
Effects of Natural Acquired Immunity in an Age-Structured

Malaria Model

Katia Vogt Geisse 1, Emmanuel J. Morales Butler 2, Juan M. Cordovez3

July 31, 2012

1 Department of Mathematics, Purdue University, West Lafayette, IN
2 School of Human Evolution and Social Change (SHESC),

Mathematical and Computational Modeling Sciences Center (MCMSC), Arizona State University,
Tempe, AZ

3 Department of Biomedical Engineering, Universidad de los Andes, Bogota, Colombia

Abstract

Malaria, a vector borne disease, is one of the most important major global public
health challenges. In this paper we develop a deterministic mathematical model for
malaria, which considers the effects on malaria prevalence of the chronological age of
human hosts and the role of natural acquired immunity (NAI) of people continuously
exposed to the parasite. We identify the basic reproduction number, R0, and run nu-
merical simulations on a discrete age version of the model. The aim of this study is to
determine how different levels of age dependent NAI, which depend on levels of trans-
missibility (mosquito presence) can affect malaria dynamics. We conclude that the
proportion of infectious individuals decrease with increasing levels of transmissibility
and that for levels of transmissibility greater than a certain threshold, the number of
infectious people in younger age groups is larger than in older ones.
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1 Introduction

Malaria is a vector-borne infectious disease caused by Plasmodium parasites, which is
transmitted to humans by the bites of female Anopheles mosquitoes, which exclusively
bite at night [1], most commonly from the species A.gambiae. Four parasite species are
responsible for causing malaria in humans: Plasmodium falciparum, Plasmodium vivax,
Plasmodium malariae and Plasmodium ovale. 3.3 billion people live in areas at risk of
malaria transmission, which is the 5th leading cause of death from infectious diseases
worldwide [4]. Malaria is a major international health problem, with an annual estimate
of 216 million documented cases (clinical episodes) and around 1 million deaths [4]. The
disease is mostly common in tropical and subtropical regions including much of Sub-
Saharan Africa, Asia and the Americas. Most vulnerable to severe malaria when exposed
to the parasite are people with little or no immunity to the disease, such as young children,
pregnant women, or travelers coming from regions with no malaria transmission or low
endemicity (proportion of people tested positive for P.falciparum antibodies) [4]. Malaria
is a huge economic burden for many countries, with direct costs estimated to be at least
US$12 billion per year world wide [4].

P.falciparum is responsible for approximately 1 million deaths and 75% of the malaria
cases worldwide [2]. Across Sub-Saharan Africa, where the disease is highly endemic,
humans are constantly exposed to the mosquito and hence to the parasite. In these
regions, the majority of infected adults do not experience severe clinical manifestations
when infected, and continue with their daily routine, despite positive results in diagnostic
tests for parasitemia [5]. This ability to suppress parasite growth in the human body
after repetitive exposer to P.falciparum is called natural acquired immunity (NAI)[25].
NAI can be divided into three types of immunities to malaria: (i) antiparasite immunity,
which affects the density of the parasite in the blood; (ii) clinical immunity, which gives
protection against clinical symptoms; and (iii) premunition, which gives protection against
new infections due to a low-grade parasitemia [25]. If the constant exposure to the parasite
is interrupted for a prolonged period of time, the NAI is lost or weakened, which occurs
in geographical regions with high seasonality and hence a lower transmissibility of malaria
due to a non uniform mosquito presence [6]. For the purpose of realistically studying the
risk of malaria infection it is also worth while to consider innate immunity (II), defined by
Bruce-Chwatt as: “...an inherent property of the host, a refractory state or an immediate
inhibitory response to the introduction of the parasite, not dependent on any previous
infection with it...”[11] [25]. II is associated to the immune response of the human host
to the infection, and it has been shown to be age dependent [7]. Therefore, people living
in areas with high endemicity (high transmissibility of malaria) are constantly exposed to
the parasite and therefore acquire natural immunity when aging, whereas people living in
lower endemicity areas (low transmissibility of malaria) lose the NAI if previously acquired
and are dangerously exposed to new infections.

The first model that outlined the basic features of malaria transmission was developed
by Sir Ronald Ross in 1911 [10]. In his model Ross captured the incidence of malaria
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in humans related to the number of mosquitoes. He presented a deterministic ordinary
differential equations model, with an SIS structure for human hosts and an SI structure
for mosquito vectors, where S denotes susceptible and I infected. However, with the
availability of more data and knowledge about malaria, this model became not sufficient
anymore [3]. That first malaria model was expanded in several ways, for example by
introducing the effects of human age [17] [12] [13], acquired immunity to malaria [12] [14]
[19] or genetic and spacial heterogeneity of parasite and host [22], among these age and
immunity play an important role in endemic malaria regions [5][7][6]. Age structure was
included by Anderson and May [17], where they allow the infection to move differentially
within different age groups as well as with time, which give rise to a partial differential
equation model in time and age. Again it was later noticed that this model did not fit
well with real trends in prevalence with age [18] because they had not considered NAI
in their model and therefore it was suggested that NAI has to be co-played with age [3].
Immunity has been studied by including an immunity function in existing models [19] or
by considering separate immune classes [20][3]. Those models include immunity but do
not consider age, ignoring again one of the important factors for risk of malaria infection.
Therefore we developed a deterministic partial differential equations malaria model, with
non-constant total human population, in which we include NAI of individuals in different
compartments and continuously changing with age and time, to study malaria dynamics.
Furthermore, in our model we include that NAI varies with age and is related to mosquito
presence [8], which to the best of our knowledge has not been previously considered.

Here we use our model to study the role that NAI plays for malaria transmission dy-
namics. We investigate the possible effects on malaria that weakness and loss of NAI have
as a result of changing levels of transmissibility (mosquito presence). It is important for
control strategies to determine how people with acquired immunity, which are typically the
ones not attending medical facilities, either due to being asymptomatic or having uncom-
plicated flu like clinical manifestations, affect prevalence of Malaria in African countries
and failure to achieve a successful control of the disease.

2 Age-Structured Malaria Model

We construct a compartment malaria model that incorporates the transmission between
humans and mosquitoes. The model is a natural epansion of Ross’s model [3] that incorpo-
rates host’s age structure and two classes that account for differences in malaria dynamics
considering malaria endemicity of the geographical region and natural acquired immunity
(NAI) of humans.
Let s(t, a), i(t, a), ĩ(t, a) and r(t, a) denote the density of susceptible, infectious (with high
parasitemia and severe clinical manifestations), infectious (with low parasitemia with a
lack or mild disease clinical manifestations) and recovered individuals respectively. We
allow the possibility for recovered individuals to have a positive parasitemia count in the
blood but at such low levels that are insufficient for transmission to the mosquito. In
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addition, we let Sv(t) and Iv(t) denote the number of susceptible and infected mosquitoes
respectively at time t.
Some of the host’s parameters now depend on age, hence let dh(a) denote the age depen-
dent natural death rate of humans, while δh(a) and δ̃h(a) denote the age dependent disease
induced human death rates. We denote to be ρ(a) the age dependent rate of suppressing
the parasite growth in the human body by the II, and ρ̃(a) the age dependent rate of sup-
pressing the parasite growth by the II and by the antiparasite immunity, a fundamental
part of NAI development.
To find the number of new infections for humans define β to be the number of bites of one
mosquito to humans per unit of time, d(a) the age dependent probability of transmission
of infection from an infected mosquito to a susceptible host given that contact (by biting)
between the two occur, and let Nh(t) :=

∫∞
0 (s(t, a) + i(t, a) + ĩ(t, a) + r(t, a))da, that

is the total human population size at time t. Further, let d̃(a) denote the probability of
transmission of infection from an infected mosquito to a recovered host wherever a contact
between the two occur. Then, the number of new infections of susceptible [recovered] hosts

of age a per unit of time by mosquito bites is given by d(a)β s(t,a)
Nh(t)Iv(t), [d̃(a)β r(t,a)

Nh(t)Iv(t)].

We assume that the probability of transmission d̃(a) is different from the probability of
transmission d(a), since humans in the recovered class profit from premunition immunity
which is part of the NAI, resulting from the repeated exposure to the parasite.
Finally denote γ(a) the age dependent rate of recovering from the parasite and becoming
completely susceptible, without any NAI protection.
We also include the parameter p that describes the level of transmissibility (chance of get-
ting the disease, i.e. probability of encounter mosquitoes), when defined as proportion of
people constantly exposed to mosquitoes in a geographical region; with p = 1 representing
a high transmissibility area (high mosquito presence 7 − 12 months a year) and p = 0
representing a low transmissibility area (high mosquito presence < 3 months a year).
Finally, the age dependent fertility rates are given by λh(a) and λ̃h(a) under the assump-
tion that new born individuals are born susceptible at a constant rate Λ.

To describe the mosquito dynamics we assume that mosquitoes do not recover from
infection due to their short life span, and hence disease vector dynamics are captured by
an SI model structure. If we let dv be the natural death rate and λv be the birth rate
of mosquitoes, c and c̃(a) be the probability of transmission of infection to a susceptible
mosquito from an infected host i(t, a) and ĩ(t, a) respectively of age a, given that contact
between the two occur, then the number of new infections of mosquitoes per unit of time

by biting infectious hosts is given by β Ih(t)
Nh(t)Sv(t)+β Ĩh(t)

Nh(t)Sv(t) where Ih(t) :=
∫∞

0 ci(t, a)da

and Ĩh(t) :=
∫∞

0 c̃(a)̃i(t, a)da. It is important to point out that the age dependency of c̃(a)

can be understood by realizing that subjects in class ĩ have a partially or fully developed
antiparasite immunity, that in turn is age dependent and directly affects the transmission
of the parasite to mosquitoes. On the other hand, we choose c to be constant since humans
in class i are considered to have an equally high parasite load due to first infection if p = 1
and first like infection if p 6= 1, independent of age. For a diagram of the model see Figure
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1.
The disease dynamics in this setting can be described by the following set of cou-

pled ordinary differential equations (1) (for mosquitoes) and partial differential equations
(2)(for humans): 

dSv
dt

= λv − β
Ih(t)

Nh(t)
Sv(t)− β

Ĩh(t)

Nh(t)
Sv(t)− dvSv(t)

dIv
dt

= β
Ih(t)

Nh(t)
Sv(t) + β

Ĩh(t)

Nh(t)
Sv(t)− dvIv(t)

(1)



∂s

∂t
+
∂s

∂a
=(1− p)γ(a)̃i(t, a)− d(a)β

s(t, a)

Nh(t)
Iv(t)− dh(a)s(t, a)

∂i

∂t
+
∂i

∂a
=d(a)β

s(t, a)

Nh(t)
Iv(t)− ρ(a)i(t, a)− (dh(a) + δh(a))i(t, a)

∂ĩ

∂t
+
∂ĩ

∂a
=ρ(a)i(t, a) + d̃(a)β

r(t, a)

Nh(t)
Iv(t)− pρ̃(a)̃i(t, a)

− (dh(a) + ρ̃h(a))̃i(t, a)− (1− p)γ(a)̃i(t, a)

∂r

∂t
+
∂r

∂a
=pρ̃(a)̃i(t, a)− d̃(a)β

r(t, a)

Nh(t)
Iv(t)− dh(a)r(t, a)

(2)

with boundary conditions (B.C.):
s(t, 0) =

∫ ∞
0

(λh(a)[s(t, a) + r(t, a)] + λ̃h(a)[i(t, a) + ĩ(t, a)])da =: Λ

i(t, 0) = 0

ĩ(t, 0) = 0

r(t, 0) = 0

(3)

and initial conditions (I.C.): 
s(0, a) = s0(a)

i(0, a) = i0(a)

ĩ(0, a) = ĩ0(a)

t(0, a) = r0(a)

(4)
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Figure 1: Age-structured Malaria Model

3 Analysis of the age-structure host-vector malaria model

In mathematical models for the spread of infectious diseases there is an important thresh-
old number called the basic reproduction number R0. If R0 is greater than one, the disease
can invade into the population, whereas if R0 is less then one the disease dies out. The
basic reproduction number is defined in general as the average number of secondary cases
produced by one infectious individual, during its total infective period when introduced in
a completely susceptible population (a population that is in the disease-free steady state).
In this section we find the basic reproduction number by first analyzing the behavior of
the population when it is completely susceptible (disease-free) and then by linearizing the
system (1) and (2) at the disease free state to find a characteristic equation from where
we define R0. At the end of this section we give an interpretation for the expression for
R0 obtained from our malaria model with age-structure.

3.1 The disease-free state

We analyze how the mosquito and the human population behave in the absence of disease.
For this purpose we assume

Iv = 0 and i = ĩ = r = 0.

We obtain the following linear equation that describes the mosquito population when we
enter the above into system (1):

dNv

dt
= λv − dvNv(t)
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where Nv(t) = Sv(t) is the total susceptible mosquito population.
The solution to this equation is given by

Nv(t) =
λv
dv

+ (Nv(0)− λv
dv

)e−dvt →t→∞
λv
dv

=: N∞

Hence, it will be assumed that the vector population has achieved its stable equilibrium
defined by N∞ in the absence of disease. Observe that if we add the two equations for
mosquitoes from system (1) we obtain the linear differential equation dNv

dt = λv−dvNv(t),
that is the same linear equation studied above for the disease free case, and so it can
be assumed the mosquito population has achieved an equilibrium even in the presence of
disease. Thus, because of the short lifespan of mosquitoes (approximately two weeks), we
will assume throughout this work, that the mosquito population is at equilibrium N∞.

From the equations involved in system (2), the only process affecting the human popu-
lation in the disease free case come from vital dynamics. And in this case when substituting
0 for each of the infectious classes the process leads to the following equations, called the
McKendrick equation:

∂s

∂t
+
∂s

∂a
= −dh(a)s(t, a)

With B.C. and I.C.:

s(t, 0) =

∫ ∞
0

λh(a)s(t, a)da =: B(t) = Λ s(0, a) = s0(a)

Formal solutions for this equation will evolve along the characteristic lines a = t + c,
for c constant.
If a ≥ t, then s(t, a) = s(0, a−t)e−

∫ a
a−t dh(σ)dσ, which means that s(t, a) are the individuals

who were age a− t at time 0, multiplied by the probability of surviving from age a− t to
age a.

If t > a, then s(t, a) = s(t − a, 0)e−
∫ a
0 dh(σ)dσ, which means s(a, t) are the individuals

who were newborn (a = 0) at time t− a, multiplied by the probability of survival through
age a.

The density for the total human population is then given by

s(t, a) =

{
s0(a− t)e−

∫ a
a−t dh(σ)dσ, if a ≥ t

B(t− a)e−
∫ a
0 dh(σ)dσ, if t > a.

Substituting into the B.C. we find the so called Renewal Equation

B(t) =

∫ ∞
0

λh(a)s(t, a)da

=

∫ t

0
λh(a)B(t− a)e−

∫ a
0 dh(σ)dσda+

∫ ∞
t

λh(a)s0(a− t)e−
∫ a
a−t dh(σ)dσda︸ ︷︷ ︸

:=f(t)
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where f(t) represents the rate of new offspring generated by individuals in the population
present at time t = 0.

It can be shown [9] that
B(t) = Cep̂t(1 + Ω(t))

where C ≥ 0 constant, and Ω(t) is a function such that limt→∞Ω(t) = 0 and p̂ measures
the population dynamics.

So, if t >>, then
s(t, a)→ Cep̂(t−a)e−

∫ a
0 dh(σ)dσ

Hence, the important solutions to consider are persistent solutions, i.e. exponential solu-
tions with constant population structure:

s(t, a) = ep̂(t−a)P (a)

where P (a) = e−
∫ a
0 dh(σ)dσ and p solves the characteristic equation

1 =

∫ ∞
0

λh(a)e−
∫ a
0 dh(σ)dσe−p̂ada

3.2 Basic reproduction number R0 and local stability

Assume, in the absence of infection, the human population has achieved the stable age-
distribution

n(t, a) = s(t, a) = s0P (a) =: P0(a)

where P (a) = e−
∫ a
0 dh(σ)dσ.

And the mosquito population reached equilibrium

N∞ = Sv(t) =
λv
dv

To study the local stability of the disease-free state, we need to linearize the equations is
systems (1) and (2) at the disease free state:

(Sv(t), Iv(t)) = (
λv
µv
, 0, ),

and
(s(t, a), i(t, a), ĩ(t, a), r(t, a)) = (P0(a), 0, 0, 0)

by using the transformations

x(t, a) = s(t, a)− P0(a), Xv(t) = Sv(t)−
λv
µv
, Mh(t) = Nh(t)−

∫ ∞
0

P0(a)da.
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Observe that

1

Nh(t)
=

1∫∞
0 nh(t, a)da

=
1∫∞

0 P0(a)da
− 1

(
∫∞

0 P0(a)da)2
(Mh(t)) +O(M2

h(t))

=
1

P̄
− 1

(P̄ )2
(Mh(t)) +O(M2

h(t))

where we call P̄ :=
∫∞

0 P0(a)da, and

s(t, a)

Nh(t)
= (x(t, a) + P0(a))Iv(t)[

1

P̄
− 1

(P̄ )2
(Mh(t)) +O(M2

h(t))] ≈ P0(a)

P̄
Iv(t)

r(t, a)

Nh(t)
Iv(t) ≈ r(t, a)Iv(t)[

1

P̄
− 1

(P̄ )2
(Mh(t))]

Defining Ĩh(t) :=
∫∞

0 c̃(a)̃i(t, a)da, the linearized system is as follows:


dXv

dt
= −βN∞

P̄
Ih(t)− βN∞

P̄
Ĩh(t)− dvXv(t)

dIv
dt

= −βN∞
P̄

Ih(t)− βN∞
P̄

Ĩh(t)− dvIv(t)
(5)



∂x

∂t
+
∂x

∂a
= −d(a)β

P0(a)

P̄
Iv(t)− dh(a)x(t, a) + (1− p)γ(a)̃i(t, a)

∂i

∂t
+
∂i

∂a
= d(a)β

P0(a)

P̄
Iv(t)− (ρ(a) + dh(a) + δh(a))i(t, a)

∂ĩ

∂t
+
∂ĩ

∂a
= ρ(a)i(t, a)− (pρ̃(a) + dh(a) + δ̃h(a))̃i(t, a)− (1− p)γ(a)̃i(t, a)

∂r

∂t
+
∂r

∂a
= pρ̃(a)̃i(t, a)− dh(a)r(t, a)

(6)

Since,
∫∞

0 λh(a)P0(a)da =
∫∞

0 λh(a)s0P (a)da = s0

∫∞
0 λh(a)P (a)da = s01 = s0

and P0(0) = s0P (0) = s0,
the B.C. and the I.C. are:

x(t, 0) =

∫ ∞
0
{λh(a)[x(t, a) + r(t, a)] + λ̃h(a)[i(t, a) + ĩ(t, a)]}da =: Λ

i(t, 0) = 0

ĩ(t, 0) = 0

r(t, 0) = 0
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Xv(0) = S0
v −

λv
dv

Iv(0) = I0
v

x(0, a) = s0(a) + P0(a)

i(0, a) = i0(a)

ĩ(0, a) = ĩ0(a)

r(0, a) = r0(a)

When searching for the basic reproduction number, R0, we want to find a threshold
condition that allows us to say how the infected compartments of the model behave. For
that, consider persistent solutions of the linearized system, i.e., exponential solutions with
constant population structure (exist since the system we are analyzing is homogeneous of
degree 1), of the form

Xv(t) = X̄ve
λt, Iv(t) = Īve

λt

x(t, a) = x(a)eλt, i(t, a) = i(a)eλt, ĩ(t, a) = ĩ(a)eλt, r(t, a) = r(a)eλt

Define C(i) :=
∫∞

0 ci(a) and C (̃i) :=
∫∞

0 c̃(a)̃i(a)da.

Substituting the persistent solutions into equations (5) and (6) and canceling eλt in each
equation, we get the following system of equalities and ODE’s, for mosquitoes and humans
respectively

λX̄v = −βN∞
P̄

C(i)− βN∞
P̄

C (̃i)− dvX̄v

λĪv = β
N∞
P̄

C(i) + β
N∞
P̄

C (̃i)− dv Īv

dx(a)

da
= −d(a)β

P0(a)

P̄
Īv − (dh(a) + λ)x(a) + (1− p)γ(a)̃i(a)

di(a)

da
= d(a)β

P0(a)

P̄
Īv − (ρ(a) + dh(a) + δ(a) + λ)i(a)

dĩ(a)

da
= ρ(a)i(a)− (pρ̃(a) + dh(a) + δ̃(a) + λ)̃i(a)− (1− p)γ(a)̃i(a)

dr(a)

da
= pρ̃(a)̃i(a)− (dh(a) + λ)r(a)

(7)

and I.C.
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x(0) =

∫ ∞
0
{λh(a)[x(a) + r(a)] + λ̃h[i(a) + ĩ(a)]}da := Λ

i(0) = 0

ĩ(0) = 0

r(0) = 0

To find the threshold condition we are interested in the equations of Īv, i(a) and ĩ(a), the
infected age structures.
We will solve the linear ODEs in (7) for i(a) and for ĩ(a), then integrate i(a) and ĩ(a) to
obtain C(i) and C (̃i), which will be substituted into the equation for for Īv in (7):

i(a) = e−
∫ a
0 (ρ(σ)+dh(σ)+δh(σ)+λ)dσ

[∫ a

0
d(σ)β

P0(σ)

P̄
Īve

∫ σ
0 (ρ(ξ)+dh(ξ)+δh(ξ)+λ)dξdσ

]

= Īv

∫ a

0
d(σ)β

P0(σ)

P̄
e−

∫ a
σ (ρ(ξ)+dh(ξ)+δh(ξ)+λ)dξdσ

= Īve
−λa

∫ a

0
d(σ)β

P0(σ)

P̄
e−

∫ a
σ (ρ(ξ)+dh(ξ)+δh(ξ))dξeλσdσ

= Īve
λaF (a, λ)

where we define

F (a, λ) :=

∫ a

0
d(σ)β

P0(σ)

P̄
e−

∫ a
σ (ρ(ξ)+dh(ξ)+δh(ξ))dξeλσdσ.

Similarly we find

ĩ(a) = Īve
−λaG(a, λ)da

where

G(a, λ) =

∫ a

0
ρ(σ)F (σ, λ)e−

∫ a
σ (pρ̃(ξ)+dh(ξ)+δ̃h(ξ)+(1−p)γ(ξ))dξdσ.

Integrating over all ages a we obtain

C(i) = Īv

∫ ∞
0

e−λacF (a, λ)da

C (̃i) = Īv

∫ ∞
0

e−λac̃(a)G(a, λ)da.
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Substituting into the equation for Īv in (7) we obtain

Īv = β
N∞

P̄ (λ+ dv)

[
Īv

∫ ∞
0

e−λacF (a, λ)da+ Īv

∫ ∞
0

e−λac̃(a)G(a, λ)da

]
,

and dividing by Īv (Īv 6= 0) we get a characteristic equation for λ

1 = β
N∞

P̄ (λ+ dv)

[∫ ∞
0

e−λacF (a, λ)da+

∫ ∞
0

e−λac̃(a)G(a, λ)da

]
︸ ︷︷ ︸

=:K(λ)

Definition 1. R0 := K(0).

Theorem 1. The disease-free steady state is locally asymptotically stable if R0 < 1
(λ0 < 0) and unstable if R0 > 1 (λ0 > 0).

Proof. Since limλ→∞ e
−λaF (a, λ) = 0 and limλ→∞ e

−λaG(a, λ) = 0 it is easy to see that

lim
λ→∞

K(λ) = 0.

Similarly, it can also be shown easily that

lim
λ→−∞

K(λ) =∞.

Observe that

∂

∂λ
e−λaF (a, λ) = −ae−λaF (a, λ) + e−λa

∂F

∂λ

= −ae−λaF (a, λ) + e−λa
∫ a

0
d(σ)β

P0(σ)

P̄
e−

∫ a
σ (ρ+dh+δh)dξeλσσdσ

= e−λa
∫ a

0
d(σ)β

P0(σ)

P̄
e−

∫ a
σ (ρ+dh+δh)dξeλσ (σ − a)︸ ︷︷ ︸

<0

dσ

< 0
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and

∂

∂λ
e−λaG(a, λ) = −ae−λaG(a, λ) + e−λa

∂G

∂λ

= −ae−λaG(a, λ) + e−λa
∫ a

0
ρ(σ)

∂F

∂λ
e−

∫ a
σ (ρ̃+dh+δ̃h)dξdσ

= −ae−λa
∫ a

0
ρ(σ)F (σ, λ)e−

∫ a
σ (ρ̃+dh+δ̃h)dξdσ + e−λa

∫ a

0
ρ(σ)

∂F

∂λ
e−

∫ a
σ (ρ̃+dh+δ̃h)dξdσ

=

∫ a

0
ρe−

∫ a
σ (ρ̃+dh+δ̃h)dξ {−ae−λaF (σ, λ) + e−λa

∂F

∂λ
}︸ ︷︷ ︸

<0

dσ

< 0

So,

K ′(λ) =− βN∞
P̄ (λ+ dv)2︸ ︷︷ ︸

<0

{c
∫ ∞

0
e−λaF (a, λ)da+

∫ ∞
0

e−λac̃(a)G(a, λ)da}︸ ︷︷ ︸
>0

+
βN∞

P̄ (λ+ dv)
{c
∫ ∞

0

∂

∂λ
e−λaF (a, λ)da+

∫ ∞
0

c̃(a)
∂

∂λ
e−λaG(a, λ)da}︸ ︷︷ ︸

<0

< 0

Then, since K(λ) is a continuous decreasing function function of λ, there exist a unique
real root,λ0, of the characteristic equation K(λ) = 1.

If z ∈ C is a root, i.e. K(z) = 1, then

K(λ0) = 1 = |K(z)| = | βN∞
P̄ (λ+ dv)

∫ ∞
0

e−λa[cF (a, λ) + c̃(a)G(a, λ)]da|

≤ βN∞
P̄ (λ+ dv)

∫ ∞
0

e−Re{z}a[cF (a,Re{z}) + c̃(a)G(a,Re{z})]da

= K(Re{z})

Since K(λ) is an decreasing function, this implies that

Re{z} ≤ λ0,

i.e. λ0 is the leading root.
It follows that the disease free state is asymptotically stable if λ0 < 0, which happens if
R0 = K(0) < 1 and unstable if λ0 > 0, which happens if R0 = K(0) > 1. This completes
the proof.
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3.3 Interpretation of R0

For vector-born diseases R0 is defined to be an infection process including two cycles
when introducing an infected vector into a completely susceptible population of humans
and vectors. The first cycle will give the average number of infected humans that one
infected mosquito introduced into a completely susceptible population can produce during
its infectious period. The second cycle is the average number of infected mosquitoes
that the humans infected during the first cycle produce during their infectious period.
The formal definition for R0 for vector-born diseases is then the following: R0 is the
average number of new infected mosquitoes that one infected mosquito introduced into a
completely susceptible population (of mosquitoes and humans) produces, during its total
infective period.

From the previous section we derived the expression for R0 which is:

R0 =
1

dv
βN∞

1

P̄

[∫ ∞
0

cF (a, 0)da+

∫ ∞
0

c̃(a)G(a, 0)da

]
where

F (a, 0) =

∫ a

0
d(σ)β

P0(σ)

P̄
e−

∫ a
σ (ρ(ξ)+dh(ξ)+δh(ξ))dξdσ

and

G(a, 0) =

∫ a

0
ρ(σ)F (σ, 0)e−

∫ a
σ (ρ̃(ξ)+dh(ξ)+δ̃h(ξ))dξdσ

To explain how the expression for R0 can be interpreted to regain the formal definition,
we will analyze the right hand side of the definition of R0 by separating it into parts:
First of all suppose an infected mosquito is introduced into a completely susceptible hu-
man population (of size P̄ ) and mosquito population (of size N∞).

We will first analyze the expression to interpret the first cycle described in the R0

definition: Since e−
∫ a
σ (ρ(ξ)+dh(ξ)+δh(ξ))dξ is the probability of being alive at age a and

still in the infected class i given that one entered the i class at age σ, we conclude that
d(σ)β P0(σ)

P̄
e−

∫ a
σ (ρ(ξ)+dh(ξ)+δh(ξ))dξ is the number of people that are now of age a, still alive

and still in the infected class i, that got bitten at age σ, by the one infectious mosquito
that got introduced into the completely susceptible human population.

Therefore one can interpret F (a, 0) to be the number of humans that are now of age a,
that are still alive and still in the infected class i, that got bitten, sometime in their life,
by the one infectious mosquito that got introduced into the completely susceptible human
population.
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And so,
∫∞

0 cF (a, 0)da is the total number of human, that are still alive and still in the
infected class i, that got bitten, sometime in their life, by the one infectious mosquito that
got introduced into the completely susceptible human population, and that are capable of
transmitting the disease to a mosquito if bitten.

Hence, ρ(σ)F (σ, 0)e−
∫ a
σ (ρ̃(ξ)+dh(ξ)+δ̃h(ξ))dξ is the number of human that are now of age a,

still alive and still in the infected class ĩ, that reached the infected class ĩ at age σ.

And therefore, G(a, 0) is the number of human that are now of age a, still alive and still
in the infected class ĩ, that reached the infected class ĩ sometime in their life.

Concluding that then
∫∞

0 c̃(a)G(a, 0)da is the total number of human, still alive and still

in the infected class ĩ, that reached the infected class ĩ sometime in their life, and that are
capable of transmitting the disease to a mosquito if bitten.

Now the second cycle has to be interpreted from the equation for R0, i.e. determine how
the infectious humans from the first cycle infect mosquitoes:

The expression cβ
∫∞
0 F (a,0)da

P̄
N∞ is the total number of new infected mosquitoes (that were

among the N∞ completely susceptible), infected by infectious humans belonging to the
class i, per unit of time.

β
∫∞
0 c̃(a)G(a,0)da

P̄
N∞ is the total number of new infected mosquitoes (that were among the

N∞ completely susceptible), infected by infectious humans belonging to the class ĩ, per
unit of time, and 1

dv
is the lifespan of a mosquito.

Therefore, we can conclude that R0 is the average number of new infected mosquitoes that
one infected mosquito introduced into a completely susceptible population (of mosquitoes
and humans) produces, during its total infective period, as was required to verify.

4 Age-structured model, discrete-age continuous-time

With the aim of running numerical simulations using the ode solvers of MATLAB, we
derived from the PDE age-structured model a discrete in age, continuous in time coupled
ODE model. We followed a method developed by H. Hethcote [15] which consists of the
following:

For simplicity we will assume from now on that λh(a) = λ̃h(a). We divide our popula-
tion into n age groups defined by the n disjoint age intervals, [a0, a1), [a1, a2), . . . , [an−1, an =
∞), so that rates are all constant in each interval, i.e., for a ∈ [ak−1, ak], k = 1, . . . , n:
d(a) = dk, dn(a) = dnk , ρ̃(a) = ρ̃k λh(a) = λhk , ρ(a) = ρk, δ̃h(a) = δ̃hk λ̃h(a) = λ̃hk ,

15



δh(a) = δhk , c̃(a) = c̃k

We define,

Nh(t) =
∑n

k=1

∫ ak

ak−1

n(t, a)da︸ ︷︷ ︸
:=Nk(t)

=
∑n

k=1Nk(t), where Nk is the number of humans in age

group k at time t.
Ih(t) =

∑n
k=1

∫ ak
ak−1

i(t, a)da =:
∑n

k=1 Ik(t),

Ĩh(t) =
∑n

k=1

∫ ak
ak−1

ĩ(t, a)da =:
∑n

k=1 Ĩk(t),

Rh(t) =
∑n

k=1

∫ ak
ak−1

r(t, a)da =:
∑n

k=1Rk(t),

Sh(t) =
∑n

k=1

∫ ak
ak−1

s(t, a)da =:
∑n

k=1 Sk(t), Integrating system (2) for each age interval:

k = 0, . . . , n, we obtain the following for the susceptible class:

d

dt

∫ ak

ak−1

s(t, a)da+

∫ ak

ak−1

∂s(t, a)

∂a
da = −dkβ

Iv(t)

Nn(t)

∫ ak

ak−1

s(t, a)da− dnk
∫ ak

ak−1

s(t, a)da

d

dt
Sk(t) + s(t, ak)− s(t, ak−1) = −dkβ

Iv(t)

Nn(t)
Sk(t)− dnkSk(t)

Define constants that represent the aging rate from one group to the other by ek such that

n(t, ak) = ek

∫ ak

ak−1

n(t, a)da︸ ︷︷ ︸
Nk(t)

, for k = 1, ..., n− 1 and en = 0:

For k = 1
d
dtS1(t) + s(t, a1)︸ ︷︷ ︸

=e1S1(t)

−s(t, 0) = −d1β
Iv(t)
Nn(t)S1(t)− dn1S1(t)

where

s(t, 0) =

n∑
k=1

∫ ak

ak−1

λnk [s(t, a) + r(t, a)] + λ̃nk [i(t, a) + ĩ(t, a)]da

=

n∑
k=1

λnk [Sk(t) +Rk(t)] + λ̃nk [Ik(t) + Ĩk(t)]

=

n∑
k=1

λnkNk(t) =: Λ (assume λnk = λ̃nk)

For k ≥ 2
d
dtSk(t) + ekSk(t)− ek−1Sk−1(t) = −

(
dkβ

Iv(t)
Nn(t) + dnk

)
Sk(t)

Integrating the same way for the other equations in system (2) we end up with the following
ODE system:
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For mosquitoes:

dSv
dt = λv −

{
β

Nh(t)

∑n
k=1[cIk(t) + c̃kĨk(t)]

}
Sv(t)︸ ︷︷ ︸

=λv
dv
−Iv

−dvSv(t)

dIv
dt =

{
β

Nh(t)

∑n
k=1[cIk(t) + c̃kĨk(t)]

}
Sv(t)︸ ︷︷ ︸

=λv
dv
−Iv

−dvIv(t)
(8)

For humans:

d
dtS1(t) = −

(
d1β

Iv(t)
Nh(t) + dh1 + e1

)
S1(t) + (1− p)γ1Ĩ1(t) +

n∑
k=1

λhkNk(t)︸ ︷︷ ︸
=Λ

d
dtSk(t) = −

(
dkβ

Iv(t)
Nh(t) + dhk + ek

)
Sk(t) + (1− p)γkĨk(t) + ek−1Sk−1, for k = 2, . . . , n− 1

d
dtSn(t) = −

(
dnβ

Iv(t)
Nh(t) + dhn

)
Sn(t) + (1− p)γnĨn(t) + en−1Sn−1

(9)
d
dtI1(t) = d1β

Iv(t)
Nh(t)S1(t)− (ρ1 + dh1 + δh1 + e1)I1(t)

d
dtIk(t) = dkβ

Iv(t)
Nh(t)Sk(t)− (ρk + dhk + δhk + ek)Ik(t) + ek−1Ik−1(t), for k = 2, . . . , n− 1

d
dtIn(t) = dnβ

Iv(t)
Nh(t)Sn(t)− (ρn + dhn + δhn)In(t) + en−1In−1(t)

(10)
d
dt Ĩ1(t) = ρ1I1(t) + d̃1β

I(t)

Nh(t)R1(t)− (pρ̃1 + dh1 + δ̃h1 + (1− p)γ1 + e1)Ĩ1(t)

d
dt Ĩk(t) = ρkIk(t) + d̃kβ

I(t)

Nh(t)Rk(t)− (pρ̃k + dhk + δ̃hk + (1− p)γk + ek)Ĩk(t) + ek−1Ĩk−1(t), for k = 2, . . . , n− 1

d
dt Ĩn(t) = ρnIn(t) + d̃nβ

I(t)

Nh(t)Rn(t)− (pρ̃n + dhn + δ̃hn + (1− p)γn)Ĩn(t) + en−1Ĩn−1(t)

(11)
d
dtR1(t) = pρ̃1Ĩ1(t)− (d̃1β

Iv(t)
Nh(t) + dh1 + e1)R1(t)

d
dtRk(t) = pρ̃kĨk(t)− (d̃kβ

Iv(t)
Nh(t) + dhk + ek)Rk(t) + ek−1Rk−1(t), for k = 2, . . . , n− 1

d
dtRn(t) = pρ̃nĨn(t)− (d̃nβ

Iv(t)
Nh(t) + dhn)Rn(t) + en−1Rn−1(t)

(12)
Initial Conditions 

Sk(0) =
∫ ak
ak−1

s(0, a)da =
∫ ak
ak−1

s0(a)da

Ik(0) =
∫ ak
ak−1

i0(a)da

Ĩk(0) =
∫ ak
ak−1

ĩ0(a)da

Rk(0) =
∫ ak
ak−1

r0(a)da

k = 1, ..., n.

(13)

5 Numerical results and discussion

We developed a Matlab computer code for the discrete-age continuous-time version of the
model for n non-overlapping age intervals. We run the simulations for 20 years, p = 1
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(high transmissibility) and choose to work with four age groups: 0 to 4 years, 5 to 20
years, 21 to 40 years and the last age group from 41 years on. The choice of the first age
group was made by assuming that young children up to four years are more susceptible to
the disease than older children and adults [4], the second age group was chosen in a way
that considers woman in fertile age, because they are specially vulnerable to malaria while
pregnant due to a slower innate immune system response [4]. The third age group consists
of adults with their innate immune system fully functional for their age and the fourth
one are older people with a weakened immune system, considering an average lifespan of
50 years for African villages [16].

We start the simulation at initial conditions that follow the age distribution of an
African village [16]. For each human compartment, Sh, Ih, Ĩh, Rh, for each age group,
and for the infected mosquito compartment Iv, we can find a non-zero equilibria after
approximately 20 years or less. We can see that after 20 years the proportion of infected
individuals from each age group as shown in the figure 2-2 from Figure 2 as well as the
age structure is adequate for a population in Africa, following a decreasing trend with
increasing age as seen in field studies [20].

We can observe from Figure 2 that the curves representing infected humans in both in-
fected classes are shaped the same way as the curve representing the infected mosquitoes,
and they peak at the same time. This suggests that the number of infected mosquitoes at
any given time is proportional to the number of infected humans. Moreover, we can com-
pute from Figure 1-1 in Figure 2 that after the mosquito population reached equilibrium
the proportion of infected vectors is approximately 1% of the total mosquito population
size. This observation coincides with field data [21].

Figure 3 shows the proportion of all infected individuals Ih+Ĩh
Nh

at equilibrium (for
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Figure 2: Malaria disease dynamics for p=1. Figures numbered by row and columns (for example

the figure in the fist row and second column we call figure 1-2) Figure 1-1 shows the number of

infected mosquitoes vs time (0-20 years), Panel 1-2,2-1,2-2,3-1 show the number of people in each

compartment for each age-group vs time (0-20 years). Panel 3-2 shows proportion of people per

age-group in each compartment and the age distribution of the population.
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different p values) relative to proportion of infected people in the infected class of the
basic SIS age structured malaria model. The basic SIS malaria model is recovered from
our model by choosing p = 0 and γ(a) ≈ ∞, i.e. people pass from the susceptible class
to the infectious class I, then to the infectious class Ĩ and leave that class immediately
to return to the susceptible class, such that the Ĩ class can be basically ignored. This
means that they do not acquire anti-parasite immunity, clinical immunity nor premonitory
immunity at any level. The transmissibility level of a region is measured by the parameter
p, in the following way: depending on the climate of a geographical region, the presence
of mosquitoes behaves seasonal, such that the percentage of people in the population
exposed to mosquitoes (depends on human behavior, activities, habits, etc.) vs time
(one year) follows a bell shaped curve. When transmissibility of malaria is highest, the
percentage of people exposed to mosquitoes is higher, which happens for a certain amount
of months a year depending on climate. We define p as the average number of people (in
%) constantly exposed to mosquitoes throughout the year, which means that in average
p percent of the people in a region would develop NAI. From Figure 3 it can be observed
that for all age groups, as p increases, the number of people able to transmit the parasite
decreases. For a transmissibility level greater than p = 0.1 it is the youngest age group the
one having the most number of infectious individuals, followed by the other age groups,
in an with age increasing order. For a transmissibility level greater than approximately
p = 0.09, the proportion of infectious individuals in any of the age-groups relative to
infectious individuals with no type of NAI, is less than 1. This means that in a region
with transmissibility level greater than p = 0.09, the amount of infectious people (of
any age) is less than in an area of no transmissibility p = 0, where nobody acquired
any type of immunity. On the contrary, for levels of p < 0.09 the amount of infectious
people of younger age groups are overtaken by the older age groups. Also, one can find
values for p < 0.09 such that the proportion of infectious people of at least one of the
age classes is greater than one. This means that for those transmissibility levels the
development of NAI of a percentage of the people is increasing the number of infectious
people of certain age-groups in the population. Considering this surprising result it can
be suggested that endemicity of a region (proportion of people tested positive in ELISA
or dot-ELISA P.falciparum antibodies test) does not reflect the risk of infection. Since
antibodies can be found in both, infectious and recovered individuals, endemicity tests in
regions of high transmissibility will usually reflect a high number of people in the recovered
class. Assuming that what really reflects the risk of acquiring the parasite is the proportion
of infectious people, less endemic regions could have, proportional to the population, more
people able to transmit the parasite.

In conclusion, in this paper we did analytical and numerical analysis of an age-
structured malaria model that considers different levels of natural acquired immunity
(NAI) depending on transmissibility level of the region. In section 3 we computed ana-
lytically the basic reproduction number, R0, and proved the local stability of the disease
free state. In section 4 we developed a discrete in age, continuous in time age-structured
model and run numerical simulations considering four age groups. We conclude that the
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number of infectious individuals is reduced (being highest for young age groups) if the
transmissibility level is increased by more than a certain threshold.
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Figure 3: Proportion of individuals in infected classes relative to individuals in the infected
class of the basic SIS age structured malaria model.
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Table 1. Parameters. Units of all rates 1
day

.

Symbol Description
Value

Age-group
0− 4 5− 20 21− 40 41+

dv Mosquito death rate 0.1

d

Probability of transmission

0.08
of infection from Iv to s
of age a, given that contact
between the two occurs.

dh(a)
Natural death rate of humans

6×10−4 5×10−4 3×10−4 6×10−4

depending on age

δh(a)
Disease induced death rate

4×10−4 3×10−4 2×10−4 4×10−4

of humans depending on age

δ̃h(a)
Reduced disease induced death

4×10−5 3×10−5 2×10−5 4×10−5

rate of humans

ρ(a)
Rate of suppressing

1/90 1/30 1/70 1/60
parasite load by II

ρ̃
Rate of suppressing parasite 1/15 1/3 1/12 1/3
load by II and anti-parasite
immunity.

c

Probability of transmission

0.05
of infection from i to Sv
given the contact between
the two occurs

c̃

Host-age dependent probability

0.05 0.5×10−2 0.5×10−3 10−4of transmission of infection

from ĩ to Sv given that
contact between the two occurs

e human aging rate 0.25/365 1/(15×365) 1/(20×365) 0

γ recovery rate from class ĩ to class s 1/30 1/50 1/25 1/50

d̃

age dependent probability of transmission
from Iv to r given that
contact between the two occurs 0.07 10−1 10−2 2×10−3

p
proportion of people constantly
exposed to mosquitoes in a region varies

β
Biting rate of mosquitoes

0.6
to humans

λv Mosquito birth rate 3× 10−2 overall
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