivability under normal weather conditions and 0.05 as survivability under less
favorable conditions.

• fN : L. lasiocarpum produces 0-2000 seeds in Arizona, and 0-200 in California (Tom
Philippi, personal correspondence, July 16, 2012). We picked values that fell within
these ranges.

• rN : There are not many viable L. lasiocarpum seeds left in the seedbank after three
years (Tom Philippi, personal correspondence, July 16 2012). We calculated rN such
that, ignoring germination and new seeds, only 5% of the seed bank would be viable
after three years.

6.3 Sahara Mustard

• σM : In a study over 90 days, 58% of Sahara Mustard germinated within 14 days
under good conditions, and up to 70% germinated if given an additional 90 days
[7]. We chose 0.58 as the probability of germination in a regular year and 0.7 as
the probability in a wet year, as a wet year would more likely allow for favorable
conditions later in the season. In a separate study where watering conditions were
varied, germination rates hit a minimum of about 0.35 [14], which we used as the
first-year germination rate in dry years.
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• gM : Three years of dormancy did not affect the germination of Sahara Mustard [3].
As such, we assumed that the probability of a seed germinating out of the seed bank
was the same as the probability of first-year germination (i.e. gM = σM ).

• µM : We varied this parameter in order to model different control strategy efficacies.

• fM : The number of seeds a plant produces varies linearly with its biomass [21]. We
chose mid-range values from two plant sizes.

• rM : Because we knew that seeds could last several years[12], we calculated rM such
that 5% of the bank’s initial seeds would be viable after 5 years.

Beyond the theoretical analysis in Sections 3, 4, and 5, we ran simulations to observe
long-term behavior of System 4.0.3-4.0.6. The parameter values explained in this section
are further used in Sections 7 and 8, for our deterministic and stochastic simulations.
Although there are possible conditions for the existence and stability of all equilibria (see
Section 5), the presence of these equilibria in our simulations is dependent on the numerical
parameter values for our system.

Year Type Persistence β(RM−1)
αM (RN−1) < 1 Equilibria

Native Sahara Mustard Existence Stability

Wet 623 2263 36.3 E0, E1, E2 E1

Normal 14.5 339 250 E0, E1, E2 E1

Dry 0.5 0 23 E0 E0

Critically Dry 0 0 10 E0 E0

Table 5: Fixed point existence and stability for four year types.

Table 5 indicates which of the equilibria discussed in our analysis of the seed-bank
model exist and are stable for our parameter values. We obtained these results by using
the values from Table 4 in the definition of persistence (given in Section 5) and the formula

for β(RM−1)
αM (RN−1) < 1, another constant seen in stability and existence conditions for equilibria.

7 Seed Bank Model Simulations

While the analysis provides equilibrium values and stability conditions, a numeric simu-
lation illuminates the overall behavior of the system over a span of several years, allowing
for a more comprehensive understanding. Matlab code was constructed to calculate and
plot values over a reasonable time interval.

Parameter were assigned based on year types (shown in Table 4. An array of N + 1
indices was constructed for each population in the system. Here, N represents the number
of years the simulation would iterate over (in our simulations, N = 20). A for-loop was
responsible for the iteration and ranged between 1 and N with increments of 1. The unit
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in this construction is one year. Another function was constructed to access the population
sizes from the previous year as well as the proper parameters based on the year type, and
return the deterministic population sizes for the current year as an array. This array was
used to assign the proper values of populations for the current year’s index in the four
population arrays. As necessitated by the for-loop, this process was continued until the
Nth year. See appendix for the Matlab code.

As mentioned previously, several of the system parameters are affected by the amount
of winter rainfall. Because of this, four different deterministic situations were examined;
one corresponding to each of our four winter rainfall classifications (critically dry, dry,
normal, and wet). Each simulation assumed that weather conditions would be consistent
over the time interval. Figures 4, 5, 6, and 7 show the deterministic simulations of Sahara
Mustard and native annual plant and seed populations. We choose the initial conditions
(SN (0), PN (0), SM (0), PM (0)) = (1000, 100, 1000, 100), intraspecific competition parame-
ters of αN = αM = .001, and an interspecific competition parameter of β = .01 (see
Section 6).
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Figure 4: Deterministic simulation assuming constant critically dry weather conditions
over several years.
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Figure 5: Deterministic simulation assuming constant dry weather conditions over several
years.

Figures 4 and 5 show that although the natives fare better than the Sahara Mustard
in the dry scenario, both species go extinct for the dry and critically dry years. This
suggests that the occasional dry year may allow the native annuals to prosper while the
Sahara Mustard dies away. Repeated several times in a row, however, these dry years
cause the seed bank to die out without being replenished.
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Figure 6: Deterministic simulation assuming constant normal weather conditions over
several years.
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Figure 7: Deterministic simulations assuming constant wet conditions over several years.

For the normal and wet simulations in Figures 6 and 7, the Sahara Mustard plants
and seeds reach a non-extinction equilibrium, while the native plants become extinct. In
the wet scenario, the natives’ improved parameter values allow them an extra year before
they reach extinction, but they are ultimately overrun by the mustard. Unfortunately, this
suggests that the native annuals cannot sustain a population over several average years
when competing with the Sahara Mustard.

In addition to plotting the basic behavior of the deterministic model, we mapped the
effect that critical parameters have on it. In order to do so, we created plots that show the
Sahara Mustard and native plant’s final population size as a function of different parame-
ters in our model. Although some parameters proved to be irrelevant to the native plant’s
long-term population dynamics, we saw that the interspecific competition parameter β
and parameters that limit the survival of Sahara Mustard plants (αM and µM ) had a
significant effect on the native plants’ ability to avoid extinction.
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Figure 8: The effect of varying µM and αM on the native plants’ final population size.

Figure 8 indicates that higher levels of intraspecific competition for Sahara Mustard
(αM ) or low levels of Sahara Mustard survivability (µM ) allow the native annuals to
reach higher final population sizes. In both cases, this means that more Sahara Mustard
seedlings die before reaching adulthood and there are less plants for the native annuals
to compete with when germination begins. Since µM would be affected by methods such
as hand-pulling or herbicide, native annuals can persist if sufficient controls are in place
to contain the Sahara Mustard population. However, if Sahara Mustard survivability
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is not sufficiently low, then only large values of αM allow the native annuals to avoid
extinction, supporting the assumption that native plants are not well-equipped to compete
with Sahara Mustard’s prolific, fast-growing populations.

Figure 9: The effect of varying β and αM on the native plants’ final population size.

Figure 9 plots the final population size of each species against values of αM , showing
trajectories for various values of β. Note the effect that Sahara Mustard interspecific
competition (β) has on final population size of both native annuals and Sahara Mustard
when wet years are simulated. In our other deterministic simulations, values of αM = 0.001
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and β = 0.01 were used. For these values the native annual population will eventually go
extinct for wet year simulations. But for smaller values of β (e.g. β < 0.001) we see that
the native annuals will persist, even in the presence of Sahara Mustard. Alternatively, if
αM were increased beyond 0.02, the native annuals would also persist but in the presence of
less Sahara Mustard. This displays the importance of the relative strength of intraspecific
competition of Sahara Mustard to the interspecific competition on the final population
size of both species.

8 Stochastic Simulations

To explore the potential role of environmental variability in the competition between
Sahara Mustard and native annuals, we also ran stochastic simulations that added annual
climate variation to the deterministic model. Each generation, random sampling using
data on the total amount of winter rain in Ajo, Arizona over the past twenty years was
performed. The rainfall data was acquired through the National Oceanic and Atmospheric
Administration (NOAA) website [6]. The randomly sampled data point determined the
type of year (very dry, dry, normal, or wet), and the type of year determined which
parameters would be used (see Table 4). Here we define winter rain as that occurring
from October of the previous year to April of the following year. Our focus is on winter
rain since summer rain does not affect native winter annual or Sahara Mustard populations
of plants and seedlings.

Figure 10 plots inches of winter rainfall from 2012 back to 1926. The most recent year
is left-most on the graph, with preceding years falling to the right. The ten-year mean
for each year is the average for winter rainfall over the previous ten years. This figure
shows the variability in winter rainfall over the years and is also our justification in only
sampling data from the past twenty years. The ten-year average before 1990 is noticeably
higher than it was from 1990 to 2012. While we will not speculate on the cause of this
change, incorporating older data in our stochastic simulation may be unrealistic. Since
the current climate is drier than that of the past, it would be ludicrous to allow for a
plethora of wet years. Our stochastic model assumes that the climate over the next one
or two decades can be predicted by previous conditions, and that the mean winter rainfall
will not return to pre-1990 values.
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Figure 10: Total winter rain (November to April) in Ajo, AZ [6]. The ten-year mean show
the average of the preceding ten years.

Figures 11 through 14 show plots of stochastic and deterministic simulations for the
four populations of our model. Each graph depicts three stochastic realizations plotted
against the four deterministic solutions. These stochastic realizations are different trials
with the same seasonal parameters. To differentiate between the stochastic and deter-
ministic simulations, the deterministic solutions were plotted with symbols at each data
point.
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Figure 11: Three stochastic realizations and four deterministic solutions for native annual
seeds.

Figure 12: Three stochastic realizations and four deterministic solutions for native annual
plants.
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Figure 13: Three stochastic realizations and four deterministic solutions for Sahara Mus-
tard seeds.

Figure 14: Three stochastic realizations and four deterministic solutions for Sahara Mus-
tard plants.

From the stochastic realizations in Figure 11 it can be observed that after twenty
years, the native seed bank is usually not empty. Only a series of critically dry years will
completely eliminate the seed bank. Persistence of the seed bank even under variable con-
ditions was anticipated, as the seed bank is a desert annual’s defense against unfavorable
seasons. We see that in most simulations, the random event of a dry or critically dry
year is not enough to drive the native plant’s seeds to extinction, as seeds are maintained
within the bank under all conditions.

From Figure 12, it can be seen that in general, the native plants are at a critical
population size after these twenty years. Also, from year to year, there are some large
oscillations which coincide with the occurrence of wet years. A single wet year will increase
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native germination, but also drastically increases mustard fecundity, so that wet years favor
the Sahara Mustard. The increased seedlings that result from this create overwhelming
competition in the next year, and the mustard continues to thrive. Although all cases
of the deterministic models resulted in extinction, in the stochastic simulations we see
some native plants surviving the twenty years, indicating that environmental stochasticity
favors the natives’ survival.

Note the scale of the population size in Figure 13. The maximum value is two million
(not shown). Thus, although it appears that the mustard seed bank is almost empty after
the twenty years, it still has several thousand seeds. As in the case of native annual seeds,
the seed bank allows for the seeds to avoid extinction under bad conditions. However,
we also see a large spike in the second stochastic realization, indicating an extremely
successful year for the mustard plants. Fortunately, we also see the seeds decrease and
level out shortly after this sudden spike, due to intraspecific competition preventing the
Sahara Mustard from further increasing its seed bank in the following years.

In Figure 14, the population of Sahara Mustard is bounded between zero and thirty
plants, and oscillates between these values. In spite of Sahara Mustard tending to domi-
nate, its plant population does not immediately outgrow the native plants’ as the deter-
ministic models suggest. Dry and critically dry years likely curb the population growth
we expect from normal and wet years. However, the Sahara Mustard’s massive seed bank
provides the insurance necessary to survive long into the indefinite future, regardless of
weather conditions.

8.1 Final Size Distributions

In order to provide a better understanding of the populations’ stochasticity, histograms
of the final population sizes were produced. We ran 10,000 realizations of the stochastic
simulation and used the final size of the plant and seed populations after 20 years. The
dashed line represents the deterministic end state for a wet year in the deterministic model.
Table 6 provides a summary of the final population sizes under both the deterministic and
stochastic simulations.

SN PN SM PM
Deterministic Wet 0 0 6.5 · 104 30

Deterministic Normal 0 0 0.25 · 104 5
Deterministic Dry/Critically Dry 0 0 0 0

Stochastic Mean 4, 340 4.24 5, 690 7.41
Stochastic Variance 6, 870 8.27 10, 000 9.75

Table 6: Comparison of final population sizes in deterministic and stochastic simulations.

The stochastic simulations allow for non-zero final population sizes for the natives,
despite there being no such possibility in the deterministic models. This suggests that
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climactic variation favors the natives. However, the Sahara Mustard still outcompetes the
native annual.

Figure 15: Sample Mean of 4393.4, Sample Standard Deviation of 6874.2

Figure 15 suggests that the seed bank for native plants will almost always end up
between zero and 1000 seeds at the end of twenty years. From our understanding of the
stochastic simulations, we can conclude that the seed bank might not reach zero in many
cases. This histogram suggests that most of the final seed bank sizes are small relative to
the Sahara Mustard, preventing extinction but not allowing for population explosions.

Figure 16: Sample Mean Value of 4.2356, Sample Standard Deviation of 8.2654

Figure 16 shows that the majority of the native annual plant’s final population sizes
are close to zero. This long term behavior for native plants does not look optimistic, but
as long as the seed bank remains populated (similar to what Figure 15 provided) there
will always be a few native plants present.
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Figure 17: Sample Mean Value of 5691, Sample Standard Deviation of 10027

Figure 17 shows that the mustard seed bank is likely to have a population larger
than the native seed bank. In this case we have a more varied distribution, compared
to the distribution from the natives’ seed bank. While the majority of the time the final
population is around a few hundred, it is more likely to be around 5500 than it is to be
anywhere in the range of 3000 to 5000. This inconsistent distribution can be explained by
the prosperity of Sahara Mustard in wet years, when it is especially fecund. In stochastic
simulations with several wet years, Sahara Mustard is likely to develop enormous seed
banks, compared to stochastic and deterministic simulations for other year types.

Figure 18: Sample Mean Value of 7.4062, Sample Standard Deviation of 9.7547

No population explosion is predicted for the Sahara Mustard plant population in the
deterministic models, but the histogram demonstrates that increased frequencies of wet
years, even if only by a small amount, can result in its population converging to thirty.
We can see that the majority of the final population sizes of the Sahara Mustard plant
population are around five, rather than close to zero as we saw with the native annual
plant population. Again, we see that the Sahara Mustard is likely to outperform the native
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annuals, even in the presence of stochastic weather conditions.

9 Conclusion

Since parameters such as fecundity vary widely according to plant biomass and region,
more studies on whether Sahara Mustard will outcompete or coexist with native annuals
in a particular region are needed. However, fecundity will likely be a critical factor in
determining the likelihood of survival of a native plant in competition with the invasive.
There was a lack of data on competition parameters αi and β. These values are very
important in determining how the system will evolve and quantifying αi and β for a
particular location can give insight into the future evolution of the system. In normal
years, values of β larger than 0.03 result in extinction of the native annuals, supporting
the assumption that native plants are not well-equipped to compete with Sahara Mustard’s
prolific, fast-growing populations.

In our stochastic model, climate variability appeared to act favorably upon the native
annuals. Although all cases of the deterministic models resulted in extinction, in the
stochastic simulations some native plants survive the twenty years. The entire population
can grow greater than predicted by the wet year deterministic model. The Sahara Mustard
population, however, appears to remain bounded above by the wet year predictions. This
indicates that climate variability in an environment can influence the dynamics of the
system in complex ways. In our model, this variability has the most significant impact
on the native annuals, while the final Sahara Mustard populations adhere more closely
to the deterministic model. End-states for Sahara Mustard populations in the stochastic
simulation remain bounded above by wet year predictions.

Since spatial dynamics can be an important part of plant competition in arid regions,
it would be worthwhile to add a spatial component to this model, incorporating density
and even dynamics of seed dispersal. Also, a different model could be created exploring
the dynamics of competition within a season and not just from year to year. This model
could potentially investigate the effect of features such as the timing and amount of winter
rains. Further studies should also be conducted on how fecundity and survival of Sahara
Mustard and native forbs vary with environmental conditions. Although it was beyond the
scope of this project, optimal control strategies for the containment of Sahara Mustard are
also important for future study. Experiments to quantify the competition between Sahara
Mustard and various native plant species would be useful as well.
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Appendix A: Eigenvalues of Jacobian Matrices

Consider a generic equilibrium
(

(1−σN )fNP
∗
N

1−rN (1−gN ) , P
∗
N ,

(1−σM )fMP ∗
M

1−rM (1−gM ) , P
∗
M

)
and let

Z = (1 + αNΘNfNP
∗
N + βΘMfMP

∗
M )2. Then the Jacobian at this generic equilibrium is:
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M )µNgNrN

Z
−βΘNfNP

∗
NµNσMfM
Z

(1+βΘMfMP ∗
M )µNσNfN

Z


with corresponding eigenvalues:

λ1,2 =
1

2

[
C1 ±

√
C2

1 − 4C2

]
,

λ3 = 0,

and λ4 = (1− gM )rM +
σMfMµM

(1 + αMΘMfMP ∗M )2
.

Where C1 and C2 are defined as:

C1 =
(1 + βΘMfMP

∗
M )µNfNσN

(1 + αNΘNfNP ∗N + βΘMfMP ∗M )2
+ (1− gN )rN ,

and C2 =
(1 + βΘMfMP

∗
M )µNfNrN (σN − gN )

(1 + αNΘNfNP ∗N + βΘMfMP ∗M )2
.

The only way we can have complex eigenvalues is if 4C2 > C2
1 . However, a sufficient

condition for this never to occur is:

2gN
σN (1 + gN )

< 1,

which holds for all of our parameters. We can ignore the possibility of complex or
negative eigenvalues and also conclude that λ2 < 1 is satisfied whenever λ1 < 1 because
λ2 < λ1 < 1 for all parameters.

Extinction Equilibrium Stability

The conditions for asymptotic stability are:

µifiΘi < 1.

These conditions are contrary to those given by 4.0.12 and 4.0.13 for existence of E1, E2,
and E3, the native exclusion, mustard exclusion, and coexistence equilibria, respectively.
Thus, the trivial equilibrium point is unstable whenever E1, E2, or E3 exist.
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The eigenvalues at E0 are:

λ1,2 =
1

2

(
A0 ±

√
A2

0 − 4B0

)
,

λ3 = 0,

and λ4 = (1− gM )rM +
σMµMfM

Θ2
M

.

where

A0 = (1− gN )rN + σNµNfN ,

and B0 = rN (σN − gN )µNfN .

Native Exclusion Equilibrium Stability

E1 is the native exclusion equilibrium, where P ∗N = S∗N = 0. The eigenvalues are:

λ1,2 =
1

2

(
A1 ±

√
A2

1 − 4B1

)
,

λ3 = 0,

and λ4 = (1− gM )rM +
σMµMfM

Θ2
M

.

where

A1 = (1− gN )rN +
αMσNµNfN

αM + β(µMfMΘM − 1)
,

and B1 = rN (σN − gN )
αMµNfN

αM + β(µMfMΘM − 1)
.

This yields the conditions:

λ1 < 1,

and (1− gM )rM +
σMµMfM

Θ2
M

< 1.

The conditions for asymptotic stability are:

β(µMfMΘM − 1)

αM (µNfNΘN − 1)
> 1 and

µMfMΘM > 1.

Therefore, the native exclusion equilibrium is locally asymptotically stable only whenever
E∗M1 exists but E∗N1 does not.
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Sahara Mustard Exclusion Equilibrium Stability

E2 is the no-mustard equilibrium, where PM = SM = 0.The corresponding eigenvalues
are:

λ1,2 =
1

2

(
A2 ±

√
A2

2 − 4B2

)
,

λ3 = 0,

and λ4 = (1− gM )rM + σMµMfM .

where

A2 = (1− gN )rN +
σN

µNfNΘ2
N

,

and B2 =
rN (σN − gN )

µNfNΘ2
N

.

Then the conditions for asymptotic stability are:

µNfNΘN > 1 and

µMfMΘM < 1.

Then, the Sahara Mustard exclusion equilibrium exists whenever the native exclusion and
coexistence equilibria do not exist.

Coexistence Equilibrium Stability

For the coexistence equilibrium, the eigenvalues are:

λ1,2 =
1

2

(
A3 ±

√
A2

3 − 4B3

)
,

λ3 = 0,

and λ4 = (1− gM )rM +
σMµMfM

Θ2
M

.

where

A3 = (1− gN )rN +
(αM + βµMfMΘM )σNfNµN
αMµNfNΘN + 2βµMfMΘM

,

and B3 =
(αM + βµMfMΘM )(σN − gN )fNrNµN

αMµNfNΘN + 2βµMfMΘM
.

The conditions for asymptotic stability are:

1 < µNfNΘN < 2,

and µMfMΘM > 1.

Therefore, when the coexistence equilibrium is stable, it is the only stable equilibrium
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