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Abstract

The California prison system has a high percentage of people who return to prison
within a three year period after release. A mathematical model is formulated to
study the effectiveness of Reentry Court programs for first time offending parolees
designed to reduce the prison return rates when implemented alone or in conjugation
with an in prison educational program. Parolees who participated in both in/out
of prison programs are referred to as an ideal class in the model. Stability analysis
and numerical simulations were carried out to study the impact of the programs.
The results show that the reentry program reduces the recidivism rate more than the
Basic Educational program within the prison system, but only when social influence
of criminals is low outside of prison. However, for populations with high rates of social
influences, incarceration rates should be large in order to get the same impact of the
reentry program.

1 Introduction

The prison system as we know it today has evolved over the past centuries. The idea of
rehabilitation for prisoners was a more recent addition introduced in the 18th century, [2].
Today’s prison system serves four purposes: retribution, incapacitation, deterrence and
rehabilitation, [1]. Many inmates are eventually released back into society and more than
half return to prison more than once. Evidence shows that in recent years there were 760
prisoners per 100,000 individuals per year giving the U.S. the highest rate of incarceration
in comparison to the rest of the world, [3]. We need to consider whether the prison reforms
within it actually discourage people from committing crimes given that we have high rates
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of recidivism, [3]. In this report, we seek to gain insight using a mathematical model of
the effectiveness of reform programs.

Although California populates less than 5% of the world’s population, it is known for
having thirty-three prisons with the majority of them being overcrowded, [4]. In 2011,
the U.S. Supreme court ruled that California decrease its inmate population by 34,000
in two years, because overcrowded prisons yield poor conditions and violate prisoner’s
constitutional rights, [5]. In addition, overcrowding also creates unrest and violence which
can become dangerous when guards are outnumbered by hundreds of inmates, [6]. Sixty-
five percent of released inmates go back to prison within a three year period, [5]. It is in
society’s best interest that inmates are reformed to prevent them from returning to prison
after their release. In California, the average annual cost to house inmates is $45,006 per
person, [7]. In [8] it was shown that a reduction of only five percent of the recidivism rate
will save $500 million in capital costs per year.

One of the goals of the prison system is to reform criminals into law abiding citizens.
Prisons have made drastic changes in management to find a more effective reform system
because as society changes, so will prison’s objectives, [13]. High recidivism rates suggest
that prisoners have been going through a less effective system, one that should be fixed
for the welfare of the state. Studies show that lack of education suggests high recidivism,
[1]. We focus on two types of educational programs; the first is called the Basic Academic
Education Program and is an in-prison type of program and the second is an outside prison
program called Reentry Court Program. This program helps a released inmate find a job,
since employment keeps parolees out of prison. We propose a mathematical approach to
evaluate the impact of the two prison reform programs.

The goal of this mathematical study is to identify mechanisms that may reduce rates
of recidivism. Our model has several features in common to the MTBI technical report,
“Dynamical Interpretation of the Three Strikes Law,” [10]. Both models focus on criminals
who commit violent crimes, such as homicide, arson, robbery, rape, motor vehicle theft
and aggravated assault, to name a few. A compartmental and deterministic model is used
to simulate and analyze criminal activity as an infectious social disease. We consider the
male population at high risk of becoming criminals in the entire state of California. For
simplicity, we stratified the population into susceptibles, criminals that are free, prisoners,
and released prisoners. We assume that new criminals are only produced through social
influence on the susceptible population, i.e. a population of non-criminals and released
prisoners.

Unlike the model in [10], we look at reform programs. We consider a prison system
that has external and internal programs to reduce recidivism. The program we focus
on within the prisons is a Basic Educational program, where criminals can take classes
that are similar to K-12 and can earn their General Education Diploma (GED), which is
equivalent to a high school diploma. The goal of this program is to prepare the inmates
for success outside of prison and to enhance the rehabilitative aspects of prison. Educa-
tional programs offered inside prisons are typically provided and managed by state prison
systems in which they reside. Funding for the programs are granted through state or

2



federal correctional department budgets. The outside program is a reentry program that
helps ex-prisoners integrate back into society and helps them from returning to prison a
second time, [17]. Reentry Court programs are a new trend in California in attempts to
reduce recidivism. They are called Reentry Court programs because they require judicial
monitoring of parolees to promote public safety, [21]. Only ex-offenders are admitted into
these programs. Both programs are optional for the prisoners, [15].

It is believed that prisoners who complete both programs are less likely to return to
prison, [4]. We are addressing whether the Basic Academic Education Program is more
effective in reducing recidivism or whether the Reentry Court Program has a greater im-
pact in reducing recidivism. Figure 1 describes the flow of men through the prison system
and educational programs. We model this from an epidemiological perspective where the
disease is “crime”. The compartment S corresponds to individuals in the susceptible class
who have never committed a crime. The C class corresponds to those individuals who
have committed a crime but have never been convicted for it or served prison time. The I
compartment represents those individuals who are in prison for the first time which acts
as a quarantine while inmates go through the recovery process.

The model contains four classes that leave the incarcerated class (I): H1 class corre-
sponds to both the Basic Education Program and the Reentry Court Program, individuals
who only completed the Basic Academic Program are in A1 and men who did not complete
the in-prison program (Basic Academic Education Program) but did finish the outside pro-
grams (Re-Entry Court Program) are in H2. Finally, we included the group of people who
did not complete the inside program or the outside program (A2). Therefore the A2 class
is considered trivial, since it will yield the largest recidivism. To address this question, we
study three simplified models (H1, H2, A1).

The model in Figure 1 was simplified into three mathematically equivalent models.
Thus, we perform mathematical analysis on the simplified model involving A1 only. We
let H1 class be the ideal group and expect it to yield the lowest recidivism rate. We want
to compare the effectiveness of the classes who complete only one program (H2 and A1).
The model incorporates social influence of criminals on susceptibles and the effectiveness
of recidivism related interaction programs, [15]. The results of this research may yield
insight into the reduction of recidivism rates in California.

This article is organized as follows: In section 2, we provide and discuss the general
framework of the model. In section 3, we analyze the simplified model. The values of
numerical simulations are shown in section 4. The implications of our results and analysis,
includes limitations of the models in section 5 and also suggest further research.

2 Data Sources

In this section we describe the data sources used to justify model parameters that
we use as our estimates. We only consider the male population who is 18 or older. The
US Census Bureau data is used to estimate the 18 or older total population of U.S.
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and California. The number of individuals who complete the education program within
prison are obtained from the estimates on the California Department of Corrections and
Rehabilitation (Office of Correctional Education) [8]. The total number of male inmates
incarcerated per month from 2006-2010 was also collected and used, [19]. The data from
the 2011 prison evaluation report is used to compute the release rate. Data for the reentry
program is obtained from [5].

3 Model

Our model considers males 18 years and older in the state of California. A compart-
mental model is shown in Figure 1. Susceptible individuals (S) in our model can become
criminals (C) under the social influence of criminals outside of prisons (C, A1, H1, A2,
H2). The criminals are caught and imprisoned (I) at the per capita rate σ per month.
Released individuals can transition into one of four compartments based on the type of
reform programs that they have completed or will be completing. The recruitment rate,
Λ, represents the number of males who turn 18 per month in the state of California; µ rep-
resents the per capita exit rate for each class; θ1 will denote the per capita re-incarceration
rate for the first-time offenders who completed the educational program (inside prison),
while θ2 will represent the per capita re-incarceration rate for not completing the edu-
cational program. The parameter p captures the proportion of released individuals that
complete the Basic Education program and q correlates with the proportion of released
individuals that complete a Reentry Court program. The parameter σ represents the per
capita incarceration rate. We define β as a social influence parameter related to individuals
in the criminal class which is known as a transmission rate in “regular” epidemiological
models. In order to quantify social influence related parameters we use the data from
2006 through 2010. We let β1 = βε1, where 0 < ε1 < 1 is a weight. β1 corresponds to
the social influence parameter of the A1 class on the S class. β2, β3, and β4 represent
the social influence parameter of A2, H2, H1, respectively, on the susceptible class. We
assume β > β2 > β1 > β3 > β4 to determine values of ε1 − ε4.

First, we focused on three simplified one-intervention-compartment model and an ex-
ample model is shown in Figure 2. Each model focuses on a population of first time
parolees: H1, H2, and A1.
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Class Description

S Population that is susceptible to becoming criminals

C Individuals that commit crimes and are not imprisoned

I Imprisoned criminal population

A1 Released inmates that completed the inside program,
but did not complete or were not involved in outside program

A2 Released inmates that did not complete or were not involved the inside program
within prison and also did not complete or were not involved in the outside program

H1 Released inmates that completed the inside program,
and completed or were involved in the outside program (control group)

H2 Released inmates that did not complete or were not involved in the inside program,
but completed or were involved the outside program

R Released inmates that go back to prison a second time irrespectively
of their past experience with the reform programs

Table 1: Compartmental classes and interpretations

Parameters Description

N Starting population

Λ Rate of entry of individuals into core-group population as susceptibles

σ Per capita incarceration rate

γ Per capita prison release rate

µ Per capita mortality rate

q Proportion of released individuals that were involved in outside program

p Proportion of released individuals that completed the inside program

θ1 Per capita reincarceration rate for those who completed the inside program

θ2 Per capita reincarceration rate for not completing the inside program

β Social influence parameter related to individuals in the C class

βi = εiβ Social influence parameter related to individuals in the A1, A2, H1, H2 class
where εi is the reduction in the social influence of A1, A2, H1, H2

class individuals as compared to C class individuals

φ Proportion of unsuccess rate of the reentry program

α Proportion of individuals that go back to prison

Table 2: Parameters.

5



Figure 1: Flow diagram of the general model.

3.1 Simplified Model Involving A1 Compartment

Figure 2: Simplified A1 model
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The system of ODE’s corresponding to Figure 2 is:

dS
dt = Λ− βCS

N − β1A1S
N − µS

dC
dt = βCS

N + β1A1S
N − µC − σC

dI
dt = σC − γI − µI
dA1
dt = γrI − θ1A1 − µA1
dR
dt = α0θ1A1 − γR− µR

(1)

where, r = p(1− q)
In this model we only consider the S, C, I, A1, and R classes. In our susceptible popula-
tion (S) we have our inflow of people turning 18 (Λ), and three outflows: µS symbolizes
the susceptible individuals leaving our system due to mortality, βSC

N and β1A1S
N which

represents the amount of susceptible individuals that turn into criminals over time. βSC
N

and β1A1S
N go into C, the criminal class, and has two outflows: µC denotes the criminals

leaving our system due to mortality, and σC which represents the number of never impris-
oned criminals that are incarcerated over time. The rate σC goes into our I class, which
contains the first-time prisoners. This class has three outflows: µI re presents first-time
prisoners who leave the system due to mortality, γ(1− r)I symbolizes the number of first-
time released inmates who enter different programs other than A1, and γrI is the number
of first-time released inmates who go into the A1 class over time. This last class has
three outflows: µA1 which represents the number of first-time released inmates who went
through an in-prison program but are leaving the system due to mortality, (1 − α0)θ1A1

stands for the number of completely recovered first-time released inmates over time, and
α0θ1A1 represents the number of second-time offenders (i.e. first-time released inmates
that fall into recidivism) over time. α0θ1A1 goes into R, which is the class that contains
second-time offenders. This class has two outflows: γR stands for the number of second-
time release inmates over time, and µR denotes the second-time offenders that leave our
system due to mortality.

4 Analysis

The mathematical analysis for the simplified model A1 is present. The analysis for
the simplified models H1 and H2 will be similar because only parameters change. The
equilibrium points obtained from this model are obtained by finding roots of (1), which
we found using Maple 16. The crime-free equilibrium (CFE) is S∗ = N , C∗ = 0, I∗ = 0,
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A∗1 = 0, R∗ = 0, and the recidivism equilibrium point is given by

S∗ =
Ns1s3s2

βs1s2 + β1σγr

C∗ =
s1s2 (−µs3N + Λβ) + Λσγrβ1

s3 (βs1s2 + β1σγr)

I∗ =
(s1s2 (−µs3N + Λβ) + Λσγrβ1)σ

s3s2 (βs1s2 + β1σγr)

A1
∗ =

σγr (s1s2 (−µs3N + Λβ) + Λσγrβ1)

s1s3s2 (βs1s2 + β1σγr)

R∗ =
α0θ1σγr (s1s2 (−µs3N + Λβ) + Λσγrβ1)

s1s3s22 (βs1s2 + β1σγr)

where s1 = µ+ θ1, s2 = µ+ γ, and s3 = µ+ σ.
The crime reproductive number, Rc, is computed using the next generation operator

method [17], with the following vectors:

F =


βSC
N + β1A1S

N
0
0
0

, V =


(µ+ σ)C

−σC + (γ + µ)I
−γrI + θ1A1 + µA1

−α0θ1A1 + (γ + µ)R

,


where F is the vector of rates of appearance of new criminals in each compartment,
and V = V+ + V− is the vector of transferring rates of individuals into and out of the
compartments. The crime reproductive number is therefore given by

Rc =
β

µ+ σ
+

β1γrσ

(γ + µ)(µ+ σ)(µ+ θ1)
. (2)

The details of the computations are shown explicitly in Appendix A.

Theorem 1. If Rc < 1, then the Crime-Free Equilibrium (N, 0, 0, 0, 0) is locally asymp-
totically stable.

Proof

The Jacobian of the system of differential equations (1) is given by
−βC∗

N − β1A∗1
N − µ −βS∗

N 0 −β1S∗

N 0
βC∗

N +
β1A∗1
N

βS∗

N − σ − µ 0 β1S∗

N 0
0 σ −γ − µ 0 0
0 0 γr −µ− θ1 0
0 0 0 αθ1 −γ − µ

.
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Evaluating at the CFE (N, 0, 0, 0, 0) yields
−µ −β 0 −β1 0
0 β − µ− σ 0 β1 0
0 σ −γ − µ 0 0
0 0 γr −µ− θ1 0
0 0 0 αθ1 −γ − µ

 . (3)

Note that λ1 = −µ, and λ2 = −γ − µ are two negative eigenvalues since all parameters
are greater than zero. Next we show that the remaining three eigenvalues are negative.
We start by eliminating the columns and rows of (3) corresponding to λ1 and λ2. This
reduces the Jacobian to the following matrixβ − µ− σ 0 β1

σ −γ − µ 0
0 γr −µ− θ1

 . (4)

This submatrix has the following characteristic polynomial:

λ3 + (γ + θ1 − β + σ + 3µ)λ2 + (−βγ + σγ + 2γµ+ σθ1 + 3µ2 − 2βµ

+2µσ − βθ1 + 2µθ1 + γθ1)λ− β1σγr − βγθ1 + σγθ1 + µγθ1 − βµθ1 + σµθ1

+µ2θ1 − βγµ+ σγµ+ µ2γ − βµ2 + σµ2 + µ3.

Let

a1 = γ + θ1 − β + σ + 3µ,

a2 = −βγ + σγ + 2γµ+ σθ1 + 3µ2 − 2βµ+ 2µσ − βθ1 + 2µθ1 + γθ1,

a3 = β1σγr − βγθ1 + σγθ1 + µγθ1 − βµθ1 + σµθ1 + µ2θ1 − βγµ+ σγµ+ µ2γ − βµ2 + σµ2 + µ3.

We show
(i.) a1 > 0, (ii.) a3 > 0, and (iii.) a1a2 > a3

(i.) Since Rc < 1, then from (2) we have 0 < β
µ+σ < Rc < 1 < 1 + 2µ+γ+θ1

µ+σ
which implies

β

µ+ σ
< 1 +

2µ+ γ + θ1
µ+ σ

,

β < (µ+ σ) + 2µ+ γ + θ1,

0 < −β + µ+ σ + 2µ+ γ + θ1,

0 < γ + θ1 − β + σ + 3µ = a1.

This proves a1 > 0.
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(ii.) Note that Rc = β1σγr+β(µ+σ)(µ+γ)
(µ+σ)(µ+γ)(µ+θ1)

< 1, therefore:

β1σγr + β(µ+ θ1)(µ+ γ) < (µ+ σ)(µ+ γ)(µ+ θ1)

0 < (µ+ σ)(µ+ γ)(µ+ θ1)− β1σγr − β(µ+ θ1)(µ+ γ)

0 < −γσβ1 − µγβ + µ2γ + µγσ − µ2β + µ3 + µ2σ

−θ1γβ + θ1γµ+ θ1γσ − θ1µβ + θ1µ
2 + θ1µσ = a3.

So we have a3 > 0.
(iii.) Let s1 = µ+ σ, s2 = µ+ γ, s3 = µ+ θ1, where s1 > 0, s2 > 0, s3 > 0. Then

a1 = s1 + s2 + s3 − β,

a2 = (s2 + s3)(s1 − β) + s2s3,

a3 = s1s2s3 − βs2s3 − β1pσγ,
= (s1s2s3)(1−Rc).

To prove a1a2 > a3, we first prove (s1s2s3)(1− β
s1

) > a3.

Note that Rc = β
s1

+ β1rσγ
s1s2s3

.
Then,

− β
s1

> −Rc

1− β

s1
> 1−Rc

(s1s2s3)(1−
β

s1
) > (s1s2s3)(1−Rc)

(s1s2s3)(1−
β

s1
) > a3.

Observe β
s1
< Rc < 1. Next we show a1a2 > (s1s2s3)(1 − β

s1
), which is equivalent to
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showing a1a2
(s1s2s3)(1− β

s1
)
> 1. Expanding the left hand side of this last inequality:

a1a2

(s1s2s3)(1− β
s1

)
= a1

(
(s2 + s3)(s1 − β) + s2s3

(s1s2s3)(1− β
s1

)

)
,

= a1

(
(s2 + s3)(s1 − β)

(s2s3)(s1 − β)
+

s2s3

(s1s2s3)(1− β
s1

)

)
,

= a1

(
s2 + s3
s2s3

+
1

s1 − β

)
,

= a1

(
1

s3
+

1

s2
+

1

s1 − β

)
,

= (s1 + s2 + s3 − β)

(
1

s3
+

1

s2
+

1

s1 − β

)
,

=
s1 − β + s2

s3
+ 1 +

s1 − β + s3
s2

+ 1 +
s2 + s3
s1 − β

+ 1,

=
s1 − β + s2

s3
+
s1 − β + s3

s2
+
s2 + s3
s1 − β

+ 3.

and since 0 < β
s1
< 1 then

s2+s3
s1−β + s1−β+s3

s2
+ s1−β+s2

s3
+ 3 > 3 > 1.

Therefore we have a1a2 > a3 as required, which implies that the remaining eigenvalues
are negative. Thus, we conclude that the CFE is locally asymptotically stable.

The stability of recidivism equilibrium was only verified numerically. In our sensitivity
analysis we found that the sensitivity indices for Rc are:
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Sβ =
β (γ + µ) (µ+ θ1)

βγµ+ βγθ1 + βµ2 + βµθ1 + β1σγr

Sβ1 =
β1σγr

βγµ+ βγθ1 + βµ2 + βµθ1 + β1σγr

Sσ = −
σ
(
βγµ+ βγθ1 + βµ2 + βµθ1 − β1γrµ

)
(σ + µ) (βγµ+ βγθ1 + βµ2 + βµθ1 + β1σγr)

Sµ = −
µ
(
β (γ + µ)2 (µ+ θ1)

2 + σγr
(
(2µ+ γ + θ1)σ + 3µ2 + (2γ + 2θ1)µ+ γθ1

)
β1

)
(βγµ+ βγθ1 + βµ2 + βµθ1 + β1σγr) (γ + µ) (σ + µ) (µ+ θ1)

Sγ =
γβ1σrµ

(βγµ+ βγθ1 + βµ2 + βµθ1 + β1σγr) (γ + µ)

Sθ1 = − θ1β1σγr

(βγµ+ βγθ1 + βµ2 + βµθ1 + β1σγr) (µ+ θ1)

Sr =
β1σγr

βγµ+ βγθ1 + βµ2 + βµθ1 + β1σγr

5 Results

In this section we provide numerical estimates of the model parameters, discuss sen-
sitivity analysis [20] of the crime reproductive number and show numerical simulations of
the model.

5.1 Estimation of Parameters

We start by estimating Λ. The percent of female population in the state of California
by 2011 is 50.3%, [9], then the percent of male population is 49.7%. The total male and
female population from the United States that are 18 and 19 years old is 9,086,089 [9],
which implies that the number of people that are only 18 years old in the United States is
given by 9,086,089

2 people. To find the number of people that are 18 years old in California,
use the percentage of people that live in California in comparison to the number of people
that live in the Unites States. Use data from [9] we have

Number of California Residents

Number of U.S. citizens
=

37, 691, 912

311, 591, 917

which gives us that the number of people that are 18 years old in California is

Number of California Residents

Number of U.S. citizens
(U.S. Population) = (

37, 691, 912

311, 591, 917
)(

9, 086, 089

2
)

= 549, 552people
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Duration of Prison Term (in months) Proportion of Prison Population In California (unitless)

0 to 6 0.151

6 to 12 0.39

12 to 18 0.165

18 to 24 0.093

24 to 36 0.085

36 to 48 0.038

48 to 60 0.025

60 to 120 0.042

120 to 180 0.009

Table 3: This represents the distribution of incarceration time for prisoners [3].

And since the population of California consists of 49.7% male members, we have that the
total number of people that are 18 year old California is given by

(California 18 year old pop.)(Male Percent) = (
37691912

311591917
)(

9086089

2
)(.497)

= 273127people

Since Λ represents the number of people that turn 18 each month, we have

( 37691912
311591917)(90860892 )(.497)

12
= 22760.62162 ≈ 22760 per month

The release rate γ is computed using the Table 3, [3]. γ is the weighted average of
prison terms, which gives us the average time spent in prison.

We use data in table to estimate average,

γ = 0.052337 per month.

To calculate µ we assume that the average lifespan of individuals living in California
is 70, and subtract 17 years from it because the population is 18 years of age and older.
Therefore, individuals in the model live an average of 53 years. This equals 53 ∗ 12 = 636
months, and we have

µ =
1

636
= 0.0016 per month

The Court Reentry Program admitted 656 parolees (males and females). From this
group, 83% are males, [5]. To calculate the total male parolee number, we calculate
656 ∗ .83 ≈ 544. The monthly rate: 544

12 ≈ 45, that is 45 male parolees participate in
the court reentry program every month. We know the total number of releases so we
then subtract the number of people doing the reentry program from the total number of
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releases: 7081 − 45 = 7036 parolees who did not do the outside program per month. We
compute the prgram q:

q =
45

7081
≈ 0.006

To find p, we use [6]. From that data we calculated the average number of people who
completed the in-prison educational program (Program Completions) in one year. We also
calculated the weighted averaged number of people who were released (Total Exits) in one
year:

Average Completions Per Year = 550 + 445 + 456 + 466 + 504 + 355 + 236 +

314 + 337 + 314 + 399 + 632,

= 5, 008.

Average Exits Per Year = 2, 396 + 2, 126 + 5, 260 + 2, 805 + 1, 869 + 2, 170 +

3, 001 + 2, 536 + 3, 329 + 3, 159 + 2, 894 + 3, 551,

= 3, 5096.

To find proportion p, we compute:

p =
Average Completions Per Year

Average Exits Per Year
≈ 0.14

. Note that p is unitless, we can use this valuein our model to represent the percentage of
people who completed the program out of the total prison population.

For the average time spent in the reentry programs, θ1, there were three different length
of programs: six months, twelve months, and eighteen months. We took the average for
the length of the program which is twelve months. We then divided one by twelve to get
the theta parameter:

1

θ1
= 12

⇒ θ1 =
1

12

The proportion of recidivism within a six month period after parolees complete the
Reentry Court program is 0.23, [5].

Overall 65% of the California’s released population goes back to prison within a three
yr time period also direct data [5]
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Sensitivity index Value

Sβ 0.8336

Sσ -0.8283

Sµ -0.0135

Sγ 0.0051

Sθ1 -0.16323

Sp 0.1664

Sβ1 0.1664

Table 4: Numerical values of each sensitivity index for parameter values given in Table 5

5.2 Sensitivity Analysis

In this section we perform a sensitivity analysis on the A1 model which represents the
effect the parameters of A1 have on Rc through the following equation

Sλ =
∆Rc
Rc

/
∆λ

λ
=

λ

Rc
· ∂Rc
∂δ

,

where λ represents each of our parameters.
The index value measures sensitivity of Rc due to small changes in value of the pa-

rameters. If Sλ > 0 then as λ increases Rc increases, similarly if λ decreases then so does
Rc. If the index value Sλ is negative then λ increases, then Rc decreases and vice versa.

Using the formula for Rc given in (2), we also computed the sensitivity indices for
σ = 0.15, 0.25, 0.35 and β = 0.4, 0.5, 0.6, 0.7, 0.8, where β > σ. The numerical results
showed that the Rc is most sensitive to changes on β for all these cases.

A decrease in β by 1
Sβ

= 1
0.8154636333 = 1.22% or an increase in σ by 1

Sσ
= 1

0.8108604290 =

1.23% will result in a decrease in Rc by 1%. This means that if the contact rate between
criminals and susceptibles is decreased by 1.23%, then the number of new criminals gener-
ated by existing criminals will decrease by 1 %. Also, if the incarceration rate of criminals
is increased by 1.23%, then then the number of new criminals generated by existing crim-
inals will also decrease by 1%.

5.3 Numerical Results

In this section we discuss our numerical results.
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Parameters Units Numerical Value Reference

N people 13,851,800 [9]

Λ people ·months−1 22760 [9]

σ months−1 when fixed: 0.3 [11]

γ months−1 .05 [3]

µ months−1 1
636 assumption

q # prisoners who completed the program
total prisoners released (unitless) .006 [5]

p # prisoners who completed the program
total prisoners released (unitless) .14 [6]

θ1 months−1 0.08 [11]

θ2 months−1 0.1 [11]

β months−1 0.5 [10]

β1 months−1 when fixed: β ∗ (.4) = .2 [14]

β2 months−1 0.5 [14]

β3 months−1 0.2 [14]

β4 months−1 0.15 [14]

φ proportion (unitless) .23 [5]

α proportion (unitless) .65 [5]

ε1, ε2, ε3, ε4 unitless [0,1] assumption

Table 5: Classes and Meanings

5.3.1 Simplified Model Containing A1

From the previous analysis we know that our recidivism equilibrium is:

S∗ =
Ns1s3s2

βs1s2 + β1σγp

C∗ =
s1s2 (−µs3N + Λβ) + Λσγpβ1

s3 (βs1s2 + β1σγp)

I∗ =
(s1s2 (−µs3N + Λβ) + Λσγpβ1)σ

s3s2 (βs1s2 + β1σγp)

A1
∗ =

σγp (s1s2 (−µs3N + Λβ) + Λσγpβ1)

s1s3s2 (βs1s2 + β1σγp)

R∗ =
αθ1σγp (s1s2 (−µs3N + Λβ) + Λσγpβ1)

s1s3s22 (βs1s2 + β1σγp)

where s1 = µ+ θ1, s2 = µ+ γ, and s3 = µ+σ. Using our values from Table 5 we have
that s1 = 0.08, s2 = 0.05, and s3 = 0.34, and that our endemic equilibrium is:
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S = 6, 964, 096.01

C = 39, 161.96031

I = 227, 807.99

A1 = 19, 548.98

R = 19, 711.10

Figure 3: β vs. Recidivism Population

For low social influence β, increase in incarceration rate σ has a higher effect on the
size of the recidivism class. For large β and σ, the size of the recidivism class decreases
less. We conclude that because the simplified models are mathematically equivalent; this
is the case for all programs.
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Figure 4: Recidivism Population

Figure 4 shows the proportion of the A1, H1, H2 class going into the recidivism class.
Only completing the inside program produces the highest proportion of criminals going
back to prison. Completing the outside prison program produces a lower proportion of
recidivism and completing both programs produces the lowest recidivism proportion.
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Figure 5: Projection of Rc = 1 onto βσ-plane

Figure 5 shows the impact when β and σ are varied in Rc. When β and σ are on the
curve, then Rc = 1. When β and σ are below the curve, then Rc > 1, which means the
infection (crime) will continue to spread and therefore will cause an epidemic. When β
and σ are above the line, then Rc < 1, which implies the infection will die off.
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Figure 6: Ratio of Recidivism Rates A1− > R : H1− > R

Figure 6 shows the ratio of rates between the A1 class and the H1 class and the H2

class and the H1 class. αθ1A1
φθ1H1

> 1, meaning the rate at which the A1 class goes into the
recidivism class is much larger than the rate at which the H1 class goes into the recidivism
class. This Figure indicates completing both programs is significantly more important
than only completing the program inside of prison.
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Figure 7: Ratio of Recidivism Rates H2− > R : H1− > R

Figure 7 shows the ratio of rates between the H2 class and the H1 class. φθ2H2

φθ1H1
> 1,

meaning the rate at which the H2 class goes into the recidivism class is slightly larger than
the rate at which the H1 class goes into the recidivism class. This suggests how effective
the Reentry Court program is compared to completing both programs.
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Figure 8: Ratio of Recidivism Rates A1− > R : H2− > R

Figure 8 shows the ratio of rates between the A1 class and the H2 class. αθ1A1
φθ2H2

> 1
suggests the rate at which the A1 class goes into the recidivism class is much larger than
the rate at which the H2 class goes into the recidivism class. This implies that the Reentry
Court program is more effective than the Basic Education program.

6 Conclusion

Rc is the reproductive number which is defined as the number of people one individual
can influence during his time as a free criminal. We calculated Rc as being 1.98, which
indicates every criminal can infect about two susceptibles. Our results suggests the number
of people going back to prison decreases drastically for those individuals who complete the
outside program in comparison to those who only complete the inside program, see Figure
4. However, this decrease in the recidivism class is at the expense of a slight increase in size
of free criminals in the population. If the measure of effectiveness of a program is the size of
the recidivism class, then the outside program out performs the inside prison program by
a large number, as seen in Figure 4. However, if the measure of effectiveness of a program
is the size of the criminal class, then the inside prison program slightly out performs
the inside prison programs. Figure 10 and 11 of the simplified models give information
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on which program (educational, court reentry, or both) is more effective in reducing the
rate of recidivism. In these figures we divide the ratios and if the plot is positive, then
the class in the numerator has a higher recidivism rate. These results suggest that the
outside program is much more effective than the inside program. In Figure 4, the steady
state proportions of A1, H1, H2, suggests that the H1 class has the lowest proportion of
recidivism and therefore completing both programs will result in the largest decrease of
recidivism. Figure 11 suggests that those who only complete the Educational Program
(A1) will have a higher recidivism proportion when compared to H2. From Figure 4 we can
imply that the outside program (H1 and H2) has a greater effect on recidivism rates, this
figure also suggests that the inside program has little effect on recidivism. Furthermore,
the class of people who only do the inside program have a higher recidivism rate than
both H1 and A1 but lower than A2 which is the group of people who do not partake in
any inside or outside program. We studied simplified models that can capture similar
dynamics to the general model in Figure 1.

Further research can be done in comparing the cost of both the educational program
and the reentry court program. Our analysis suggest that more money should be allocated
into the H2 programs, however further cost analysis is suggested to support such claim.
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8 Appendix A

8.1 A1 Analysis -R0

To compute the basic reproductive number, we use the next generation operator. First,
we find the F matrix based on new criminals,

F =


x1
x2
x3
x4

 =


βCS
N + β1A1S

N
0
0
0


Then we compute the F matrix,

F =


∂(x1)
∂(C)

∂(x1)
∂(I)

∂(x1)
∂(A1)

∂(x1)
∂(R)

∂(x2)
∂(C)

∂(x2)
∂(I)

∂(x2)
∂(A1)

∂(x2)
∂(R)

∂(x3)
∂(C)

∂(x3)
∂(I)

∂(x3)
∂(A1)

∂(x3)
∂(R)

∂(x4)
∂(C)

∂(x4)
∂(I)

∂(x4)
∂(A1)

∂(x4)
∂(R)

 =


βS
N 0 β1S

N 0
0 0 0 0
0 0 0 0
0 0 0 0


The V matrix tracks the inflow and outflow of criminals from each compartment

V =


y1
y2
y3
y4

 =


Cσ + Cµ

Iµ+ Iγ − Cσ
A1θ1 +A1µ− Ipγ
Rµ+Rγ −A1αθ1


Then we compute the V matrix,

V =


∂(y1)
∂(C)

∂(y1)
∂(I)

∂(y1)
∂(A1)

∂(y1)
∂(R)

∂(y2)
∂(C)

∂(y2)
∂(I)

∂(y2)
∂(A1)

∂(y2)
∂(R)

∂(y3)
∂(C)

∂(y3)
∂(I)

∂(y3)
∂(A1)

∂(y3)
∂(R)

∂(y4)
∂(C)

∂(y4)
∂(I)

∂(y4)
∂(A1)

∂(y4)
∂(R)

 =


σ + µ 0 0 0
−σ γ + µ 0 0
0 −pγ µ+ θ1 0
0 0 −αθ1 γ + µ


Then we compute V −1,

V −1 =


1

σ+µ 0 0 0
σ

(γ+µ)(σ+µ)
1

(γ+µ) 0 0
pσγ

(γ+µ)(σ+µ)(θ1+µ)
pγ

(γ+µ)(θ1+µ)
1

θ1+µ
0

pσγαθ1
(γ+µ)2(σ+µ)(θ1+µ)

pσγαθ1
(γ+µ)2(θ1+µ)

αθ1
(γ+µ)(θ1+µ)

1
(γ+µ)
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To find R0 we evaluate both F and V −1 at our crime-free equilibrium and find the largest
eigenvalue along the diagonal in the product of the two matrices.

R0 = ρ(FV −1)

= ρ



β 0 β1 0
0 0 0 0
0 0 0 0
0 0 0 0




1
σ+µ 0 0 0
σ

(γ+µ)(σ+µ)
1

(γ+µ) 0 0
pσγ

(γ+µ)(σ+µ)(θ1+µ)
pγ

(γ+µ)(θ1+µ)
1

θ1+µ
0

pσγαθ1
(γ+µ)2(σ+µ)(θ1+µ)

pσγαθ1
(γ+µ)2(θ1+µ)

αθ1
(γ+µ)(θ1+µ)

1
(γ+µ)




= ρ




β
σ+µ + β1pσγ

(γ+µ)(σ+µ)(θ1+µ)
β1pγ

(γ+µ)(θ1+µ)
β1
θ1+µ

0

0 0 0 0
0 0 0 0
0 0 0 0




=
β

σ + µ
+

β1pσγ

(γ + µ)(σ + µ)(θ1 + µ)

8.1.1 Finding Equilibria

By setting all ODE’s equal to zero we find our disease-free equilibrium to be

(N, 0, 0, 0, 0)

To find our endemic equilibria by setting all of the following equations in terms of C.

S′ = Λ− βCS

N
− β1A1S

N
− µS

C ′ =
βCS

N
+
β1A1S

N
− µC − σC

I ′ = σC − γI − µI
A′1 = γpI − θ1A1 − µA1

R′ = θ1αA1 − γR− µR

In order to solve for S we add S’+ C’ and set it equal to zero.

0 = Λ− βC∗S

N
− β1A1S

N
− µS +

βC∗S

N
+
β1A1S

N
− µC∗ − σC∗

0 = Λ− µS − µC∗ − σC∗
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We then solve for the variable S.

µS = Λ− µC∗ − σC∗

S =
Λ

µ
− C∗ − σC∗

µ

=
1

µ
(λ− (µ+ σ)C∗)

Next we solve for I in terms of C∗.

0 = σC∗ − IµIγ
0 = σC∗ + I(−µ− γ)

I =
σC∗

s2

Now we will be putting A1 in terms of C∗.

0 = −γpI − µA1 − αθ1A1 − (1− α)θ1A1

0 = γ − µA1 − αθ1A1 − θ1A1 + αθ1A1

0 = γpI − µA1 − θ1A1

We simultaneously substitute our I term from above as well as solve for A1:

A1 =
γpσC∗

s2s1

We have to put our R equation in terms of C∗ as well.

0 = αθ1A1 − γR− µR
0 = αθ1A1 −R(γ + µ)

R =
αθ1A1

γ + µ

We then go on to substitute A1 with the solution above in order to put R in terms of C∗.

R =
αθ1(γpσC

∗)

s2s21

Now that we have put all of our equations in terms of C∗. We will be taking our S’
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equation and replacing the values of A1 and S so that all our equation is in terms of C∗.

S′ = Λ− βC∗

N

(
Λ

µ
− C∗ − σC∗

µ

)
− β1

γpσC∗

s2s3

(
Λ

µ
− C∗ − σC∗

µ

)
− µ

(
Λ

µ
− C∗ − σC∗

µ

)

In order to simplify the equation we will let:

s1 = µ+ θ1

s2 = µ+ γ

s3 = µ+ σ

We now substitute our s1s2s3 into our equation below in order to simplify.

0 = Λ− βC∗

N

(
Λ

µ
− C∗

µ
s3

)
− β1

γpσC∗

s2s1

(
Λ

µ
− C∗

µ
s3

)
− µ

(
Λ

µ
− C∗

µ
s3

)
0 = Λ− βC∗ +

βC∗2

Nµ
s3 − β1

γpσC∗

s2s1

(
Λ

µ
− C∗

µ
s3

)
− Λ− C∗s3

Using maple we set the equation to zero and solve for C∗. We get a a value for C∗

giving us the endemic equilibrium:

C∗ = N
(βµs3s1 + β3p2σγΛ− µs23s1)

s3(βs3s1 + β3p2σνN)

8.1.2 Stability of Disease-Free Equilibrium

S′ = Λ− βCS

N
− β1A1S

N
− µS

C ′ =
βCS

N
+
β1A1S

N
− Cσ − Cµ

I ′ = Cσ − Iµ− Ipγ − I(1− p)γ
A′1 = Ipγ −A1µ−A1θ1

R′ = A1αθ1 −Rγ −Rµ

We then find the Jacobian of the system of differential equations and evaluate it at

27



our crime-free equilibrium.

J(S∗, C∗, I∗, A∗1, R
∗) =



∂(S′)
∂(S)

∂(S′)
∂(C)

∂(S′)
∂(I)

∂(S′)
∂(A1)

∂(S′)
∂(R)

∂(C′)
∂(S)

∂(C′)
∂(C)

∂(C′)
∂(I)

∂(C′)
∂(A1)

∂(C′)
∂(R)

∂(I′)
∂(S)

∂(I′)
∂(C)

∂(I′)
∂(I)

∂(I′)
∂(A1)

∂(I′)
∂(R)

∂(A′1)
∂(S)

∂(A′1)
∂(C)

∂(A′1)
∂(I)

∂(A′1)
∂(A1)

∂(A′1)
∂(R)

∂(R′)
∂(S)

∂(R′)
∂(C)

∂(R′)
∂(I)

∂(R′)
∂(A1)

∂(R′)
∂(R)



=


−βC

N −
β1A1

N − µ −βS
N 0 −β1S

N 0
βC
N + β1A1

N
βS
N − σ − µ 0 β1S

N 0
0 σ −µ− pγ − (1− p)γ 0 0
0 0 pγ −µ− θ1 0
0 0 0 αθ1 −γ − µ



J(N, 0, 0, 0, 0) =


−µ −β 0 −β1 0
0 β − σ − µ 0 β1 0
0 σ −µ− pγ − (1− p)γ 0 0
0 0 pγ −µ− θ1 0
0 0 0 αθ1 −γ − µ


Since the first and last columns have only one nonzero term, we can look at the 3x3 matrix
inside of the Jacobian matrix to determine our characteristic polynomial. β − σ − µ 0 β1

σ −µ− pγ − (1− p)γ 0
0 pγ −µ− θ1


λ3 + a1λ

2 + a2λ+ a3

where,

a1 = 3µ+ θ1 + γ − β + σ

a2 = 2µγ + 3µ2 − 2µβ + 2µσ + θ1γ + 2θ1µ− θ1β + θ1σ − γβ + γσ

a3 = −pγσβ1− µγβ + µγσ + µ2γ − µ2β + µ2σ + µ3 − θ1γβ + θ1γσ + θ1γµ− θ1µβ + θ1µσ + θ1µ
2

Let,

S1 = (µ+ σ)

S2 = (µ+ γ)

S3 = (µ+ θ1)
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This gives us,

a1 = S1 + S2 + S3 − β
a2 = (S2 + S3)(S1 − β) + S2S3

a3 = S1S2S3 − βS2S3 − β1pσγ

To determine the stability of the crime-free equilibrium, we use the Routh-Hurwitz Crite-
rion.

Theorem 2. Routh-Hurwitz Criterion If the ai coefficients of the third degree polynomial
x3 + a1x

2 + a2x+ a3 satisfy the following,

1. a1 > 0

2. a3 > 0

3. a1a2 > a3, where a2 > 0

then our crime-free equilibrium is locally asymptotically stable.

First we show that a1 > 0,

a1 = S1 + S2 + S3 − β > 0

S1 + S2 + S3 > β

1 +
S2
S1

+
S3
S1

>
β

S1

Since R0 = β
S1

+ β1pσγ
S1S2S3

,
β

S1
< R0 < 1 < 1 +

S2
S1

+
S3
S1

Therefore, β
S1
< 1 + S2

S1
+ S3

S1
. Now we show a3 > 0,

R0 =
β

S1
+

β1pσγ

S1S2S3
< 1

βS2S3 + β1pσγ < S1S2S3

0 < S1S2S3 − βS2S3 − β1pσγ

We have that a3 = S1S2S3 − βS2S3 − β1pσγ. Thus a3 > 0.
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Lastly we show that a1a2 > a3, since R0 = β
S1

+ β1pσγ
S1S2S3

and S1, S2, S3 > 0,

β

S1
< R0

− β

S1
> −R0

1− β

S1
> 1−R0

(S1S2S3)(1−
β

S1
) > (S1S2S3)(1−R0)

(S1S2S3)(1−
β

S1
) > a3

So it suffices to prove that a1a2 > (S1S2S3)(1− β
S1

).

a1a2 > (S1S2S3)(1−
β

S1
)

a1a2

(S1S2S3)(1− β
S1

)
> 1

a2

(S1S2S3)(1− β
S1

)
>

1

a1

(S2 + S3)(S1 − β) + S2S3

(S1S2S3)(1− β
S1

)
>

1

S1 + S2 + S3 − β

S2S3

(S1S2S3)(1− β
S1

)
+

(S2 + S3)(S1 − β)

(S2S3)(S1 − β)
>

1

S1 + S2 + S3 − β
1

S1 − β
+
S2 + S3
S2S3

>
1

S1 + S2 + S3 − β
1

S1 − β
+

1

S2
+

1

S3
>

1

S1 + S2 + S3 − β

(S1 + S2 + S3 − β)(
1

S1 − β
+

1

S2
+

1

S3
) > 1

S2 + S3
S1 − β

+ 1 +
S1 − β + S3

S2
+ 1 +

S1 − β + S2
S3

+ 1 > 1

S2 + S3
S1 − β

+
S1 − β + S3

S2
+
S1 − β + S2

S3
+ 3 > 1

Since β
S1
< 1⇒ β < S1 ⇒ 0 < S1 − β, this implies that S2+S3

S1−β + S1−β+S3

S2
+ S1−β+S2

S3
> 0.

Thus a1a2 > a3 and the CFE is asymptotically stable.
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9 Appendix B

9.1 H1 vs H2 Analysis - Basic Reproductive Number

In this section, we compute the R0 for the model which compares the populations H1

and H2. The partial derivative of the matrix F evaluated at the disease free equilibrium:
Calculating R0:

F =


βCS
N + β3H2S

N + β4H1S
N

0
0
0
0

 , J1|(N,0,0,0,0,0) =


β β3 0 β4 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


The V matrix represents all the variables left in the infected classes after getting your F
matrix. The partial derivative of V evaluated at the disease free equilibrium.

V =


σC + µC

−σC + µI + γI
−(1− r1)γI + µH1 + θ1H1

−γr1I + µH2 + θ1H2

−φθ1H1 − φθ1H2 + γR+ µR

 ,

J2|(N,0,0,0,0,0) =


σ + µ 0 0 0 0
−σ 0 µ+ γ(1− r1) + γr1 0 0
0 0 −(1− r1)γ φθ1 + µ+ θ1(1− φ) 0
0 φθ1 + µ+ θ1(1− φ) −γr1 0 0
0 −φθ1 0 −φθ1 γ + µ

 .
In order to compute R0 first we need to take the inverse of J2. We take the partial
derivative of J1 and (J2)

−1 and multiply them. The following matrix is what the product:

R0 = J1(J2)
−1 = (


β

σ+µ + β3r1γσ
µ+θ1)(σ+µ)(γ+µ)

β3γr1
(γ+µ)(µ+θ1)

0 β3
µ+θ1

0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


R0 =

β

σ + µ
+

β3r1γσ

(µ+ θ1)(µ+ σ)(µ+ γ)
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